Categorie archief: meetkunde

WAT VIND JE OP DEZE BLOG?

.

Via onderstaande rubrieken vind je de weg naar meer dan 1900 artikelen.

In het zoekblokje (op deze pagina rechtsboven) een trefwoord ingeven, leidt ook vaak tot artikelen waar het betreffende woord in voorkomt.
Wanneer er meerdere koppen van artikelen worden getoond, is het raadzaam ieder artikel open te maken en onder aan het artikel bij de tag-woorden te kijken of het gezochte woord daar staat.
.

Ondanks regelmatige controle komt het voor dat bepaalde links niet werken. Waarschuw me s.v.p.     pieterhawitvliet voeg toe apenstaartje gmail punt com
.

RUDOLF STEINER
alle artikelen
wat zegt hij over——
waar vind je Steiner over pedagogie(k) en vrijeschool–
een verkenning van zijn ‘Algemene menskunde’


AARDRIJKSKUNDE
alle artikelen

BESPREKING VAN KINDERBOEKEN
alle auteurs
alle boeken

BORDTEKENEN zie TEKENEN

DIERKUNDE
alle artikelen

GESCHIEDENIS
alle artikelen

GETUIGSCHRIFT
alle artikelen

GODSDIENST zie RELIGIE

GYMNASTIEK
vijfkamp(1)
vijfkamp (2)

bewegen in de klas
L.L.. Oosterom over: beweging tussen persoon en wereld; kind leert bewegend de wereld kennen;

HANDENARBEID
alle artikelen

HEEMKUNDE
alle artikelen

JAARFEESTEN
alle artikelen

KERSTSPELEN
Alle artikelen

KINDERBESPREKING
alle artikelen

KLASSEN alle artikelen:
peuters/kleutersklas 1;  klas 2; klas 3; klas 4; klas 5; klas 6; klas 7;  klas 8;  klas 9: klas 10; klas 11  klas 12

LEERPROBLEMEN
alle artikelen

LEZEN-SCHRIJVEN
alle artikelen

LINKS
Naar andere websites en blogs met vrijeschoolachtergronden; vakken; lesvoorbeelden enz

MEETKUNDE
alle artikelen

MENSKUNDE EN PEDAGOGIE
Alle artikelen

MINERALOGIE
alle artikelen

MUZIEK
Alle artikelen

NATUURKUNDE
alle artikelen

NEDERLANDSE TAAL
alle artikelen

NIET-NEDERLANDSE TALEN
alle artikelen

ONTWIKKELINGSFASEN
alle artikelen

OPSPATTEND GRIND
alle artikelen

OPVOEDINGSVRAGEN
alle artikelen

PLANTKUNDE
alle artikelen

REKENEN
alle artikelen

RELIGIE
Religieus onderwijs
vensteruur

REMEDIAL TEACHING
[1]  [2]

SCHEIKUNDE
klas 7

SCHRIJVEN – LEZEN
alle artikelen

SOCIALE DRIEGELEDING
alle artikelen
hierbij ook: vrijeschool en vrijheid van onderwijs

SPEL
alle artikelen

SPRAAK
spraakoefeningen
spraak/spreektherapie [1]    [2

STERRENKUNDE
klas 7

TEKENEN
zwart/wit [2-1]
over arceren
[2-2]
over arceren met kleur; verschil met zwart/wit
voorbeelden
In klas 6
In klas 7
Bordtekenen [1]
Bordtekenen [2]

VERTELSTOF
alle artikelen

VOEDINGSLEER
7e klas: alle artikelen

VORMTEKENEN
alle artikelen

VRIJESCHOOL
uitgangspunten

de ochtendspreuk [1]      [2]     [3]

bewegen in de klas
In de vrijeschool Den Haag wordt op een bijzondere manier bewogen.

bewegen in de klas
L.L.. Oosterom over: beweging tussen persoon en wereld; kind leert bewegend de wereld kennen; sport

Vrijeschool en vrijheid van onderwijsalle artikelen
zie ook: sociale driegeleding

vrijeschool en antroposofie – is de vrijeschool een antroposofische school?
alle artikelen
.
EN VERDER:
burnt out
Aart van der Stel over: waarom raakt iemand ‘burnt out’; je eigen rol en hoe gaan de anderen met je om; binnen-buiten; gezond-ziek

met vreugde in het nu aanwezig zijn
‘anti’- burn-out

geschiedenis van het Nederlandse onderwijs, een kleine schets

karakteriseren i.p.v. definiëren

lichaamsoriëntatie

(school)gebouw
organische bouw [1]     [2-1]    [2-2]

In de trein
onderwijzer Wilkeshuis over een paar ‘vrijeschoolkinderen’ in de trein
.

