Categorie archief: meetkunde

WAT VIND JE OP DEZE BLOG?

.
Ondanks regelmatige controle komt het voor dat bepaalde links niet werken. Waarschuw me s.v.p.     pieterhawitvliet voeg toe apenstaartje gmail punt com

.
VRIJESCHOOL in beeld: bordtekeningen; schilderingen, tekeningen, transparanten enz.
voor klas 1 t/m 7; jaarfeesten; jaartafels

U vindt via onderstaande rubrieken de weg naar meer dan 1550 artikelen

RUDOLF STEINER
alle artikelen
wat zegt hij over——
waar vind je Steiner over pedagogie(k) en vrijeschool–
een verkenning van zijn ‘Algemene menskunde’


AARDRIJKSKUNDE
alle artikelen

DIERKUNDE
alle artikelen

GESCHIEDENIS
alle artikelen

GETUIGSCHRIFT
alle artikelen

GODSDIENST zie RELIGIE

GYMNASTIEK
vijfkamp(1)
vijfkamp (2)

bewegen in de klas

L.L.. Oosterom over: beweging tussen persoon en wereld; kind leert bewegend de wereld kennen;

HANDENARBEID
alle artikelen

HEEMKUNDE
alle artikelen

JAARFEESTEN
alle artikelen

KINDERBESPREKING
alle artikelen

KLASSEN alle artikelen:
peuters/kleutersklas 1;  klas 2; klas 3; klas 4; klas 5; klas 6; klas 7;  klas 8         (rest volgt – via zoekbalk vind je ook de andere klassen: 9 t/m 11)   klas 11

KERSTSPELEN
Alle artikelen

LEERPROBLEMEN
alle artikelen

LEZEN-SCHRIJVEN
alle artikelen

LINKS
Naar andere websites en blogs met vrijeschoolachtergronden; vakken; lesvoorbeelden enz

MEETKUNDE
alle artikelen

MENSKUNDE EN PEDAGOGIE
Alle artikelen

MINERALOGIE
alle artikelen

MUZIEK
mens en muziek
blokfluit spelen
over het aanleren van het notenschrift

NATUURKUNDE
alle artikelen

NEDERLANDSE TAAL
alle artikelen

NIET-NEDERLANDSE TALEN
alle artikelen

ONTWIKKELINGSFASEN
alle artikelen

OPSPATTEND GRIND
alle artikelen

OPVOEDINGSVRAGEN
alle artikelen

PLANTKUNDE
alle artikelen

REKENEN
alle artikelen

RELIGIE
Religieus onderwijs
vensteruur

REMEDIAL TEACHING
[1]  [2]

SCHEIKUNDE
klas 7

SCHRIJVEN – LEZEN
alle artikelen

SOCIALE DRIEGELEDING
alle artikelen
hierbij ook: vrijeschool en vrijheid van onderwijs

SPEL
alle artikelen

SPRAAK
spraakoefeningen
spraak/spreektherapie [1]    [2

STERRENKUNDE
klas 7

TEKENEN
zwart/wit [2-1]
over arceren
[2-2]
over arceren met kleur; verschil met zwart/wit
voorbeelden
In klas 6
In klas 7

VERTELSTOF
alle artikelen

VOEDINGSLEER
7e klas: alle artikelen

VORMTEKENEN
via de blog van Madelief Weideveld

VRIJESCHOOL
uitgangspunten

de ochtendspreuk [1]      [2]     [3]

bewegen in de klas
In de vrijeschool Den Haag wordt op een bijzondere manier bewogen.

bewegen in de klas
L.L.. Oosterom over: beweging tussen persoon en wereld; kind leert bewegend de wereld kennen; sport

Vrijeschool en vrijheid van onderwijsalle artikelen
zie ook: sociale driegeleding

vrijeschool en antroposofie – is de vrijeschool een antroposofische school?
alle artikelen

 

EN VERDER:
burnt out
Aart van der Stel over: waarom raakt iemand ‘burnt out’; je eigen rol en hoe gaan de anderen met je om; binnen-buiten; gezond-ziek

met vreugde in het nu aanwezig zijn
‘anti’- burn-out

geschiedenis van het Nederlandse onderwijs, een kleine schets


karakteriseren i.p.v. definiëren

lichaamsoriëntatie

(school)gebouw
organische bouw [1]     [2-1]    [2-2]

 

In de trein
onderwijzer Wilkeshuis over een paar ‘vrijeschoolkinderen’ in de trein

 

 

 

 

 

 

 

 

 

 

..

Advertenties

VRIJESCHOOL – 8e -12e klas – meetkunde

.

Dit is een overzicht van onderwerpen die in de verschillende klassen van de bovenbouw aan de orde komen.
Of wellicht kwamen. Het is mij niet bekend hoeveel mogelijkheden de middelbare vrijescholen nog hebben om, door exameneisen, het vrijeschoolleerplan nog te kunnen uitvoeren.

MEETKUNDE KLAS  8 T/M 12

8e klas

In 7 weken periodeonderwijs kan heel wat gedaan worden. Meestal worden deze 7 weken verdeeld in 2 periodes van resp. 3 weken, bijv, één in de herfst en één in de lente voor zover dit roostertechnisch mogelijk is.

In de eerste periode komen de bekende meetkundige figuren aan de orde zoals vierkant, rechthoek, parallellogram, ruit, vlieger, trapezium waarvan de oppervlakte nu berekenbaar is zo ook van de driehoek.

De oppervlakte van een rechthoek is lengte x breedte.

Wat is nu de oppervlakte van een driehoek? Deze blijkt de helft van de basis x hoogte te zijn:

Hebben twee driehoeken dus dezelfde basis en dezelfde hoogte maar voor de rest zijn ze verschillend, dan is toch hun oppervlakte gelijk:

 

Verder komen aan de orde het meetkundig vermenigvuldigen van een figuur ten opzichte van een punt. Gelijkvormigheid van figuren vloeit hier als vanzelf uit voort:

Een begin wordt gemaakt met de ruimtelijke meetkunde door de vijf platonische lichamen knippend en plakkend van papier te maken.

In de tweede periode staan de “puntverzamelingen” centraal. Dit houdt het volgende in. Tot nu toe is een lijn een lijn, een cirkel een cirkel. Nu komt het moment om een lijn als een verzameling punten te zien die op een rij liggen. Zo is de cirkel te beschouwen als een verzameling punten die alle even ver van één centraal punt af liggen. Ais je alle punten neemt die even ver van een lijn L als van een punt P liggen dan krijg je een kromme die we de parabool noemen:

Alle punten die even ver van een centraal punt P liggen, vormen een cirkel

 

 

 

 

 

 

Alle punten die even ver van een punt P als van een lijn l af liggen vormen een parabool.

Op soortgelijke wijze kun je nu komen tot geheel nieuwe meetkundige figuren, nl. de ellips, de hyperbool, de cassinische curven met name de lemniscaat en de cirkels van appollonius. Dit alles wordt door de leerlingen met grote nauwgezetheid geconstrueerd.

Cassinische curven i.h.b. de lemniscaat

9e klas

Zoals in de periode Nederlands de tegenstelling sentimentaliteit – rationaliteit behandeld wordt zo wordt in de meetkunde het thema cirkel-lijn aangeroerd.

De omtrek van een cirkel blijkt 3 à 4 keer zo lang te zijn als zijn straal. Bij nadere bestudering blijkt het 3,14 keer zo lang te zijn. Maar ook dit getal blijkt niet nauwkeurig. Uit de geschiedenis is bekend dat reeds de oude Egyptenaren en de Grieken zochten naar dit getal, (het zgn. getal pi =  π). Het aantal decimalen waarin men kon vastleggen werd steeds groter totdat in onze tijd de computer in staat is tot op 1,  2 miljoen decimalen te berekenen. Met dit getal kunnen we ook de oppervlakte van een cirkel uitrekenen.

Verder maken we in deze periode kennis met begrippen als middelpuntshoeken, omtrekshoeken, booggraden, de stelling van Thales enz. dit alles in het kader van de cirkelmeetkunde:

Alle hoeken waarvan het hoekpunt op de omtrek van de cirkel ligt, zgn. omtrekshoeken, zijn alle even groot, omdat ze dezelfde cirkelboog snijden.

De platte meetkunde wordt nu verlaten en de ruimte-meetkunde, de stereometrie, wordt betreden. In de 8e hebben we de platonische lichamen geknipt en geplakt; nu worden ze getekend alsmede uitslagen ervan gemaakt. Onderlinge samenhangen worden ontdekt en samengevat in de stelling van Euler. Het begrip dualiteit krijgt inhoud. Ook de ontdekking van Keppler in de 15e eeuw dat ons planetenstelsel opgebouwd is volgens platonische lichamen wordt behandeld.

Kubus en achtvlak zijn onderling duaal, d.w.z. dat de kubus evenveel zijdevlakken als de oktaeder hoekpunten heeft en omgekeerd.

10e klas

De stereometrie wordt nu verder verkend. Lichamen met platte vlakken, kubus, blok, piramide, prisma laten we doorsneden worden door willekeurige platte vlakken. De doorsnijdingen kunnen we nauwkeurig construeren. Punt, lijn en vlak zijn de elementen waarmee we de fysieke ruimte ai denkende doordringen, parallel aan de natuurkunde waarin de fysische processen met name de mechanica nu denkend verkend worden. Ook de periode landmeten sluit hier goed op aan. Op de aarde staand van je omgeving een nauwkeurige plattegrond maken luidt hierbij de opdracht. Technische hulpmiddelen zijn meetlint en theodoliet (hoekmeter). Wiskundige hulpmiddelen zijn hierbij de goniometrie en de trigonometrie de z.g. driehoeksmeetkunde. Deze is in de algebraperiode en in de vaklessen flink geoefend om nu toegepast te kunnen worden.

Constructie ter bepaling van de doorsnijding van het scheve prisma door een vlak dat door de grondlijn en door P gaat.

We meten de hoeken A1, A2, B1 en B2 en de afstand tussen A en B en met de cosinusregel en de sinusregel zijn we in staat de afstanden tot het torentje en de antenne alsook de onderlinge afstand tussen beide te berekenen. Rekenmachientje toegestaan, waarna op schaal de plattegrond gemaakt kan worden.

11e klas

In de 11e klas wordt het assenkruis ingevoerd, ofwel het coördinatenstelsel, uitgevonden door de Fransman Descartes. Lijn, parabool, hyperbool, cirkel, figuren die we in de 8e klas als puntverzameling hebben leren kermen, zijn nu te vangen in een algebraïsch verband tussen 2 coördinaten, een formule. Algebra en meetkunde ontmoeten elkaar hier en het oplossen van vergelijkingen, ontbinden in faktoren, merkwaardige producten waarmee de leerlingen jarenlang gepijnigd zijn in de vaklessen, blijken hier zichtbaar gemaakt te kunnen worden en uiterst nuttig te zijn.

parabool                                                                                                      lijn

Y= X  – 4                                                                                               Y = X + 2

 

 

 

Snijpunten van parabool en lijn vinden we door gelijkstelling:
x2 – 4 = x + 2
verder uitwerken:

 

x2 – x – 6 = 0
(x + 2) (x – 3) = 0
x = 2           x = 3
↓                 ↓

y = 0          y = 5

Dus punt A ( -2,0)  en B (3,5) zijn de snijpunten van parabool en lijn.

Dezelfde bovengenoemde figuren komen ook weer te voorschijn als de kegelsneden behandeld worden. Daarmee wordt het volgende bedoeld.

Als we een kegel laten snijden door een plat vlak dan is de doorsnijding van dit vlak met de kegel een meetkundig figuur, welk figuur hangt af van de stand van het vlak t.o.v. de kegel. Hiermee wordt de “Griekse” meetkunde afgesloten

Verder is het streven om in deze klas een begin te maken met de projectieve meetkunde*

Omdat hier nog ervaring mee moet worden opgedaan, gaan we hier niet verder op in.