VRIJESCHOOL in beeld: bordtekeningen; schilderingen, tekeningen, transparanten enz.
voor klas 1 t/m 7; jaarfeesten; jaartafels

Deze blog wordt/werd bekeken in:

Afghanistan; Albanië; Algerije; Amerikaans-Samoa; Andorra; Angola; Argentinië; Armenië; Aruba; Australië; Azerbeidzjan; Bahama’s; Bahrein; Bangladesh; Belarus; België; Benin; Bolivia; Bosnië en Herzegovina; Brazilië; Brunei; Bulgarije; Burkina Faso; Burundi; Cambodja; Canada; Caribisch Nederland; Chili; China, Congo Kinshasa; Costa Rica; Cuba; Curaçao; Cypres; Denemarken; Dominicaanse Republiek; Duitsland; Ecuador; Egypte; Estland; Ethiopië; Europese Unie; Finland; Filipijnen; Frankrijk; Frans-Guyana; Gambia; Georgië; Gibraltar; Griekenland; Ghana; Guadeloupe; Guatemala; Guyana; Haïti; Honduras; Hongarije; Hongkong; Ierland; IJsland; India: Indonesië; Isle of Man; Israel; Italië; Ivoorkust; Jamaica; Japan; Jemen; Jordanië; Kaapverdië; Kameroen; Kazachstan; Kenia; Kirgizië; Koeweit; Kroatië; Laos; Letland; Libanon; Liberia;  Libië; Liechtenstein; Litouen; Luxemburg; Macedonië; Madagaskar; Maldiven; Maleisië; Mali; Malta; Marokko; Martinique; Mauritius; Mexico; Moldavië; Monaco; Mongolië; Montenegro; Myanmar; Namibië; Nederland; Nepal; Nicaragua; Nieuw-Zeeland; Nigeria; Noorwegen; Oeganda; Oekraïne; Oman; Oostenrijk; Pakistan; Panama; Paraguay; Peru; Polen; Portugal; Puerto Rico; Quatar; Réunion; Roemenië; Rusland; Saoedi-Arabië; Senegal; Servië; Sierra Leone; Singapore; Sint-Maarten; Slovenië; Slowakije; Soedan; Somalië; Spanje; Sri Lanka; Suriname; Syrië; Taiwan; Tanzania; Thailand; Togo; Tsjechië; Trinidad en Tobago; Tunesië; Turkije; Uruguay; Vanuatu; Venezuela; Verenigde Arabische Emiraten; Verenigde Staten; Verenigd Koninkrijk; Vietnam; Zambia; Zuid-Afrika; Zuid-Korea; Zweden; Zwitserland’ (156)

..

VRIJESCHOOL – 8e klas – meetkunde (1-1)

.

In de meetkundeperioden in klas 6 leren de kinderen de hoeken kennen. Meestal komt in de 8e klas iets van stereometrie aan bod en vaak zie je daar dat de Platonische lichamen worden behandeld.
Hieronder een paar voorbeelden en aanwijzingen:

REGELMATIGE VEELVLAKKEN

In het platte vlak kennen we regelmatige veelhoeken. Van zo’n veelhoek zijn alle zijden even lang en alle hoeken even groot. Voor elk getal n, groter dan 2, bestaat er een regelmatige n – hoek. De grootte van elk van de hoeken bedraagt

n – 2    . 180    
  n

Bijvoorbeeld:  een driehoek:  n = 3, -2 = 1, : n = 3  = 1/3 x 180° = 60°
voor een vierhoek: n = 4, – 2 = 2, : n= 2 = 1/2 x 180° = 90°,
voor een vijfhoek: n = 5, – 2 = 3, : n = 5 = 3/5 x 180 = 108°  enz.

In de ruimte verstaan we onder een regelmatig veelvlak een figuur waarvan alle zijvlakken congruent zijn, en bovendien alle een regelmatige veelhoek zijn.

Er blijken slechts vijf regelmatige veelvlakken te bestaan. Om dit in te zien, bekijken we eerst een vlak vol regelmatige zeshoeken.

In een hoekpunt vullen drie zeshoeken precies de 360° rond het punt op. We kunnen daarom in het hoekpunt geen ruimtelijke kromming met de drie zeshoeken tot stand brengen, want de hoeken zouden dan samen kleiner dan 360° worden. Met meer dan drie zeshoeken kan het in elk geval ook niet, want 4 x 120° is helemaal te veel. En met twee zeshoeken kan het evenmin: dit zou een platte figuur opleveren óf er zouden ‘gaten’ vallen.

Met vijfhoeken dan? Drie hoekpunten zouden kunnen want 3 x 108° is minder dan 360°.
Vier vijfhoeken kunnen weer niet in één punt samenkomen, want dan zitten we boven 360°.

De vierkanten. Drie zou kunnen want 3 x 90° is minder dan 360°. Vier is al te veel, want 4 x 90° = 360°

Tot slot de driehoeken. Omdat de hoeken slechts 60° zijn, kunnen in elk hoekpunt van het veelvlak drie (3 x 60=180) of vier (4 x 60 = 240) of vijf (5 x 60=300) zijvlakken samenk0men.

Samenvattend zijn dus maximaal mogelijk: één regelmatig veelvlak van vijfhoeken,
één regelmatig veelvlak van vierkanten,
drie regelmatige veelvlakken van driehoeken.

Deze veelvlakken bestaan alle vijf. 

– het twaalfvlak van vijfnoeken,
– het zesvlak van vierkanten (beter bekend als kubus), 
– het twintigvlak van driehoeken,
– het achtvlak van driehoeken,
– het viervlak van driehoeken.

De bouwtekening spreekt voor zich. Op de lijnen uitsnijden, op de stippellijntjes vouwen (lipjes eventueel iets langer laten). Vooraf een koordje door het gaatje van binnenuit, en dan lijmen en plakken.

Enkele theoretische bijzonderheden.
Om te beginnen kan men de formule van Euler voor de veelvlakken controleren:

AANTAL RIBBEN + 2 = AANTAL VLAKKEN + AANTAL PUNTEN

Bij de regelmatige veelvlakken valt bovendien op:

20-vlak: 12 hoekpunten,
12-vlak: 20 hoekpunten,
t8-vlak: 6 hoekpunten,
6 – vlak: 8 hoekpunten,
4-vlak: 4 hoekpunten.

Daar kan je iets mee te doen:

alle middelpunten van de vlakken in een 20 – vlak vormen precies de hoekpunten van een 12 – vlak en omgekeerd.
En net zo voor 8 – vlak en 6-vlak (gemakkelijk na te gaan in een tekening van een kubus).
En in een viervlak vormen de middelpunten van de vlakken de hoekpunten van een kleiner viervlak.

De overgang 20 ↔ 12-vlak en 8 ↔ 6-vlak is terug te vinden in de ‘mooiste opstelling’.
Voor een 20-vlak lijkt de natuurlijke stand die met een punt naar boven (en beneden); voor een 12 -vlak die met een vlak naar boven.
Voor een 8-vlak weer een punt naar boven, een kubus staat gewoonlijk weer op een vlak.
Probeer dat eens te verwisselen. Als het vouwen en plakken goed is gedaan, maakt het niet uit, welk vlak als grondvlak dienst doet.

viervlak = tetraëder

 

zesvlak = kubus: hexaëder

achtvlak: octaëder

 

twaalfvlak: dodecaëder

twintigvlak: icosaëder

.

8e klas: alle artikelen

.

2017

 

 

 

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – 8e -12e klas – meetkunde

.

Dit is een overzicht van onderwerpen die in de verschillende klassen van de bovenbouw aan de orde komen.
Of wellicht kwamen. Het is mij niet bekend hoeveel mogelijkheden de middelbare vrijescholen nog hebben om, door exameneisen, het vrijeschoolleerplan nog te kunnen uitvoeren.