De 12e klas

De 12e klas zet als het goed is een kroon op een ontwikkeling die 12 jaar duurt. Van een meetkunde periode is echter niet meer sprake, wel van een
bouwkundeperiode, waarin veel meetkundige vaardigheid toegepast wordt.

De opdracht luidt namelijk: ontwerp je eigen huis.

Wel degelijk is er een wiskunde-periode dit jaar, doch deze weken worden gebruikt om ingewijd te worden in de geheimen van het differentiëren en integreren.

L. Bronkhorst, Karel de Grote College, Nijmegen, datum onbekend

.

Meetkunde: alle artikelen

.

VRIJESCHOOL  in beeld: meetkunde klas 6

.

1624

 

 

 

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – 6e klas – meetkunde (5)

.

VOORBEREIDENDE MEETKUNDE

Gedurende de kinderleeftijd moeten rekenen en meetkunde zo gegeven worden, dat ze bij de leeftijd van het kind passen.
Rudolf Steiner heeft het over een levendigheid in het doen en laten van de mens die daaruit kan ontstaan.
De symmetrie is daarbij heel belangrijk.
De tekeningen die hieronder volgen zijn bedoeld als een kunstzinnig, geen intellectualistisch begin.
Van hier naar het bewijs van de stelling van Pythagoras in de 7e klas, is nog een lange weg. [1]  [2]

Deze bijdrage over de driehoeken is gedacht voor de 4e tot de 6e klas als waarnemende meetkunde.

Onder de vele verschillende driehoeksvormen bevinden er zich een paar die door hun symmetrie en hun ‘karakter’ bijzondere aandacht verdienen. Een nadere kennismaking met deze eenvoudige geometrische figuren is buitengewoon stimulerend.

Eerst noemen we de gelijkzijdige driehoek, het is de oerdriehoek. Behalve de drie zijden zijn ook de drie hoeken gelijk (60º).
De hoogtelijnen, bisectrices, middelloodlijnen en zwaartelijnen zijn allemaal even groot en gaan alle door één punt dat we ‘middenpunt’noemen. Die is tegelijkertijd zwaartepunt, middelpunt van de ingeschreven cirkel en van de omgeschreven cirkel. De lijnen zijn symmetrie-assen:

De halve gelijkzijdige driehoek is rechthoekig, heeft dus een hypotenusa en twee rechthoekszijden. Door het halveren is de symmetrie verloren gegaan. Het verschijnsel links – rechts treedt op. Naast de rechte hoek is de hoek van 30º ontstaan. We gebruiken deze driehoek van hout of kunststof om te tekenen. Er zijn twee soorten, met een linker en een rechter helft die je niet op elkaar kan leggen zonder ze om te draaien. Een halve gelijkzijdige driehoek is meer dan alleen maar een helft:

De gelijkbenige rechthoekige driehoek kan ook als een een half vierkant worden beschouwd. Die is eveneens rechthoekig, heeft echter twee even lange zijden; daardoor is die eveneens nog gelijkbenig. Er is een hoek van 45º, de driehoek heeft een symmetrie-as. Ook deze driehoek gebruiken we als tekendriehoek:
Tot slot moet het paar ‘gouden driehoeken‘ worden genoemd. Het gaat om de driehoeken waarvan de zijden in de verhouding van de ‘gulden snede’ staan. Omdat we een lange en een korte zijde hebben, kunnen we daarmee twee verschillende driehoeken maken: één met twee lange en een korte zijde en één met een lange en twee korte zijden:

 

De eerste noemen we de ‘scherpe gouden driehoek’ en de tweede de ‘stompe gouden driehoek’. Beide zijn gelijkbenig. Er ontstaan hoeken van 36º, 72º en 108º.

Nu moeten deze driehoeken zichzelf karakteriseren. Daartoe proberen we uit een van de driehoeken figuren te maken. Wat er zich aan mogelijkheden voordoet, is verbazingwekkend groot, hier kan er slechts een deel van worden weergegeven.

Uit zes gelijkzijdige driehoeken ontstaat een zeshoek:

Dit is de basisfiguur
We klappen de driehoeken een voor een naar buiten om en krijgen de zesster:

Klappen we ieder tweede punt weer naar binnen, dan ontstaat er een vergrote gelijkzijdige driehoek:

De randen zijn drie keer zo lang, het vlak is negen keer zo groot.
Wanneer we in de onderste rij de buitendriehoeken naar binnen en de binnendriehoek naar buiten omklappen, ontstaat er een grote ruit:

Hoe de zesster uit de basisfiguur door een gelijktijdig draaiende en verschuivende beweging van alle driehoeken ontstaat, wordt aan de vindingrijkheid van de lezer overgelaten.

De halve gelijkzijdige driehoek biedt ons meer mogelijkheden. Twee gelijke (linker of rechter) laten twee verschillende parallellogrammen of een rechthoek ontstaan:

Van verschillende kunnen we een stompe driehoek maken of een vliegerfiguur:

De derde mogelijkheid geeft de gelijkzijdige driehoek aan ons terug. Vier gelijke helften doen een vierkant ontstaan, waarin een tweede, kleinere, uitgespaard is:

We klappen de driehoeken naar buiten om en hebben dan weer een gelijke (niet in meetkundige zin!) figuur voor ons:

Uit drie paren ontstaat een grote gelijkzijdige driehoek:

Wanneer we alle driehoeken omklappen, hebben we een zeshoek voor ons waarin de oorspronkelijke driehoek uitgespaard is:

Zes gelijke driehoeken vormen twee zeshoeken in elkaar:

en twaalf gelijke driehoeken zowaar een twaalfhoek:

Een opdracht:
Uit zes gelijke driehoeken een zesster maken. Hierbij ontstaat een beweeglijke figuur die wat het middelpunt betreft symmetrisch is.

De gelijkbenige rechthoekige driehoek stelt een beetje teleur: die heeft niet zo’n grote vormenrijkdom te bieden. 2, 4, 8, 16, enz. laten zich tot een vierkant voegen. Maar ook achthoeken!:

De lezer moet zelf de twee verschillende achtsterren vinden waarin de afgebeelde achthoek veranderd kan worden.

Een vrolijke combinatie vertoont 18:

Nu wat betreft het ‘gouden driehoekspaar‘.
Door ze passend bij elkaar te zetten, herhalen ze zich zelf afwisselend in een steeds groter wordende vorm. In afb. 19 is met de scherpe driehoek links begonnen, daarbij een stompe geeft een vergrote stompe. De middelste, schuin op de punt staande scherpe driehoek daarbij, leidt tot een grotere scherpe, die net zo staat als de begindriehoek. Nog een stompe en een scherpe erbij en we krijgen die in afb. 19 getoonde grote stomphoekige driehoek. Daarmee kun je willekeurig verder gaan:

Hoe zou de afbeelding afgemaakt moeten worden om de eerst volgende grotere rechthoekige gouden driehoek te maken?

Een scherpe en twee stompe vormen een vijfhoek:

Van vijf scherpe driehoeken kunnen we het pentagram leggen:

Maar ook vijf stompe driehoeken laten dit rijke teken verschijnen, dit keer als binnenvorm:

Klappen we alle driehoeken naar buiten om, zien we twee vijfhoeken:

Dat betekent niet dat de scherpe driehoek op zich geen vijfhoek zou kunnen doen ontstaan:

Kenners zullen de positie van de driehoeken in afb. 25 in de voorstelling zo metamorfoseren dat enerzijds de vijfhoek van afb. 24 en anderzijds het pentagram van afb. 21 ontstaat:

De mooie ‘tienhoekkrans’ van tien stomphoekige driehoeken is het slot van deze ‘tentoonstelling’.

Natuurlijk kunnen tien scherpe driehoeken ook een tienhoek vormen en ook een tienster.

Als we het samenvatten:
De gelijkzijdige driehoek doet de zeshoek en de zesster ontstaan; ze is verwant met de getallen 3 en 6. Je kan er vierhoeken mee maken, maar geen vierkant; ook geen rechthoek.
Links en rechts van de halve gelijkzijdige driehoek zorgt voor beweeglijkheid. Door de rechte hoek kunnen ook de rechthoek en het vierkant ontstaan. De relatie met de getallen 3 en 6 blijft natuurlijk bestaan, nieuw is de twaalfhoek. We vinden dus verwantschap met de getallen 3, 4, 6 en 12.
De verwantschap van de gelijkbenige rechthoekige driehoek met de getallen 4 en 8 is duidelijk.
De ‘gouden driehoeken‘ verrassen ons door het ontstaan van het pentagram. Er is verwantschap met de getallen 5 en 10.

Waar haal je nu die driehoeken? Je kan ze van karton maken, bijv. Om ze voor de klas te kunnen laten zien, kan je ze met gekleurd karton en klittenband op het bord ‘plakken’.
.

Walter Kraul, Erziehungskunst jrg. 34 -04-1970
.

[1] Die wordt soms ook in klas 6 behandeld.

[2] Onder meetkunde alle artikelen vind je de reeks 2-3/1  t/m 2-3/4 als mogelijke weg naar dit doel.
.

De schrijver van het artikel heeft uit gekleurd hout een ‘vierhoek-vijfhoek- en zeshoeklegspel’ uitgebracht. De verschillende afmetingen van gelijkvormige driehoeken in de legspellen geven nog meer vormenrijkdom dan de hier getoonde voorbeelden.
Bij de genoemde uitgeverij zijn ze op dit ogenblik (02-01-2018) niet voorradig.
.

Meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas meetkunde

.

1401

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – 6e klas – meetkunde (2-3/4)

.

1e week    2e week    3e week

4e week
Dit is de laatste week van de periode.
Het kan zijn dat je door omstandigheden een periode had van maar drie weken. Dan moet je een andere keus maken, dan ik heb gedaan. Trouwens, mijn keuze heeft ook een zekere willekeur: er zijn legio andere mogelijkheden.
Er is wel veel aan de orde gekomen en aan het begin van zo’n laatste week is het goed om alles nog eens terug te halen.

eerste dag

Je zou van een bepaalde begrippenlijst uit kunnen gaan:

geometrie
-passer (passerpunt, benen van de passer)
-willekeurige vorm t.o. vastliggende (gegeven) vorm – onwillekeurig
-cirkel
-middel (midden-)punt
-middellijn
-liniaal (lineair)
-omtrek    omtrekslijn
-snijden
-horizontaal, verticaal, diagonaal
-gemeenschappelijk
-vlak
-snijden
-punt
-hoekpunt
-symbool
– ꙩ M
-lijnstuk
-straal
-radius = r
-construeren
-constructie
-daaruit volgt    →
-loodlijn    met constructie
-loodrecht op:   ⊥
-zesster – hexagram
-zeshoek – hexagoon
-verzameling
– hoek  ∠ : scherpe, rechte, stompe, gestrekte, inspringende
-middelpuntshoek
-omtrekshoek
-overstaande hoek
-verwisselende binnen- en buitenhoek
-nevenhoek
-complement   supplement
-graad   º
-groter dan >
-kleiner dan <  (je kunt er een k, van kleiner, van maken)
-parallel
-driehoek: gelijkzijdig, gelijkbenig, rechthoekig, rechthoekig gelijkbenig
-koorde   koordeboog
-segment
-stelling
-hoekdeellijn -bisectrice
-middelloodlijn
-zwaartelijn
-vijfhoek – pentagoon
-vijfster – pentagram
-hypothenusa

We kunnen dus nu een aantal hoeken construeren: van 90º, van 60º en als we teruggaan naar deze constructie:

meetkunde-62

en we trekken er de lijnstukken CA en CB in, hebben we  ∠ C in twee gelijke hoeken verdeeld. ∠ C is de ∠ van een gelijkzijdige Δ, een hoek van 60º, dus elk deel is 30º.