MEETKUNDE KLAS  8 T/M 12

8e klas

In 7 weken periodeonderwijs kan heel wat gedaan worden. Meestal worden deze 7 weken verdeeld in 2 periodes van resp. 3 weken, bijv, één in de herfst en één in de lente voor zover dit roostertechnisch mogelijk is.

In de eerste periode komen de bekende meetkundige figuren aan de orde zoals vierkant, rechthoek, parallellogram, ruit, vlieger, trapezium waarvan de oppervlakte nu berekenbaar is zo ook van de driehoek.

De oppervlakte van een rechthoek is lengte x breedte.

Wat is nu de oppervlakte van een driehoek? Deze blijkt de helft van de basis x hoogte te zijn:

Hebben twee driehoeken dus dezelfde basis en dezelfde hoogte maar voor de rest zijn ze verschillend, dan is toch hun oppervlakte gelijk:

 

Verder komen aan de orde het meetkundig vermenigvuldigen van een figuur ten opzichte van een punt. Gelijkvormigheid van figuren vloeit hier als vanzelf uit voort:

Een begin wordt gemaakt met de ruimtelijke meetkunde door de vijf platonische lichamen knippend en plakkend van papier te maken.

In de tweede periode staan de “puntverzamelingen” centraal. Dit houdt het volgende in. Tot nu toe is een lijn een lijn, een cirkel een cirkel. Nu komt het moment om een lijn als een verzameling punten te zien die op een rij liggen. Zo is de cirkel te beschouwen als een verzameling punten die alle even ver van één centraal punt af liggen. Ais je alle punten neemt die even ver van een lijn L als van een punt P liggen dan krijg je een kromme die we de parabool noemen:

Alle punten die even ver van een centraal punt P liggen, vormen een cirkel

 

 

 

 

 

 

Alle punten die even ver van een punt P als van een lijn l af liggen vormen een parabool.

Op soortgelijke wijze kun je nu komen tot geheel nieuwe meetkundige figuren, nl. de ellips, de hyperbool, de cassinische curven met name de lemniscaat en de cirkels van appollonius. Dit alles wordt door de leerlingen met grote nauwgezetheid geconstrueerd.

Cassinische curven i.h.b. de lemniscaat

9e klas

Zoals in de periode Nederlands de tegenstelling sentimentaliteit – rationaliteit behandeld wordt zo wordt in de meetkunde het thema cirkel-lijn aangeroerd.

De omtrek van een cirkel blijkt 3 à 4 keer zo lang te zijn als zijn straal. Bij nadere bestudering blijkt het 3,14 keer zo lang te zijn. Maar ook dit getal blijkt niet nauwkeurig. Uit de geschiedenis is bekend dat reeds de oude Egyptenaren en de Grieken zochten naar dit getal, (het zgn. getal pi =  π). Het aantal decimalen waarin men kon vastleggen werd steeds groter totdat in onze tijd de computer in staat is tot op 1,  2 miljoen decimalen te berekenen. Met dit getal kunnen we ook de oppervlakte van een cirkel uitrekenen.

Verder maken we in deze periode kennis met begrippen als middelpuntshoeken, omtrekshoeken, booggraden, de stelling van Thales enz. dit alles in het kader van de cirkelmeetkunde:

Alle hoeken waarvan het hoekpunt op de omtrek van de cirkel ligt, zgn. omtrekshoeken, zijn alle even groot, omdat ze dezelfde cirkelboog snijden.

De platte meetkunde wordt nu verlaten en de ruimte-meetkunde, de stereometrie, wordt betreden. In de 8e hebben we de platonische lichamen geknipt en geplakt; nu worden ze getekend alsmede uitslagen ervan gemaakt. Onderlinge samenhangen worden ontdekt en samengevat in de stelling van Euler. Het begrip dualiteit krijgt inhoud. Ook de ontdekking van Keppler in de 15e eeuw dat ons planetenstelsel opgebouwd is volgens platonische lichamen wordt behandeld.

Kubus en achtvlak zijn onderling duaal, d.w.z. dat de kubus evenveel zijdevlakken als de oktaeder hoekpunten heeft en omgekeerd.

10e klas

De stereometrie wordt nu verder verkend. Lichamen met platte vlakken, kubus, blok, piramide, prisma laten we doorsneden worden door willekeurige platte vlakken. De doorsnijdingen kunnen we nauwkeurig construeren. Punt, lijn en vlak zijn de elementen waarmee we de fysieke ruimte ai denkende doordringen, parallel aan de natuurkunde waarin de fysische processen met name de mechanica nu denkend verkend worden. Ook de periode landmeten sluit hier goed op aan. Op de aarde staand van je omgeving een nauwkeurige plattegrond maken luidt hierbij de opdracht. Technische hulpmiddelen zijn meetlint en theodoliet (hoekmeter). Wiskundige hulpmiddelen zijn hierbij de goniometrie en de trigonometrie de z.g. driehoeksmeetkunde. Deze is in de algebraperiode en in de vaklessen flink geoefend om nu toegepast te kunnen worden.

Constructie ter bepaling van de doorsnijding van het scheve prisma door een vlak dat door de grondlijn en door P gaat.

We meten de hoeken A1, A2, B1 en B2 en de afstand tussen A en B en met de cosinusregel en de sinusregel zijn we in staat de afstanden tot het torentje en de antenne alsook de onderlinge afstand tussen beide te berekenen. Rekenmachientje toegestaan, waarna op schaal de plattegrond gemaakt kan worden.

11e klas

In de 11e klas wordt het assenkruis ingevoerd, ofwel het coördinatenstelsel, uitgevonden door de Fransman Descartes. Lijn, parabool, hyperbool, cirkel, figuren die we in de 8e klas als puntverzameling hebben leren kermen, zijn nu te vangen in een algebraïsch verband tussen 2 coördinaten, een formule. Algebra en meetkunde ontmoeten elkaar hier en het oplossen van vergelijkingen, ontbinden in faktoren, merkwaardige producten waarmee de leerlingen jarenlang gepijnigd zijn in de vaklessen, blijken hier zichtbaar gemaakt te kunnen worden en uiterst nuttig te zijn.

parabool                                                                                                      lijn

Y= X  – 4                                                                                               Y = X + 2

 

 

 

Snijpunten van parabool en lijn vinden we door gelijkstelling:
x2 – 4 = x + 2
verder uitwerken:

 

x2 – x – 6 = 0
(x + 2) (x – 3) = 0
x = 2           x = 3
↓                 ↓

y = 0          y = 5

Dus punt A ( -2,0)  en B (3,5) zijn de snijpunten van parabool en lijn.

Dezelfde bovengenoemde figuren komen ook weer te voorschijn als de kegelsneden behandeld worden. Daarmee wordt het volgende bedoeld.

Als we een kegel laten snijden door een plat vlak dan is de doorsnijding van dit vlak met de kegel een meetkundig figuur, welk figuur hangt af van de stand van het vlak t.o.v. de kegel. Hiermee wordt de “Griekse” meetkunde afgesloten

Verder is het streven om in deze klas een begin te maken met de projectieve meetkunde*

Omdat hier nog ervaring mee moet worden opgedaan, gaan we hier niet verder op in.

De 12e klas

De 12e klas zet als het goed is een kroon op een ontwikkeling die 12 jaar duurt. Van een meetkunde periode is echter niet meer sprake, wel van een
bouwkundeperiode, waarin veel meetkundige vaardigheid toegepast wordt.

De opdracht luidt namelijk: ontwerp je eigen huis.

Wel degelijk is er een wiskunde-periode dit jaar, doch deze weken worden gebruikt om ingewijd te worden in de geheimen van het differentiëren en integreren.

L. Bronkhorst, Karel de Grote College, Nijmegen, datum onbekend

.

Meetkunde: alle artikelen

.

VRIJESCHOOL  in beeld: meetkunde klas 6

.

1624

 

 

 

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – 6e klas – meetkunde (5)

.

VOORBEREIDENDE MEETKUNDE

Gedurende de kinderleeftijd moeten rekenen en meetkunde zo gegeven worden, dat ze bij de leeftijd van het kind passen.
Rudolf Steiner heeft het over een levendigheid in het doen en laten van de mens die daaruit kan ontstaan.
De symmetrie is daarbij heel belangrijk.
De tekeningen die hieronder volgen zijn bedoeld als een kunstzinnig, geen intellectualistisch begin.
Van hier naar het bewijs van de stelling van Pythagoras in de 7e klas, is nog een lange weg. [1]  [2]

Deze bijdrage over de driehoeken is gedacht voor de 4e tot de 6e klas als waarnemende meetkunde.