We hebben dus weliswaar een ∠ van 60º verdeeld, maar we mogen ook gewoon zeggen dat we een ∠ hebben gedeeld. We kunnen nu iedere willekeurige ∠ delen!

Een willekeurige hoek ( ∠ A) delen we als volgt middendoor: construeer een willekeurige cirkel met A als m.p.; deze snijdt de benen van ∠A in B en C (de cirkel wordt niet in zijn geheel geconstrueerd, maar alleen de punten B en C). Construeer om B een cirkel met een willekeurige straal en om C een cirkel met dezelfde straal; deze cirkels snijden elkaar in P (ook van deze cirkels tekenen we maar een klein boogje). De halve lijn AP deelt nu ∠ A middendoor ( ∠ A1 = ∠ A2).

De (halve)lijn AP heet hoekdeellijn en we leren naast de benen v.e. hoek ook de moeilijkere naam: bisectrice.

Uiteraard moet dit goed worden geoefend.
Deel de rechte  ∠.   = 45º. Deze gedeeld: 22,5º.
Laat de kinderen ook zelf combinaties uitdenken en construeren. Bijv. 15 en dan dus 22,5 en 15= 37,5;
Als je nog toe komt aan de constructie van een hoe overbrengen, is er nog veel meer mogelijk.

Je zou nu meer bijzonder lijnen kunnen behandelen: de middelloodlijn, die we eigenlijk al gedaan hebben, de zwaartelijn. Het feit dat ze door één punt gaan.
Zie bijv. dit artikel   Je zou een deel hiervan in je periode kunnen opnemen. Het gedicht is zeker een vondst, maar ik weet niet of je zoveel tijd moet gaan besteden aan het leren ervan. Dat zouden bijv. een paar kinderen, die de stof snel snappen en wellicht ook snel klaar zijn, samen kunnen doen.
Uiteraard moet iedereen wél proberen om een kartonnen driehoek op het zwaartepunt in evenwicht te houden. (Exacte constructie!)

tweede dag

Herhalen. Maar stel dat je deze periode tegen de kersttijd geeft, dan is het heel mooi voor de kinderen wanneer ze ook nog de vijfster (pentagram) en de vijfhoek (pentagoon) leren construeren.

De constructie is ingewikkelder dan die van de zesster en met de kennis die we tot nog toe hebben verworven, niet te bewijzen. Dat hoeft ons er niet van te weerhouden, de constructie te leren. Uiteraard eerst weer een cirkel met middelpunt M; willekeurige straal,  bijv, 3 cm.

 

 

 

  • Teken een cirkel met het middelpunt in O, waarop de hoekpunten AEGHF van de vijfhoek moeten komen te liggen. In de figuur is deze eerste cirkel groen. Een snijpunt van de verticale as en de groene cirkel is punt A.
  • Een van de snijpunten van de groene cirkel met de horizontale as is punt B.
  • Bepaal op de bekende manier het midden C tussen O en B.
  • Zet nu de passerpunt op punt C, en de potloodpunt op A. Teken een deel van de cirkel, in de figuur rood onderbroken, tot het snijpunt met de horizontale as. Dit is punt DD ligt aan de andere kant van de oorsprong O dan C.
  • Zet de passerpunt in A, trek nu een cirkel door D. Deze cirkel, in de figuur blauw onderbroken, heeft twee snijpunten met de eerste groene cirkel. Dit zijn de punten E en F, de eerste twee gevonden hoekpunten van de regelmatige vijfhoek.
  • Zet nu zonder de passer te veranderen de passerpunt in E en trek een cirkel, het snijpunt met de eerste groene cirkel is punt G.
  • Zet nu zonder de passer te veranderen de passerpunt in F en trek een cirkel, het snijpunt met de eerste groene cirkel is punt H.
  • Zet nu ter controle de passerpunt zonder de passer te veranderen in punt G, de cirkel moet nu door punt H lopen.
  • Het door rechte lijnstukken verbinden van de vijf punten AEGHF resulteert in een regelmatige vijfhoek.

Wikipedia

Vóór we aan de construcitie beginnen kunnen we 2 even grote cirkels tekenen. De ene wordt onze werkvorm, de andere – uiterst dun – wordt het resultaat, dus zonder uitgegomde lijnen en punten. Als we in de werkvorm de juiste afstand van de zijden tussen de passer hebben, brengen we die over op de andere vorm, vanuit het geschatte midden boven op de omtrek.
Nu is er een ‘schone’ vijfhoek ontstaan.

Door de punten met elkaar te verbinden – steeds 1 overslaan – ontstaat ook de vijfster:


en dan weer naar hartelust fantaseren en kunstzinnig uitwerken:

meer op VRIJESCHOOL in beeld: 6e klas meetkunde onder 5

Een bijzondere kunstzinnige verwerking van het pentagoon is het maken van een transparant of een lantaarntje:

zie voor een beschrijving:

Je kan hiermee, naast herhalen, de periode afsluiten als je deze de laatste week van december heb gegeven. Is dat niet het geval en wanneer je geen lantaarntje(s) of transparant wil maken, kan je ook nog kiezen voor de stelling van Pythagoras.
Sommige scholen geven die pas in de 7e. Dat vergt wel overleg met de leerkracht van die klas.

Of je een tweede periode kan geven, hangt van veel factoren af die ik vanhieruit niet kan overzien. Omdat ik zelf nog les kon geven in de 7e, omdat die toen nog bij de onderouw hoorde, heb ik het wel gedaan.
In Stockmeyers leerplan wordt voor de klassen 6-8 10 weken hoofdonderwijs uitgetrokken voor rekenen en wiskunde. En 1 uur per week om te oefenen, behalve als wiskunde hoofdonderwijs is. Maar toen golden er andere omstandigheden, al is het wel een indicatie.

Je kan ook verdergaan met, naast de driehoek, het vierkant, de rechthoek, de ruit, het trapezium, het parallellogram.

Steiner neemt de stelling van Pythagoras om aan te geven hoe je aanschouwelijk onderwijs kan geven.
In de pedagogische voordrachten GA 294, 295 en 311 staat:

GA 294
De meetkunde biedt u een buitengewoon fraai voorbeeld van de manier waarop een meetkundig probleem aanschouwelijk aangepakt kan worden. U tekent bijvoorbeeld een gelijkbenige recht­hoekige driehoek. Dan kunt u onder aan deze driehoek een vier­kant tekenen, zodat het vierkant grenst aan die gelijkbenige recht­hoekige driehoek [zie tekening 1]. Nu vertelt u de leerlingen, als u dat nog niet gedaan hebt, dat bij een rechthoekige driehoek de zij­den a en b de rechthoekszijden heten en c de hypotenusa wordt ge­noemd. Op de hypotenusa hebt u een vierkant geconstrueerd.* Dat geldt allemaal uiteraard alleen voor een gelijkbenige driehoek. Nu deelt u het vierkant in door middel van diagonalen. U maakt een deel ervan [boven en onder] rood en een deel [rechts] geel. Nu zegt u: ‘Het gele stuk knip ik eruit en ik zet het hiernaast’ [tekening 11].

Dan haalt u ook nog een rood stuk weg en u zet dat aan het gele stuk vast. Nu hebt u een vierkant gevormd op één rechthoekszijde, en dit vierkant bestaat uit een rood en een geel stuk. Dus wat ik ernaast heb getekend [tekening11], is net zo groot als rood en geel samen in tekening 1, en het is de helft van het vierkant op de hy­potenusa. Hetzelfde doe ik voor de andere zijde met blauw. Het blauw plak ik er aan de onderkant aan, zodat ik nog een gelijkbenige rechthoekige driehoek krijg. Dat teken ik er ook weer naast [tekening 111]. Daarmee heb ik nu het vierkant op de andere rechthoekszijde geconstrueerd.0

*voetnoot in de vertaling:
Een vierkant geconstrueerd: in de Duitse taal heeft de leraar bij deze verklaring van de stelling van Pythogoras het voordeel dat hetzelfde woord (Quadrat) zowel vierkant als kwadraat betekent
voetnoot in de vertaling:
voor wie de stelling van Pythagoras niet kent: het kwadraat van de hypothenusa is gelijk aan de som van de kwadraten van de rechthoekszijden, algebraïsch: c2= a2 + b2. De tussenstap die Steiner beschrijft – het aansluiten van een nieuwe (blauwe) driehoek onderaan het vierkant – is misschien verwarrend en in ieder geval overbodig; zie ook de pijlen die van tek. 1 naar tek. 3 gaan.

Dat geldt in eerste instantie alleen voor een gelijkbenige drie­hoek, maar bij een ongelijkbenige rechthoekige driehoek kunt u net zo goed de stukken op elkaar leggen, zoals ik u dat net heb la­ten zien. Dat is aanschouwelijk onderwijs. U kunt de meetkunde in de vorm gieten van aanschouwelijk onderwijs. Wanneer u
er­naar toewerkt om ook de stelling van Pythagoras voor kinderen na het negende jaar aanschouwelijk te maken, dan is het niet on­belangrijk – ik heb dikwijls de proef op de som genomen – dat u zich voor ogen stelt om de stelling van Pythagoras werkelijk op te bouwen uit de verschillende velden van het vierkant op de hypo­tenusa. En als u zich als leraar bewust bent dat u dat bij de meet- kundelessen wilt bereiken, dan kunt u in hoogstens zeven à acht lessen alles aanleren wat in de meetkunde nodig is om tot de stel­ling van Pythagoras – de bekende ezelsbrug – te komen. U zult ui­terst economisch te werk gaan wanneer u de eerste beginselen van de meetkunde op deze manier aanschouwelijk maakt. U zult veel tijd sparen en bovendien zult u de leerlingen iets heel belangrijks besparen – iets wat afbrekend werkt in het onderwijs als er niet spaarzaam mee wordt omgegaan – en dat is: u laat de kinderen geen abstracte gedachten volgen om de stelling van Pythagoras te begrijpen, maar u laat ze concrete gedachten volgen en u gaat van het eenvoudige naar het samengestelde. Het beste is om de stelling van Pythagoras eerst bij een gelijkbenige driehoek uit die verschillende velden op te bouwen zoals het hier in de tekening is gedaan, en dan pas over te gaan naar de ongelijkbenige driehoek. Zelfs daar waar de stelling van Pythagoras tegenwoordig aanschouwe­lijk wordt gebracht – wat zeker wel gebeurt – wordt dat niet vol­ledig gedaan. Men gaat niet eerst uit van het eenvoudige procédé bij de gelijkbenige driehoek, om daarmee het andere procédé goed voor te bereiden en over te stappen naar de ongelijkbenige recht­hoekige driehoek. Maar dat is belangrijk, dat men dat bewust op­neemt in de doelstelling van het meetkundeonderwijs. Wilt u er dus aan denken om verschillende kleuren te gebruiken. U moet de verschillende vlakken inkleuren en dan de kleuren over elkaar leggen. De meesten van u zullen iets dergelijks al wel eens gedaan hebben, maar toch niet op deze manier.
GA 294/148 e.v.
vertaald/148 e.v.