Onder de vele verschillende driehoeksvormen bevinden er zich een paar die door hun symmetrie en hun ‘karakter’ bijzondere aandacht verdienen. Een nadere kennismaking met deze eenvoudige geometrische figuren is buitengewoon stimulerend.

Eerst noemen we de gelijkzijdige driehoek, het is de oerdriehoek. Behalve de drie zijden zijn ook de drie hoeken gelijk (60º).
De hoogtelijnen, bisectrices, middelloodlijnen en zwaartelijnen zijn allemaal even groot en gaan alle door één punt dat we ‘middenpunt’noemen. Die is tegelijkertijd zwaartepunt, middelpunt van de ingeschreven cirkel en van de omgeschreven cirkel. De lijnen zijn symmetrie-assen:

De halve gelijkzijdige driehoek is rechthoekig, heeft dus een hypotenusa en twee rechthoekszijden. Door het halveren is de symmetrie verloren gegaan. Het verschijnsel links – rechts treedt op. Naast de rechte hoek is de hoek van 30º ontstaan. We gebruiken deze driehoek van hout of kunststof om te tekenen. Er zijn twee soorten, met een linker en een rechter helft die je niet op elkaar kan leggen zonder ze om te draaien. Een halve gelijkzijdige driehoek is meer dan alleen maar een helft:

De gelijkbenige rechthoekige driehoek kan ook als een een half vierkant worden beschouwd. Die is eveneens rechthoekig, heeft echter twee even lange zijden; daardoor is die eveneens nog gelijkbenig. Er is een hoek van 45º, de driehoek heeft een symmetrie-as. Ook deze driehoek gebruiken we als tekendriehoek:
Tot slot moet het paar ‘gouden driehoeken‘ worden genoemd. Het gaat om de driehoeken waarvan de zijden in de verhouding van de ‘gulden snede’ staan. Omdat we een lange en een korte zijde hebben, kunnen we daarmee twee verschillende driehoeken maken: één met twee lange en een korte zijde en één met een lange en twee korte zijden:

 

De eerste noemen we de ‘scherpe gouden driehoek’ en de tweede de ‘stompe gouden driehoek’. Beide zijn gelijkbenig. Er ontstaan hoeken van 36º, 72º en 108º.

Nu moeten deze driehoeken zichzelf karakteriseren. Daartoe proberen we uit een van de driehoeken figuren te maken. Wat er zich aan mogelijkheden voordoet, is verbazingwekkend groot, hier kan er slechts een deel van worden weergegeven.

Uit zes gelijkzijdige driehoeken ontstaat een zeshoek:

Dit is de basisfiguur
We klappen de driehoeken een voor een naar buiten om en krijgen de zesster:

Klappen we ieder tweede punt weer naar binnen, dan ontstaat er een vergrote gelijkzijdige driehoek:

De randen zijn drie keer zo lang, het vlak is negen keer zo groot.
Wanneer we in de onderste rij de buitendriehoeken naar binnen en de binnendriehoek naar buiten omklappen, ontstaat er een grote ruit:

Hoe de zesster uit de basisfiguur door een gelijktijdig draaiende en verschuivende beweging van alle driehoeken ontstaat, wordt aan de vindingrijkheid van de lezer overgelaten.

De halve gelijkzijdige driehoek biedt ons meer mogelijkheden. Twee gelijke (linker of rechter) laten twee verschillende parallellogrammen of een rechthoek ontstaan:

Van verschillende kunnen we een stompe driehoek maken of een vliegerfiguur:

De derde mogelijkheid geeft de gelijkzijdige driehoek aan ons terug. Vier gelijke helften doen een vierkant ontstaan, waarin een tweede, kleinere, uitgespaard is:

We klappen de driehoeken naar buiten om en hebben dan weer een gelijke (niet in meetkundige zin!) figuur voor ons:

Uit drie paren ontstaat een grote gelijkzijdige driehoek:

Wanneer we alle driehoeken omklappen, hebben we een zeshoek voor ons waarin de oorspronkelijke driehoek uitgespaard is:

Zes gelijke driehoeken vormen twee zeshoeken in elkaar:

en twaalf gelijke driehoeken zowaar een twaalfhoek:

Een opdracht:
Uit zes gelijke driehoeken een zesster maken. Hierbij ontstaat een beweeglijke figuur die wat het middelpunt betreft symmetrisch is.