We kunnen in ieder geval aannemen dat de kinderen die we nu dit jaar krijgen bijvoorbeeld de stelling van Pythagoras verkeerd geleerd hebben, dat ze die niet geleerd hebben zoals wij dat be­sproken hebben. De vraag is dan wat we moeten doen om de leer­lingen niet alleen te geven wat ze gemist hebben, maar in zekere zin nog iets meer, zodat bepaalde krachten die al uitgedroogd en verdord zijn weer kunnen opbloeien, voorzover dat mogelijk is. We kunnen dan bijvoorbeeld een leerling vragen om zich nog eens de stelling van Pythagoras voor de geest te halen, we zeggen: ‘Je hebt die stelling geleerd. Hoe luidt die? – Inderdaad, dat is de stelling van Pythagoras: het kwadraat van de hypotenusa is gelijk aan de som van de kwadraten van de beide rechthoekszijden.’ Maar daarbij heeft zo’n leerling beslist niet dat in zijn ziel wat het leren van de stelling van Pythagoras hem gegeven zou moeten hebben. Daarom doe ik iets extra’s. Ik maak de zaak niet alleen aanschou­welijk voor hem, maar ik bouw die ‘aanschouwing’ ook nog eens genetisch voor hem op. Ik laat 181die op een heel speciale manier ont­staan. Ik zeg: ‘Ik wil graag drie leerlingen voor het bord. Eén van de drie kleurt dit vlak met krijt in. De anderen in de klas letten goed op dat hij niet meer krijt gebruikt dan echt nodig is. De tweede pakt een ander krijtje en kleurt dit vlak in. En de derde kleurt dit vlak, weer met een ander krijtje.’ En dan zeg ik tegen de jongen of het meisje dat het vierkant op de hypotenusa bedekt heeft: ‘Kijk, nu heb jij evenveel krijt gebruikt als de twee anderen samen. Jij hebt net zoveel krijt op dat vierkant gekalkt als de twee anderen bij elkaar, omdat het kwadraat van de hypotenusa gelijk is aan de som van de kwadraten van de rechthoekszijden.’ Ik maak de stelling dus aanschouwelijk door middel van het krijtverbruik. Dat gaat nog dieper in de ziel als de leerling ook nog bedenkt dat er iets van

het krijtje af is, iets wat nu niet meer aan het krijtje, maar op het bord zit. En dan ga ik nog een stap verder en zeg ik: ‘Nu verdeel ik de vierkanten in kleine vierkantjes: het eerste in 16, het tweede in 9 en het derde in 25 vierkantjes. Nu zet ik midden in ieder vierkantje één van jullie neer, 182 en je stelt je voor dat dat een akker is die je moet omspitten. De kinderen die deze 25 kleine vierkantjes hier omge­spit hebben, hebben net zoveel werk verzet als de kinderen van de 16 vierkantjes en de kinderen van de 9 vierkantjes samen. Door jul­lie werk is het vierkant van de hypotenusa omgespit, door jullie werk het vierkant op de ene rechthoekszijde en door jullie werk het vierkant op de andere rechthoekszijde/ Zo verbind ik met de stelling van Pythagoras iets wat de wil van het kind raakt, wat ten­minste de voorstelling oproept dat het kind met zijn wil zinvol in de wereld staat, en ik breng leven in iets wat tamelijk levenloos zijn schedel binnengekomen is.
GA 294/181 e.v.
vertaald/181 e.v.

 

Rudolf Steiner geeft vervolgens nog een aanschouwelijke toelichting bij de stelling van Pythagoras en verwijst naar een artikel van Ernst Müller: ‘Bemerkung über eine erkenntnistheoretische Grundlegmg des pythagoreischen Lehrsatzes’.
In de tekening is de stelling van Pythagoras (het kwadraat van de hypotenusa is gelijk aan de som van de gekwadrateerde rechthoekszijden) geometrisch aangetoond. De tekening laat in principe één driehoek zien met drie vierkanten, die de kwadraten vormen van zijn drie zijden. De beide ‘rechtopstaande’ vierkanten zijn de kwadraten van de rechthoekszijden, het ‘schuine’ vierkant is het kwadraat van de hypotenusa. Men ziet dat het rode deel van de eerstgenoemde vierkanten het vierkant op de hypotenusa al ten dele bedekt. Het restant wordt bedekt door de blauwe en de groene driehoek omhoog te schuiven, zodat het oppervlak van de kleinere vierkanten exact binnen het oppervlak van de grootste blijkt te passen.

Rudolf Steiner:… Men moet het allemaal uit karton knippen, pas dan wordt het aanschouwelijk.
GA 295/119
vertaald/110

GA 311
Hoe je alles vanuit het aanschouwelijke, niet vanuit wat men tegenwoordig dikwijls ‘aanschouwelijkheidsonderwijs’ noemt, in opvoeding en onderwijs moet doen, wil ik nog graag laten zien aan een bepaald iets dat in het onderwijs daadwerkelijk een bijzondere rol moet spelen. Dat is de stelling van Pythagoras die u allemaal wel kent, wanneer u in het onderwijs werkzaam bent, die u wellicht op een soortgelijke manier inzichtelijk is, maar we willen hem vandaag toch nog bespreken. Kijk, de stelling van Pythagoras is  iets wat je je concreet als doel kan stellen in de meetkunde. Je kan de meetkunde zo opbouwen dat je zegt: ik wil alles zo organiseren dat het uitmondt in de stelling van Pythagoras, dat het kwadraat van de hypotenusa van een rechthoekige driehoek gelijk is aan de som van de kwadraten van de beide rechthoekszijden. Dat is iets grandioos, als je er goed naar kijkt.
Ik moest eens een dame die toen al ouder was, omdat ze er zo van hield, meetkunde leren. Ik weet niet of ze alles vergeten was – maar vermoedelijk had ze op het meisjesinternaat waar je als meisje opgevoed werd niet veel geleerd – in ieder geval wist ze niets van meetkunde. Ik begon en liet alles uitmonden in de stelling van Pythagoras. Nu had deze stelling voor die dame inderdaad iets buitengewoon frapperends. Men is alleen gewend aan dit frapperende. Maar, niet waar, je moet simpelweg begrijpen dat wanneer ik hier een rechthoekige driehoek heb (het wordt getekend) het vlak dat als kwadraat op de hypotenusa staat, even groot is als het totaal van deze twee kwadraten op de rechthoekszijde. (Fig.l)

fig.lGA 311 blz. 91

Dat, wanner ik aardappelen poot en die  overal op gelijke afstand van elkaar zet, ik, wanneer ik deze akker en deze samen met aardappelen beplant, precies evenveel aardappelen zal poten als hier op deze akker. Dat is iets verrassends, iets heel verrassends en wanneer je er zo naar kijkt kun je het eigenlijk niet doorzien.
En juist dat je het niet kunt doorzien, dat het zo wonderbaarlijk is, moet je in het onderwijs benutten als een innerlijke stimulans; je moet ervanuit gaan dat je iets hebt wat niet zo makkelijk te doorzien is, dat moet je steeds weer toegeven. Je zou willen zeggen: bij de stelling van Pythagoras is het zo: je kan die aannemen, maar je raakt het houvast steeds weer meteen kwijt. Je moet steeds weer opnieuw geloven dat het hypotenusakwadraat gelijk is aan de som van de kwadraten van de beide rechthoekszijden.
Nu kun je allerlei bewijzen vinden en het bewijs moet eigenlijk heel aanschouwelijk geleverd worden. Het is makkelijk om het te leveren zolang de driehoek gelijkbenig is. Wanneer je hier een rechthoekige gelijkbenige driehoek hebt (het wordt getekend, fig.l l)

GA 311 blz. 93 1

dan is dit hier de kleine rechthoekszijde, dit is de andere, dit is de hypotenusa. Wat ik oranje teken (1,2,3,4) is het kwadraat op de hypotenusa. Wat ik blauw teken zijn de kwadraten op de beide rechthoekszijden.
Nu is het weer zo, wanneer ik op de juiste manier op deze beide blauwe velden (2, 5; 4, 6 ) aardappelen poot, dan krijg ik net zoveel als wanneer ik dat op de oranje velden (1, 2, 3, 4) doe. Het oranje veld is het kwadraat op de hypotenusa, de beide blauwe velden (2,5; 4,6) zijn de kwadraten op de beide rechthoekszijden.
Nu kun je het bewijs eenvoudig maken en zeggen: de twee stukken (2, 4) van de beide blauwe kwadraten die vallen daar (in het hypotenusakwadraat) binnen, die zitten er al in. Dit (5) kun je hier zetten ( op 3). Wanneer je het zou uitknippen, zou je het stuk (6) hier erop kunnen leggen (op 1) en dan heb je het al. Dus, nu is het goed te doorzien als je een zgn. rechthoekige gelijkbenige driehoek hebt. Maar als je die niet hebt, maar een met verschillende kanten (zoals fig.l) dan kun je het volgende doen: teken de driehoek nog een keer

(fig.lll: ABC)

GA 311 blz. 93 2

Teken nu het kwadraat van de hypotenusa ABDE. Nu kun je op de volgende manier tekenen: je kunt de driehoek ABC, die je hier hebt, er hier bij tekenen: BDF. Dan kun je deze driehoek ABC, respectievelijk deze BDF, die hetzelfde is, nog een keer hier tekenen: AEG. Doordat je deze driehoek hier nog eens hebt, kun je het kwadraat op deze ene rechthoekszijde zo opnieuw tekenen (rood) CAGH. Nu is dit, wat ik rood getekend heb, het kwadraat op de rechthoekszijde (CAGH).
Ik kan nu ook, zoals je ziet, de driehoek hier tekenen DEI. Hier heb ik die ook. Dan heb ik met wat ik hier nu groen teken, het kwadraat van de andere rechthoekszijde: DIHF; dan heb ik er twee, het kwadraat op de ene, het kwadraat op de andere rechthoekszijde. Ik gebruik alleen bij de ene deze rechthoekszijde AG, bij de ander deze DI. De driehoeken zijn daar (AEG) en daar (DEI); ze zijn gelijk (d.i. congruent). Waar heb ik het kwadraat op de hypotenusa? Dat wil ik nu paars tekenen, zodat we het goed kunnen onderscheiden: ABDE. Het kwadraat op de hypotenusa heb ik hier. Nu moet ik op de figuur zelf aantonen, dat rood (1,2) en groen 3, 4, 5) samen violet (2, 4, 6,7) oplevert.
Nu, dat zul je makkelijk kunnen snappen: ik neem dit rode kwadraat (1,2) hier eerst; wat de beide kwadraten gemeenschappelijkhebben (2), dat overlapt elkaar. Nu komt daar nog bij het stuk van het groene kwadraat (4). Dus krijg ik dit figuur (2, 4) dat je daar getekend ziet en dat niets anders is dan een stuk van het violette kwadraat ABDE, inderdaad een stuk van het violette kwadraat. Dit stuk van het violette kwadraat DE omvat dit stuk van het rode kwadraat (2); daarvan blijft alleen de punt hier over (1); die zit er nog niet bij. Maar bovendien bevat deze figuur de punt van het groene kwadraat (4). Nu moet ik er nog toe komen, onder te brengen wat ik nog over heb (1, 3, 5).
Nu moet je eens kijken: je hebt nog een stukje van het rode kwadraat over (1), daar een stukje van het groene (3) en daar is de hele driehoek (5) overgebleven, die ook bij het groene kwadraat DIHF hoort. Nu neem je wat je hier hebt, wat nog overgebleven is en dat leg je dan hier aan: wat je hier nog over hebt (5) neem je en leg je er hier aan (6). Nu heb je nog de punt (1, 3). Wanneer je die uitknipt, kom je er op dat deze beide vlakken (1, 3) in dit vlak (7) terecht zijn gekomen. Het kan natuurlijk nog duidelijker worden getekend, maar ik denk dat je de zaak wel doorziet. Het gaat er nu nog om dat je het door middel van de taal nog preciezer zegt. Op deze manier heb je eenvoudig door de vlakken over elkaar te leggen, laten zien, dat de stelling van Pythagoras juist is.
Wanneer je juist deze manier om de vlakken over elkaar te leggen neemt, dan zul je het vinden. Weliswaar zul je zien, dat wanneer je het uitknipt in plaats van te tekenen, de zaak dan heel eenvoudig te overzien is; ondanks dat: wanneer je er later over nadenkt, is het je weer ontschoten. Je moet het steeds weer opnieuw zoeken. Je kunt het niet goed in je geheugen krijgen, daarom moet je het steeds weer opnieuw uitzoeken. En dat is goed. Dat is namelijk heel goed. Dat hoort bij de stelling van Pythagoras. Je moet er steeds weer opnieuw opkomen. Dat je hem snapt, moet je ook steeds weer vergeten. Dat hoort bij het frapperende dat de stelling van Pythagoras heeft. Daardoor krijg jeleven in de zaak. Je zal wel zien dat wanneer je dit keer op keer door de leerlingen laat maken, zij daarbij nog aarzelen. Zij komen er niet meteen weer op, ze moeten iedere keer nadenken. Dat hoort echter bij die levendigheid die in de stelling van Pythagoras zit. Het is helemaal niet goed wanneer je de stelling zo bewijst dat die beperkt oppervlakkig te begrijpen is; het is veel beter dat je hem steeds weer vergeet en steeds weer opnieuw  moet zoeken. Dat hoort bij het frapperende, dat het toch iets wonderbaarlijk is dat het hypotenusakwadraat even groot is als de som van de beide kwadraten van de rechthoekszijden.
Nu kun je heel goed met elf-twaalfjarige kinderen zo ver met meetkunde komen, dat je de stelling van Pythagoras met een dergelijk vergelijken van de vlakken kan uitleggen; de kinderen zullen buitengewoon blij zijn, wanneer ze het gesnapt hebben en ze krijgen er zin in. Ze hebben er plezier in gehad. Nu willen ze het steeds opnieuw doen, vooral wanneer je ze laat uitknippen. Er zullen wel een paar intellectualistische deugnieten zijn die het heel goed in de gaten hebben, die het steeds voor elkaar krijgen. De meeste, verstandigere kinderen zullen het steeds weer verknippen en erbij aarzelen, tot het lukt, zoals het zijn moet. Dat hoort bij de wonderbaarlijke stelling van Pythagoras en je moet dit wonderbaarlijke niet kwijtraken, maar het vasthouden.
GA 311/90 e.v.
Vertaald

Het ziet er in eerste instantie wel ingewikkeld uit, maar als je het uitknipt – wat Steiner al aangeeft – is het veel makkelijker te doorzien. Ik heb de losse delen door de kinderen laten maken – vrij groot – en daarmee konden ze dan proberen de delen weer goed te leggen.

Tot zover een impressie van 4 weken meetkunde in klas 6.

Wanneer je er een geschikt ogenblik voor vindt, zou je nog kunnen teruggrijpen op de plantkundeperiode uit de vijfde klas.
Toen het over de bloem ging, moet haast wel aan de beurt zijn gekomen de bloem met de 5 blaadjes en die met de 6. Grohmann besteedt er hier aandacht aan:

Er bestaan prachtige foto’s van deze ‘meetkunde’bloemen. Een opdracht zou kunnen zijn dat alle kinderen met een bloemillustratie naar school komen en daarbij aangeven om welk getal het gaat:

bosanemoon (erachter speeenkruid)

ooievaarsbek

Ook in sneeuw- ijskristallen zit meetkunde:

Afbeeldingsresultaat voor sneeuwkristallen

wat opvalt is dat de kristallen alle van een 6- of veelvoud daarvan – structuur zijn.

 

suggesties voor de periode:

1e week
2e week
3e week

 

6e klasalle artikelen (waarbij de meetkunde-artikelen)

meetkundealle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

.

1391

 

 

 

 

 

 

 

 

 

 

.

 

 

 

VRIJESCHOOL – 6e/7e klas – meetkunde (2-4)

.

meetkunde klas 6 en 7

Een artikel in de Branding over meetkunde dat was de vraag die de redactie me stelde. Na nauwelijks deze vraag met ‘ja’ te hebben beantwoord, zag ik me voor de volgende moeilijkheid geplaatst: hoe kun je het wezenlijke van meetkunde dat zich tenslotte uitdrukt in lijnen en vlakken die tezamen de vormenwereld zichtbaar maken, beschrijven in woorden?
Om dit dilemma zoveel mogelijk op te lossen zal ik na een inleiding de vormen grotendeels zelf laten spreken en de woorden slechts als aanvulling gebruiken en om een overzicht te geven, hoe de meetkunde in de lessituatie in klas ó en 7 gestalte krijgt.

In de ontwikkeling van de mens van geboorte tot volwassenheid zijn 3 fasen te onderscheiden:

– van 0 – 7 jaar: baby-peuter-kleuterfase
– van 7 ~ 11 jaar; lagere schoolkind
– van 14 – 21 jaar: puberteit en adolecentie

In elke fase is er sprake van een samengaan van het willen, het voelen en het denken. Hoe deze drie zich in elke fase t.a.v. elkaar verhouden voert in het bestek van dit artikel te ver; enkel het volgende gegeven is van belang:

Bij de leeftijd van 0 tot 7 ligt het accent op het willen. Van 7 tot 14 ligt het accent op het voelen.
En bij de fase van 14 tot 21 ligt het accent op het denken.

Deze driegeleding van willen, voelen, denken is ook per fase een gegeven. Zo zit het benedenbouwkind in de lagere klassen nog sterk in de beweging (het willen) – denk aan het klappen en stampen van tafels, versjes etc. Vanaf ongeveer klas 6/7 groeit het kind langzaam naar de puberteit toe en ontstaat het vermogen tot o.a. het causale en abstracte denken. Het leerplan op de vrijeschool neemt de ontwikkeling van het kind als uitgangspunt. Zo komen dan in klas 6 en klas 7 voor het eerst een aantal vakken aan de orde waarbij een appèi op het causale en abstracte denken wordt gedaan zoals: natuurkunde, scheikunde, sterrenkunde, algebra en natuurlijk meetkunde.

Het verkennen, en op papier zetten van de vormenwereld begint al bij de peuter. De eerste dag in de 1e klas leert het kind twee oervormen: de rechte en de kromme.

meetkunde-6e

Vanaf deze dag zal het vormtekenen een dagelijkse of wekelijkse activiteit zijn. Een deel van de vormtekenlessen zullen bestaan uit geometrische vormen, die meerdere malen in één beweging worden getekend.

meetkunde-6e-2

 

In klas 6 gaan vele vormen die het kind al eens getekend heeft wederom getekend worden. Nu echter niet met de vrije hand als voordien, maar m.b.v. passer en lineaal.

De intentie van de meetkundeperiode kan het best als volgt omschreven worden;

“Exactheid, schoonheid en maat. Dat is waar het in de meetkunde om gaat”

Nadat de kinderen een gesprek te hebben gevoerd waar meetkunde overal in het praktische leven is toegepast, zijn de kinderen enthousiast en aangesproken in de wil om aan de slag te gaan met die fonkelnieuwe passer, of die passer die nog een erfstuk blijkt te zijn van de grootvader van moeder…

Zoals met vormtekenen veelal het geval was, zo zal men in beginsel ook elke vorm die op papier zal verschijnen eerst in het groot in de beweging doen; met de hele klas, een groepje of individueel.

De cirkel
Teken met grote bewegingen in de lucht of op de grond; een exacte cirkel vormen met de hele klas (een sociale oefening bij uitstek! )

Waar komen cirkelvormen voor? De aardbol, de schedel, een voetbal, een gloeilamp etc, etc. zullen als antwoorden van de kinderen komen. En dan uiteindelijk de eerste cirkel in het schrift; een lijn even dik of dun met de passer op bladzijde een – tongpuntje tussen de tanden! Vanaf nu heet dit geen “rondje” meer, maar een cirkel met al zijn andere namen erbij.

meetkunde-6e-3

Dan het eerste meetkundewonder!

De straal (afstand tussen de benen van de passer) blijkt precies 6x rond de omtrek van de cirkel afgezet te kunnen worden. De 6 punten kunnen dan op verschillende manieren met elkaar verbonden worden

meetkunde-6e-4

Vanuit deze mogelijkheid volgen dan een reeks tekeningen, waarbij het kleuraspect nog een zeer grote rol speelt voor de schoonheidsbeleving van het kind. Elk kind kiest eigen kleurcombinaties,- verhoudingen en hanteert de mogelijkheden hierin van de licht-donker effecten.

Voorbeelden vanuit de 6-deling:

meetkunde-6e-5

Dan komen er verschillende soorten hoeken aan bod. Ook weer om je heen kijken on hoeken benoemen of d© hoeken vormen met b.v, je lichaam (hoofd-romp, houding boven-benedenarin) of hoeken gevormd met meerdere kinderen samen.

Na de hoeken 2 constructies:
-het delen van een hoek (bissectrice)
-het oprichten en neerlaten van een loodlijn

Vanuit deze nieuw geleerde constructies zijn er weer talloze nieuwe figuren mogelijk. Zo kan men komen van de 6~deling naar een veelvoud hiervan:

meetkunde-6e-6

Als volgende is de mogelijkheid de driehoek te bekijken. Opdracht voor de kinderen voor thuis kan dan luiden: probeer eens uit hoeveel verschillende soorten driehoeken er zijn.

Bij het behandelen en het gebruik van de geodriehoek of de gradenboog greep ik terug op de geschiedenisperiode in de 5e klas. In deze periode wordt o.a. verteld over de Egyptische cultuurperiode en het ontstaan van de meetkunde aldaar. Het Egyptische jaar telde 5 heilige dagen en 360 overige dagen; de zon stond dan weer op hetzelfde punt.

Vandaar het volgende gegeven:

meetkunde-6e-7

Ook de termen complement, supplement en applement komen nu aan bod.

Nu kan er dan ook volop met gradenboog of geodriehoek worden gewerkt. Verder komen nog aan bod zaken als snijdende lijnen, parallelle lijnen, tegenoverliggende hoeken, verwisselende hoeken etc.

Als afsluiting in klas 6 wordt de 5-hoekconstructie geleerd. Tekeningen die vanuit deze constructie afgeleid kunnen worden volgen hierna. Ook kan gesproken.worden over de gulden snedeverhouding die in deze constructie te vinden is en terugkomt op vele wijzen in de menselijke gestalte.

meetkunde-6e-8

In klas 7 wordt het variëren en uitproberen van allerlei vormen nóg verder uitpewerkt. Het benoemen’en construeren van allerlei mogelijke meetkundefenomenen zal dan echter een groter accent krijgen.

Opgave waarin bepaalde constructies worden gegeven met daarbij een vraag zijn dan aan de orde.

Bijvoorbeeld:
1)gegeven: lijnstuk AB = 5 cm
lijnstuk BC 6 cm
LA of X = 90°

gevraagd:
a) teken een driehoek ABC
b) hoeveel graden zijn B en. X

2) Bewijs dat de 3 hoeiken van een driehoek samen. 180 zijn. etc.

Verder komen zaken als congruentie, rotatie en merkwaardige lijnen aan de orde.

Voorbeeld van een soort merkwaardige lijn in dichtvorm:

We zullen eens proberen
Een lijn te constueren
Die vanuit een hoekpunt gaat
En loodrecht op de tegenoverliggende zijde staat
Deze hoeken zijn dus beiden recht
90º dat is goed gezegd
Deze lijn heet: hoogtelijn
Het geeft de hoogte aan
Maar dat zal duidelijk zijn

Ook de bissectrice en de zwaartelijn komen zo aan de orde.

De berekening van omtrek en oppervlakte van o.a de cirkel, de driehoek, het parallellogram, de trapezoïde etc. worden in dit jaar behandeld.

Langzaam kan er ook toegewerkt worden naar perspectief en 3-dimensionaliteit als voorbereiding op de platonische lichamen die in klas 8 een centrale plek zullen krijgen.

meetkunde-6e-9

De periode zal eindigen bij de stelling van Pythagoras, zichtbaar gemaakt in:

Tijdens of na de periode krijgen de kinderen opdracht om met alle mogelijkheden en constructies die ze hebben leren kennen zelf een vorm te bedenken en te ontwerpen. Deze worden dan beoordeeld op exactheid, schoonheid en originaliteit.

Peter Giesen, vrijeschool Nijmegen, nadere gegevens onbekend

 

6e klas: alle artikelen (waarbij de meetkunde-artikelen)

meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

 

1181

 

 

 

 

 

 

 

 

 

.

 

 

VRIJESCHOOL – 6e klas – meetkunde (2-3/3)

.

Hier volgt een impressie van de 3e week van de periode meetkunde in klas 6.

1e week    2e week    4e week

 

De derde week

Een eerste dag
Na een paar weken kan het zijn dat als je deze werkwijze volgt, toch in een heel andere tijdsindeling terechtkomt. Dat is uiteraard geen enkel punt: het gaat in jouw klas op jouw manier. Beschouw deze ‘weken’ en ‘dagen’ dus als een soort indicatie, maar bewandel je eigen weg.

Iedere dag weer herhalen wat er al geleerd is. Misschien huiswerkopdrachten om het geleerde toe te passen; gerichte opdrachten die ook over de stof van voorbije dagen kan gaan. Geef kinderen die gemotiveerd zijn extra opdrachten (mee), bijv. om ‘terug te herkennen’ hoe een vorm tot stand is gekomen; of vraag ze naar geheel eigen vormen (die als huiswerk niet per se (in)gekleurd hoeven te zijn.
Voor de natuurkunde gaf Steiner een bepaalde ‘leerweg’ aan. ‘De drie stappen‘. Daar heb je ook wat aan voor de meetkundedagen. Je moet ze inpassen in hoe jij je lessen hebt opgebouwd.

We gaan weer willekeurige lijnen trekken die elkaar moeten snijden:

meetkunde-36

 

 

 

 

 

 

 

We bekijken verschillende snijpunten:

meetkunde-47-1

 

 

 

 

meetkunde-47-2

meetkunde-47-3

 

 

 

 

En wanneer we die accentueren zien we hoeken ontstaan.
Bij alle kinderen heel verschillende. Die worden op het bord getekend. Dan zou je kunnen vragen die hoeken in een volgorde te zetten, een volgorde van bijv. groot naar klein of omgekeerd.
Wanneer je de kinderen vraagt die hoeken met hun armen te maken, de ene hoek na de andere, en dan heel snel, zien we als vanzelf ‘de’ hoek een beweging worden, zoals we de lijn als beweging hadden in de eerste week en wanneer we dan plotseling onze armen stilhouden, hebben we ‘een’ hoek.
De idee hoek is een beweeglijke hoek die zich bevindt tussen onze zich bewegende armen. Verrassend is, dat dus op zeker ogenblik wanneer de armen bijna horizontaal zijn, er nog steeds sprake is van een hoek en als we ze horizontaal hebben en nog verder gaan, we nog steeds een hoek hebben.

Dat betekent dat ook de horizontale, dus anders gezegd de lijn of het lijnstuk, vanuit een bepaalde optiek óók een hoek is.

Dat is bijzonder. Gevraagd naar een andere heel bijzondere hoek vinden de kinderen de rechte hoek. Alle hoeken die kleiner of groter zijn, zijn er in een groot aantal: er is maar 1 rechte hoek (en 1 gestrekte)

Hoe heten dan de andere. Opnieuw is het interessant om de kinderen zelf de namen te laten vinden. Natuurlijk leren we dan de officiële namen:
meetkunde-48

1.scherpe hoek
2.rechte hoek
3.stompe hoek
4.gestrekte hoek
5.inspringende hoek

Uiteraard komt nu ook het sympool voor hoek: ∠  en voor de rechte hoek:

meetkunde-49

voor deze bestaan er verschillende

 

 

Als opdracht zou je nu weer de zesster en zeshoek in 1 tekening kunnen laten maken en daarin moeten dan de verschillende hoeken zichtbaar worden.

meetkunde-50

rood= scherpe hoek
groen=scherpe hoek
paars=stompe hoek
blauw= gestrekte hoek
groen + rood=rechte hoek

Een tweede dag
We gaan terug naar de tweede week, de derde dag en herhalen het ontstaan van de rechte lijn en bepaalde eigenschappen daarvan, zoals ‘de verzameling puntjes’.

Dan kun je teruggaan naar de geschiedenisperiode van de 5e klas, naar Babylonië en weer wijzen op de sterrenkunde, de kennis van wat zich aan de hemel vertoont.
Wellicht vertel je een eigen ervaring, bijv. dat je in Ierland was, in Newgrange en heb je – al dan niet kunstmatig – gezien hoe de zon op midwinterdag naar binnen straalt en een bepaalde ruimte precies verlicht.
Je kunt nu vooruitlopen op de sterrenkunde van klas 7 en samen met de Babylonische geleerden de zonneboog aan de hemel beschrijven met een lijn als verzameling van puntjes: die dag staat de zon op tijdstip x daar; de volgende dag op hetzelfde tijdstip x daar (ietsje verder opgeschoven).

De zonnebaan wordt weergegeven met de cirkel en het verschuiven van het punt waar de zon opkomt met de punten, die eigenlijk heel dicht tegen elkaar aan horen te liggen, maar waarvan je er voor de duidelijkheid maar een paar tekent.

En, de Oude Babyloniërs stelden die zonnetijdstippen vast op een aantal van 360 per jaaromgang als product van 12 maanden en 30 dagen per maand.

meetkunde-29

 

 

 

 

 

 

 

Dat betekent dat we door de middellijn te tekenen 2 halve bogen krijgen, waarvan we er 1 tekenen:

meetkunde-31

 

 

 

 

Als de hele boog ‘volgens afspraak’ 360 punten heeft, dan de halve boog 180.
Stel dat deze punten naar de middellijn afdalen en ze nemen de kortste weg, dan moeten ze loodrecht naar beneden:

meetkunde-30

 

 

 

 

Dat betekent dat de middellijn uit 180 puntjes bestaat, hoe klein of groot deze ook is. Dat kunnen we voor iedere lijn zeggen: nee, lijnSTUK: het eerste en laatste puntje valt samen met het begin en einde van de cirkelboog.

Ik merkte altijd wel dat deze redeneringen voor sommige kinderen naar een abstractie gaan die nog moeilijk voor ze is. Maar meestal neem je ze wel mee in het begrijpen, als je het rustig opbouwt en er vooral weer op terugkomt en het juist door de kinderen die het nog moeilijk vinden laat uitleggen om te zien hoe ver ze zijn.

Omdat we het woord ‘punt’ al gebruiken voor een plaatsbepaling – op een lijn(stuk) of erbuiten, ligt het voor de hand dat de puntjes aan de hemelboog = halve cirkelboog – anders moeten heten. Die heten graden en hebben het symbool  º.  In hoeverre je nu al over ‘minuten en seconden’ moet spreken, hangt er misschien vanaf of je op de landkaart het plaatsbepalen al hebt behandeld.
Zo niet, dan zou ik wachten, want voor de meetkunde zijn ze in de 6e klas niet belangrijk.

Zo leren we nu dat de cirkel bestaat uit 360º  en de halve dus uit 180º. En deze is gelijk aan de gestrekte hoek, die dus ook 180º is.
We trekken de belangrijkste conclusie: dat een hoek ook graden heeft!

We strekken de armen weer horizontaal: de hoek is 180º. We maken de hoek kleiner. Hoeveel graden is die? Moeilijk te zeggen. Nog kleiner ( we hebben nog steeds een stompe hoek!). We weten het aantal graden niet. Wanneer weten we dat wel. Ah, ja: als we op de helft zijn. Dan hebben we 90º. Maar dat is de rechte hoek!
Hoewel we niet precies weten hoe groot een hoek is die kleiner is dan 90º, kunnen we nu wel de scherpe hoek nader definiëren:

rechte hoek: 90º
scherpe hoek: < 90º
stompe hoek: >  90º
gestrekte hoek: 180º
inspringende hoek > 180º

Het kan nog iets nauwkeuriger – dat wil de meetkunde: precies, exact zijn.

Als we met de armen in de rechte hoek = 90º deze kleiner maken en dus terugtellen, komen we uiteindelijk met de armen in de gestrekte hoek en met het tellen bij 0 uit. Dat is op zich weer verrassend: die gestrekte is dus 180º, maar tegelijkertijd ook 0º.
Nu kunnen we aangeven:

rechte hoek: 90º
scherpe hoek: 0º of >0º < 90º  (groter dan 0 en kleiner dan 90 of tussen 0 en 90º)
stompe hoek: ,  >90º maar kleiner dan <180º :  >90º   <180º
gestrekte hoek: 180º
inspringende hoek > 180º  = ?

Het blijkt bij de inspringende hoek, wanneer we die met de armen groter maken dat we uiteindelijk de hele cirkelboog beschrijven, dus tot aan de 360º:

inspringende hoek > 180º  < 360º

De kinderen kunnen dat dus verwoorden als: de inspringende hoek heeft een grootte die ligt tussen de 180 en de 360 graden.

Nu tekenen we een lijn en richten op 2 punten met enige afstand van elkaar 2 loodlijnen op. We nemen voor de loodlijn een grootte van 3 cm. We verbinden de gevonden punten met een streepjeslijn. Die lijnen lopen dus evenwijdig. Een nieuw begrip, met het woord dat er bij hoort: parallel.

We gummen de loodlijnen weg. De parallelle lijnen blijven staan en daarvan maken we deze tekening:

meetkunde-67

Omdat de lijnen parallel lopen, is het niet moeilijk in te zien dat hoek A het spiegelbeeld is van hoek C1. We leren nu meteen dat we de gelijkheid van de hoeken aangeven met een boogje in de betreffende hoeken. Zo ook: hoek B met hoek C2.
We weten hoe groot hoek C is: als gestrekte hoek: 180º. We kunnen nu ook zeggen: C1  +  C3  +  C2 zijn 180º.
Voor C1 en C2 kunnen we echter invullen: A  en B.
De hoeken A + C3  + B zijn daarmee dus ook 180º.
En daarmee hebben we aangetoond dat de 3 hoeken van een driehoek samen 180º zijn.

Nu trekken we een lijn en nemen tussen de passer een grootte van bijv. 3 cm. We nemen op de lijn een willekeurig punt A en passen de afstand af op de lijn, snijpunt B. Vanuit A zetten we ook nog ongeveer middenboven de lijn een boogje. Dan doen we dat laatste ook vanuit B en het snijpunt noemen we C. We hebben nu een driehoek geconstrueerd. Wat kunnen we van die driehoek zeggen.

meetkunde-68

Dat de 3 zijden gelijk zijn. Hij heet dan ook: gelijkzijdige driehoek

Wat weten we van de hoeken? Ze zijn daarom ook gelijk en als 3 gelijke hoeken samen 180º zijn, dan is elke hoek 60º

We nemen weer een lijn en passen lijnstuk AB af. Met een grotere afstand tussen de passer cirkelen we vanuit A en B om boven de lijn: snijpunt C en trekken AC en BC:

meetkunde-69

Zo wordt de gelijkbenige driehoek gevonden. We kunnen alleen weten dat hoek A gelijk is aan hoek B, over de grootte weten we niets.

Nu tekenen we een rechthoekige driehoek met de al geleerde constructie: richt op een lijn op een willekeurig punt A een loodlijn op; pas op deze loodlijn een willekeurige grootte af: snijpunt C; cirkel vanuit A met een andere willekeurige grootte op de basislijn een lijnstuk af: snijpunt B; verbindt B met C:

meetkunde-70

gevolgd door een rechthoekige driehoek waarbij AC en BC even groot zijn:

meetkunde-71

Dit is de gelijkbenige  rechthoekige driehoek.
Hoek A = 90º; bij een gelijkbenige driehoek zijn er altijd 2 hoeken even groot; dat zijn hier dus hoek B en C. Samen zijn de hoeken 180º; voor hoek B en C blijven er 90 over: ze zijn ieder 45º.

Met deze kennis gewapend tekenen we een cirkel met middelpunt M en nemen een willekeurig punt op de cirkelboog A; met dezelfde passeropening cirkelen we vanuit A om op de cirkelboog: B; we verbinden MA; AB; BM en hebben een gelijkzijdige driehoek gekregen: (we noemen die lijnen weer even en passant de stralen)

Opdracht: hoe groot zijn ∠ M, A, B?
Omdat MA = AB = BM hebben we te maken met een gelijkz. ∆;  ∠ M, A, B zijn dan alle drie 60º.

meetkunde-72

We verlengen AM (we vragen steeds aan de kinderen wat voor lijnen we krijgen: hier dus de middellijn (2x straal = 2r) en richten in M de loodlijn op: snijpunt met cirkelboog: C; we trekken CB. We zien nu dat ∠ M eigenlijk uit 2 ∠ ∠ bestaat. Dat moeten we dan ook aangeven:   M1   M2.  Dat geldt ook voor ∠ B.

Kun je nu zeggen hoe groot M2  en B2  zijn?

meetkunde-73

∠  M1   M2  zijn samen 90º. ∠  M1  als hoek van een gelijkzijdige driehoek is 60º; dan is M90 – 60= 30º
CM = BM, de driehoek MCB is gelijkbenig en dus zijn de hoeken C en B2  gelijk. Omdat hoek M2  30º is, blijven er 180 – 30 = 150º over voor 2 hoeken, d.w.z. iedere hoek is 75º.

Probeer de grootte van de gekleurde ∠ ∠ te bepalen.

meetkunde-50

Met deze opdracht, die ook thuis afgemaakt mag/moet worden, is de derde dag voorbij.

Een vierde dag

Nadat we alles van gisteren herhaald hebben, bekijken we de opdracht. Hoe groot zijn de hoeken in bovenstaande tekening.
De rode hoeken bevinden zich alle in gelijkzijdige driehoeken, dus zijn die 60º.

De rode hoek van 60 ligt op een rechte lijn naast een paarse hoek. Samen zijn deze 180, dus de paarse hoek is 120. In de gelijkbenige driehoeken met de groene en paarse hoeken, blijven na aftrek van 180 – 120 = 60 over: Iedere groene hoek is 30º.

Gisteren stelden we vast dat de rode en de groene hoek samen een rechte hoek vormen = 90, dat hebben we hiermee dus bewezen.

We zijn nog niet klaar met onze ontdekkingsreis langs de hoeken. We nemen deze tekening weer:

meetkunde-72

We weten al een hele tijd dat AB een zesde deel van de cirkelboog is. Omdat de hele cirkelboog 360 is, is het stuk AB dus 60º.

Toen we voor het eerst kennis maakten met de graden, maakten we de tekening dat de puntjes van de cirkelboog loodrecht op de middellijn vallen.
Dat geldt ook voor de (denkbeeldige) puntjes op de cirkelboog AB. Dat betekent dat het lijnstuk AB ook 60º is.
Wanneer we de hoeklijnen van M volgen, komen we bij A en B uit. Hoek M, dat hadden we al gevonden, is ook  60º en nu zien we dat hoek M en het lijnstuk AB een soort eenheid vormen. Hoek M is dan ook eigenlijk hoek AMB. We ontdekken ook dat, wat de graden betreft hoek M = AB.

Hoe zouden we hoek M kunnen noemen. Het is de hoek van het middelpunt, dus ligt het voor de hand dat deze middelpuntshoek heet. Die is even groot als het lijnstuk waar hij bij hoort en bij de boog die daar weer bij hoort. Natuurlijk heeft die lijn ook een aparte naam: koorde: de lijn die twee punten op de cirkelboog verbindt.

Wat kun je nu ook van de middellijn zeggen? Het is de langste = grootste lijn die 2 punten op de cirkelboog verbindt, dus mag hij de grootste koorde worden genoemd.

De boog die bij de koorde hoort, zou natuurlijk koordeboog moeten heten, maar dat woord wordt zelden gebruikt.

De naam van het vlak tussen de boog en de koorde heet segment.

Nu kunnen we zeggen dat de middelpuntshoek even groot is als de koorde waar hij bij hoort en ook omgekeerdL weet je hoe groot de koorde is, dan weet je hoe groot de hoek is die erbij hoort.

We zien op de tekening hierboven dat er ook op de omtrek van de cirkel hoeken kunnen liggen. Vanzelfsprekend hebben die de naam  omtrekshoek. Wat kunnen we daarover te weten komen?

meetkunde-74

Dit is de tekening die we zojuist ook maakten: MA = AB. We weten al dat hoek A = 60. Hoek A is eigenlijk hoe CAB wat betekent dat de hoek bij de koorde(boog) CB hoort. Die is 180 – 60 = 120. Hoek A is als omtrekshoek even groot als de helft van de koorde die bij hem hoort.

Misschien heb je in klas 5 in de geschiedenisperiode waarin Griekenland aan bod kwam, iets verteld over Thales. Anders kun je dat nu doen.

Van hem stamt een stelling, je zou kunnen zeggen een wet waaraan niet te tornen valt: het is altijd zo!

Als de omtrekshoek de middellijn omsluit, is deze hoek 90º, waar deze zich ook bevindt:

meetkunde-75

Hoek C, D en E behoren als omtrekshoek bij de grootste koorde = AB = 180º en zijn daarvan de helft, dus 90º.

Dit gegeven is ook weer kunstzinnig te verwerken:

meetkunde-76

Ga uit van een middellijn; richt de loodlijn op; trek de loodlijn, ook naar de tegenovergestelde cirkelboog. Maak de omtrekshoeken. Deel de koordelijn doormidden; pas de helft af op de overige koordebogen en maak op de punten de omtrekshoeken; ga zo door.

Kleur kan, maar hoeft niet; ook zwart-wit is mooi:

meetkunde-77

Als afronding van ‘de hoeken’ zou je nog de volgende kunnen aanleren:

meetkunde-78

Lijn a en b lopen parallel; ze worden gesneden door lijn c die met lijn a de hoek A en met lijn b de hoek B vormt. Hoek A en B bestaan beide uit 4 hoeken.

Wanneer we uit A op a naar links omcirkelen met de afstand AB (op c) ontstaat de gelijkzijdige driehoek ABC en wanneer we dit vanuit B op lijn b doen naar rechts de gelijkz. driehoek ABD. De driehoeken zijn gelijk, de hoeken ook. Dat betekent dat hoek A3 even groot is als hoek B2. Deze hoeken kun je a.h.w. verwisselen. Omdat ze binnen de parallelle lijnen liggen heten ze:
verwisselende binnenhoeken – zijn even groot.

Voor hoek A2 en hoek B3 kunnen we hetzelfde verhaal houden: ze zijn even groot, maar liggen nu buiten de parallelle lijnen en daarom heten deze hoeken:
verwisselende buitenhoeken – zijn even groot.

De hoeken A1 en B1 (de hele hoek – de lijn CB is niet van invloed) zijn precies dezelfde hoeken, die heten:
overeenkomstige hoeken – zijn even groot.

De hoeken A1 en A2 liggen naast elkaar en heten:
nevenhoeken – zoals we al geleerd hebben:  zijn samen 180º

De hoeken A1 en A4 staan tegenover elkaar en heten:
overstaande hoeken – ze zijn evengroot

Met de opdracht om nog een fraaie tekening met de stelling van Thales te maken en alle hoeken van de hoekentekening te benoemen – ze kunnen dubbele namen hebben, is deze dag ten einde.

vijfde dag

De herhaling van dag 4 is belangrijk om al de nieuwe stof te laten beklijven. Wanneer je te snel verder gaat en de leerlingen maken zich de stof niet eigen die je behandeld hebt, is het net of het toch niet zo belangrijk is. als je het zelf niet belangrijk genoeg vindt, kan je het beter achterwege laten. Doe je het wel, dan moet je zorgen dat het bezit wordt van de leerlingen.
Dat betekent ook: oefenen met opdrachten.

Bijv.:
=Teken door een punt S drie lijnen. Geef de zes hoeken, die er ontstaan, met cijfertjes aan. Noem nu van elke hoek de beide nevenhoeken. Noem ook van elke hoek de overstaande hoek. Hoe groot is de som van alle zes de hoeken? Doet het er wat toe hoe groot de hoeken afzonderlijk zijn?

 

meetkunde 79

=Hier is /_ A3 = 20°. Hoe groot is /_ A1 en /_ A2?

=Een hoek is even groot als zijn nevenhoek. Hoe groot is die hoek?

=Twee overstaande hoeken zijn eikaars complement. Hoe groot is elk?

De begrippen complement en supplement zijn nog niet genoemd. Dat kan nu:
complement: twee hoeken waarvan de som 90º is heten elkaars complement

suppplement: twee hoeken waarvan de som 180º is heten elkaars supplement

=Een hoek is 2 x zo groot als zijn nevenhoek. Hoe groot is die hoek?

=Het verschil van twee nevenhoeken is 40°. Bereken ze allebei.

Je kan er zelf ook bedenken, maar de leerlingen snappen het pas echt als ze zelf opgaven – met het antwoord – kunnen maken en aan elkaar voorleggen. (Bijv. in groepjes van 2)

Omdat het volgende week de 4e en laatste week is van de periode, is het goed dat er niet te veel werk onafgemaakt blijft. Daarvoor zou je de resterende tijd van deze vijfde dag kunnen gebruiken.
Voor wie klaar is, bestaat weer de mogelijkheid om met alles wat tot nog toe geleerd is, een kunstzinnige tekening te maken.

 

meetkunde 80

Veel behandelde hoeken zichtbaar, evenals de koorden en segmenten; gelijkzijdige en gelijkbenig, ook rechthoekige. Een mooie vondst!
(Toch kan de leerling, na het compliment (geen complement) worden gevraagd de tekening nog eens te maken met dunnere potloodpunten, dunner aangegeven verdeelpunten en dunnere verbindingslijnen, exact getrokken – dit is te slordig).

.

suggesties voor de periode:

1e week
2e week
4e week

6e klasalle artikelen (waarbij de meetkunde-artikelen)

meetkundealle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

.

 

VRIJESCHOOL – Meetkunde (4-8)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 30 t/m 33

Over de driehoek

Met minder dan drie rechte lijnen is het niet mogelijk een gesloten figuur te maken. Daarom is de driehoek de eenvoudigste figuur. Maar wanneer je deze nader bekijkt, blijkt dat ze tegelijkertijd m.b.t. haar eigenschappen en haar relaties tot het hele vlak, het meest uitgebreid is.

Kijken we nog eens naar dit regelmatige cirkelveld:

meetkunde-49

 

 

 

 
dan zien we eerst alleen maar cirkels.Doordat deze er zijn, zijn er ook overal driehoeken:

meetkunde-strakosch-6-5

 

 

 

 

Op het eerste gezicht zie je zulke driehoeken die de rechte lijnen als zijde hebben die je vanuit een punt van een ‘klein blad’ naar de andere kan trekken. Daar sluit zo’n lijn in dezelfde richting aan bij een volgende en heel het vlak vertoont zich als overdekt met drie paar parallel getrokken lijnen die met elkaar allemaal hoeken van 60º vormen. Voor de lengte van een zijde kun je een veelvoud van ‘kleine blaadjes’ nemen, ook van ‘grote’, steeds krijg je driehoeken met gelijke hoeken, gelijke zijden, de een aan de ander. Zo kun je met gelijkzijdige driehoeken heel het vlak opvullen, zonder dat er ruimte overblijft.
Verrassend is het echter, wanneer je merkt, dat dit ook voor gelijkbenige driehoeken geldt, zelfs voor heel onregelmatige.
In het eerste geval staat het veld loodrecht t.o.v. van de basislijn van de gelijkbenige driehoeken die in de lengte getekend zijn.
Vergelijk deze tekeningen:

meetkunde-strakosch-6-6

 

 

 

 

meetkunde-strakosch-6-7

 

 

 

 

Bij deze laatste is het veld in de lengte getrokken en bovendien schuin vervormd, maar nog steeds bedekken de niet-gelijkzijdige-niet gelijkbenige driehoeken samenhangend het hele vlak.

Kijken we naar een gelijkzijdige driehoek in een cirkelveld op de volgende 3 tekeningen:

meetkunde-strakosch-6-8meetkunde-strakosch-6-9meetkunde-strakosch-6-10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

en trekken de hoogtelijnen (dat zijn zoals bekend de loodlijnen die vanuit een hoekpunt op de tegenoverliggende zijde neergelaten worden), dan zien we:

1.De drie hoogtelijnen van een driehoek snijden elkaar in een punt, waarbij ieder de beide andere in de verhouding 1 : 2 deelt, een deel is dus  1/3 , het andere   2/van de hoogte.
In deze tekening bij de ‘kleine blaadjes’ te zien:

meetkunde-strakosch-6-8

 

 

 

 

 

 

 

2.De op het midden van iedere zijde opgerichte loodlijnen: middelloodlijnen snijden zich in 1 punt. Omdat ze ook door het er tegenoverstaande hoekpunt gaan, vallen ze samen met de hoogtelijnen en er vindt dezelfde verdeling plaats. Het snijpunt is overal even ver van de hoekpunten verwijderd, dus middelpunt van de omgeschreven cirkel. Ieder punt van een middelloodlijn is van de eindpunten van de zijde die erbij hoort, even ver verwijderd, omdat hij als top van een gelijkbenige driehoek gezien kan worden:
meetkunde-strakosch-8-2

 

 

 

 

 

 

3.De rechte lijnen die het  midden  van een zijde met het daar tegenover liggende hoekpunt verbinden, hebben de eigenschap dat zij elke parallel aan deze getrokken rechte lijn halveren. Ze heten zwaartelijn.

4. Je kan ook nog rechte lijnen trekken die iedere hoek doormidden delen. Ook deze snijden elkaar in een punt en hebben dezelfde verdelingsverhouding als de andere lijnen. Hun snijpunt ligt even ver van de lijnen af, dus is dat het middenpunt van de ingeschreven cirkel.*

*Je vindt de raakpunten als je vanaf het middenpunt op iedere zijde een loodlijn neerlaat. – De tekeningen:

meetkunde-strakosch-6-8meetkunde-strakosch-6-9

meetkunde-strakosch-6-10

 

 

 

 

 

laten steeds een gelijkzijdige driehoek zien, maar in verhouding tot het cirkelveld met verschillende zijdegrootte: 2 grote bladeren, 4 kleine en 3 kleine blaadjes.

.

Daaruit kan geconcludeerd worden:
In een gelijkzijdige driehoek vallen
1. de hoogtelijnen,
2. de middelloodlijnen,
3. de zwaartelijnen,
4. de hoekdeellijnen samen en snijden elkaar in een  punt, waarbij ze zich t.o.v. elkaar verhouden als 1/3  : 2/kortweg in de verhouding  2/3.

5. In deze tekening:

meetkunde-strakosch-6-11

 

 

 

 

 

 

|

staat een gelijkzijdige driehoek met de omgeschreven cirkel en de cirkel die door het midden van de zijden, door de voetpunten van de hoogtelijnen en door de voetpunten van de middelloodlijn gaat. (Ook al vallen hier deze punten alle drie op een en dezelfde zijde, dan is het toch nuttig, dit feit te weten. Deze laatste cirkel heeft bij de gelijkzijdige driehoek ook de eigenschap, elk van de drie zijden in een punt, het middelpunt te raken. Het is een zgn. ingeschreven cirkel. Deze cirkel: zie volgende tekening:

meetkunde-strakosch-6-8
gaat ook door de halveringspunten van het deel van de hoogtelijn (nl. vanaf het middelpunt van de ingeschreven cirkel) die naar een hoek loopt. De verbindingslijnen van deze punten vormen een gelijkzijdige driehoek, die van de middelpunten van de zijden een tweede, beide driehoeken samen een hexagram.

De straal van de ingeschreven cirkel is een derde van de hoogtelijn. Wanneer je de lijn die de zijde doormidden deelt  60º draait in de richtinhg van de pijl:

meetkunde-strakosch-6-11

 

 

 

 

om het gemeenschappelijke middelpunt van de beide cirkels, dat echter tegelijkertijd het doorsneepunt van alle drie de lijnen die de zijde delen is, dan valt deze op de richting van de volgende deellijn.
Omdat de straal van de omgeschreven cirkel dubbel zo groot is als die van de ingeschreven cirkel en omdat het deelpunt van iedere zwaartelijn op de binnencirkel ligt, is bij de gelijkzijdige driehoek ieder punt van de binnencirkel vanaf het middenpunt net zo verwijderd als vanaf de buitencirkel. Dat zie je bijv. aan de dubbel getrokken lijn.
Dit feit kan ook zo worden verwoord:
Wanneer je de zwaartelijnen verlengt tot ze de omtrek snijden, dan is de afstand tussen deze punten en het gemeenschappelijke snijpunt van alle drie deze lijnen dubbel zo groot als de afstand van dit gemeenschappelijke snijpunt vanaf ieder punt waarin de zwaartelijn de binnencirkel snijdt.

Dat mag vanzelfsprekend lijken, er wordt toch op iets gewezen waarvan de betekenis later zal blijken.

Er liggen dus in een gelijkzijdige driehoek twaalf punten op de omgeschreven cirkel waarvan het middelpunt tegelijkertijd het middelpunt is van een ingeschreven cirkel:
1.de middelpunten van de zijden die steeds gelijk zijn aan de voetpunten van de middelloodlijnen;
2.de voetpunten van de hoogtelijnen;
3.de middelpunten van het bovenste gedeelte van de hoogtelijnen;
4.de punten waar dezwaartelijnen doorheen gaan naar de cirkel.

Omdat bij een gelijkzijdige driehoek de hoogtelijnen de zijden doormidden delen, vallen op iedere zijde deze twee punten samen, vormen een dubbelpunt. net zo vallen de net genoemde punten waardoorheen de zwaartelijnen naar de cirkel gaan, samen met de halveringspunten van de grotere stukken van de hoogtelijnen, omdat de hoogtelijnen tegelijkertijd zwaartelijnen zijn  Er zijn dus weer drie dubbelpunten, in totaal dus twaalf punten. 

*

Hoe liggen de verhoudingen bij de gelijkbenige driehoek met deze karakteristieken of bijzondere punten en de cirkel met de twaalf punten.

Teken je in een en dezelfde gelijkbenige driehoek:
1.de hoogtelijnen,
2. de middelloodlijnen,
3.de zwaartelijnen
4.de hoekdeellijnen

dan kun je vaststellen, dat de drie rechte lijnen van iedere groep zich in 1 punt snijden, maar de snijpunten vallen niet meer samen, ze liggen naast elkaar, echter allemaal op de hoogtelijn naar de basis:

meetkunde-strakosch-8-1meetkunde-strakosch-8-2meetkunde-strakosch-8-3meetkunde-strakosch-8-4

.

De cirkel met de twaalf punten heeft het middelpunt op de hoogtelijn. Van binnenuit raakt deze echter de zijden van de driehoek niet meer, maar snijdt deze op de middens en in de voetpunten van de hoogtelijnen. Alleen de basis raakt hij van binnenuit:

meetkunde-strakosch-8-7

.

dus dit punt is wèl een dubbelpunt. Ook hier deelt het snijpunt van de zwaartelijn deze in de verhouding 2/3. 

De zojuist uitgetekende relatie kan zo worden uitgesproken: de afstand van het snijpunt van de zwaartelijnen van hun snijpunten naar de cirkel met de twaalf punten is half zo groot als de afstand van het snijpunt van de zwaartelijnen naar de cirkelomtrek.

Het onderste punt van de cirkel met de twaalf punten moet hier dubbel tellen
1.als middelpunt van de zijde (en tegelijkertijd als voetpunt van een middelloodlijn).
2.als voetpunt van een hoogtelijn.

Het bovenste punt van de cirkel moet ook dubbel tellen:
1.als middelpunt van het bovendeel van de hoogtelijn,
2.als doorsnijdingspunt van een zwaartelijn door de cirkel die de middens van de zijden verbindt.
De overige acht punten liggen gescheiden, ieder op vier stralen die uit iedere onderste hoek komen.

Het middelpunt van de cirkel met de twaalf punten ligt op de hoogtelijn die bij de basis hoort en wel zo in het midden tussen de snijpunten van de drie hoogtelijnen en die van de drie middelloodlijnen.

Hoe is de verhouding nu tussen de beide driehoeken waaruit in deze tekening het hexagram gevormd kon worden?

meetkunde-strakosch-6-8

De hoeken van die driehoek die dezelfde positie heeft als de hoofddriehoek (tophoek naar boven) liggen op de halveringspunten van het bovenste deel van de hoogtelijn, de hoeken van de andere die op zijn tophoek staat, liggen op de halveringspunten van de driehoekszijden. De zijden van beide driehoeken zijn parallel aan een van de driehoekszijden.

De zwaartelijnen van de hoofddriehoek zijn tegelijkertijd de zwaartelijnen van een van de beide ingeschreven driehoeken en wel deze, die de tegenovergestelde positie heeft als de hoofddriehoek: dat was voor de gelijkzijdige driehoek vanzelfsprekend, maar het is toch belangrijk erop te wijzen dat deze verhouding blijft bestaan.

Dan zijn er nog de vragen:
1.Bij de gelijkzijdige driehoek zijn alle snijpunten van de speciale rechte lijnen samengevallen, bij de gelijkbenige driehoek is dit niet meer het geval. Is er nog een samenhang?
2.Bij de gelijkzijdige driehoek is de verhouding van de verdeling van deze lijnen  1/3  : 2/3.
Gaat deze verhouding helemaal verloren?

Deze tekening:

meetkunde-strakosch-8-7

laat zien dat alle drie de snijpunten op de hoogtelijn naar de basis liggen: het bovenste is van de middelloodlijnen (tegelijkertijd middelpunt van de cirkel), dan dat van de zwaartelijnen en ten slotte het snijpunt van de hoogtelijnen. De afstand van de beide laatstgenoemde punten tussen elkaar is precies dubbel zo groot, als de afstnad van de beide eerste. De verhouding  2/3. tot  1/komt hier dus op deze manier tevoorschijn.

Een bijzonder geval is een gelijkbenige driehoek, waarvan de benen een rechte hoek vormen. De tophoek is dan tegelijkertijd het snijpunt van de drie hoogtelijnen waarvan er zelfs twee samenvallen met de benen. Om de verhouding van de twaalf punten helder te krijgen, is het aan te bevelen, als vooroefening een gelijkbenige driehoek te bekijken, waarvan de overstaande hoek een beetje kleiner is dan een rechte hoek en dan pas de gelijkbenige rechthoekige driehoek. Op deze manier kun je goed volgen welke punten op elkaar vallen.
Het uitvoeren hiervan wordt aan de oefenende lezer overgelaten.

Meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas meetkunde

1152

.