De gelijkbenige rechthoekige driehoek stelt een beetje teleur: die heeft niet zo’n grote vormenrijkdom te bieden. 2, 4, 8, 16, enz. laten zich tot een vierkant voegen. Maar ook achthoeken!:

De lezer moet zelf de twee verschillende achtsterren vinden waarin de afgebeelde achthoek veranderd kan worden.

Een vrolijke combinatie vertoont 18:

Nu wat betreft het ‘gouden driehoekspaar‘.
Door ze passend bij elkaar te zetten, herhalen ze zich zelf afwisselend in een steeds groter wordende vorm. In afb. 19 is met de scherpe driehoek links begonnen, daarbij een stompe geeft een vergrote stompe. De middelste, schuin op de punt staande scherpe driehoek daarbij, leidt tot een grotere scherpe, die net zo staat als de begindriehoek. Nog een stompe en een scherpe erbij en we krijgen die in afb. 19 getoonde grote stomphoekige driehoek. Daarmee kun je willekeurig verder gaan:

Hoe zou de afbeelding afgemaakt moeten worden om de eerst volgende grotere rechthoekige gouden driehoek te maken?

Een scherpe en twee stompe vormen een vijfhoek:

Van vijf scherpe driehoeken kunnen we het pentagram leggen:

Maar ook vijf stompe driehoeken laten dit rijke teken verschijnen, dit keer als binnenvorm:

Klappen we alle driehoeken naar buiten om, zien we twee vijfhoeken:

Dat betekent niet dat de scherpe driehoek op zich geen vijfhoek zou kunnen doen ontstaan:

Kenners zullen de positie van de driehoeken in afb. 25 in de voorstelling zo metamorfoseren dat enerzijds de vijfhoek van afb. 24 en anderzijds het pentagram van afb. 21 ontstaat:

De mooie ‘tienhoekkrans’ van tien stomphoekige driehoeken is het slot van deze ‘tentoonstelling’.

Natuurlijk kunnen tien scherpe driehoeken ook een tienhoek vormen en ook een tienster.

Als we het samenvatten:
De gelijkzijdige driehoek doet de zeshoek en de zesster ontstaan; ze is verwant met de getallen 3 en 6. Je kan er vierhoeken mee maken, maar geen vierkant; ook geen rechthoek.
Links en rechts van de halve gelijkzijdige driehoek zorgt voor beweeglijkheid. Door de rechte hoek kunnen ook de rechthoek en het vierkant ontstaan. De relatie met de getallen 3 en 6 blijft natuurlijk bestaan, nieuw is de twaalfhoek. We vinden dus verwantschap met de getallen 3, 4, 6 en 12.
De verwantschap van de gelijkbenige rechthoekige driehoek met de getallen 4 en 8 is duidelijk.
De ‘gouden driehoeken‘ verrassen ons door het ontstaan van het pentagram. Er is verwantschap met de getallen 5 en 10.

Waar haal je nu die driehoeken? Je kan ze van karton maken, bijv. Om ze voor de klas te kunnen laten zien, kan je ze met gekleurd karton en klittenband op het bord ‘plakken’.
.

Walter Kraul, Erziehungskunst jrg. 34 -04-1970
.

[1] Die wordt soms ook in klas 6 behandeld.

[2] Onder meetkunde alle artikelen vind je de reeks 2-3/1  t/m 2-3/4 als mogelijke weg naar dit doel.
.

De schrijver van het artikel heeft uit gekleurd hout een ‘vierhoek-vijfhoek- en zeshoeklegspel’ uitgebracht. De verschillende afmetingen van gelijkvormige driehoeken in de legspellen geven nog meer vormenrijkdom dan de hier getoonde voorbeelden.
Bij de genoemde uitgeverij zijn ze op dit ogenblik (02-01-2018) niet voorradig.
.

Meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas meetkunde

.

1401

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – 6e klas – meetkunde (2-3/4)

.

1e week    2e week    3e week

4e week
Dit is de laatste week van de periode.
Het kan zijn dat je door omstandigheden een periode had van maar drie weken. Dan moet je een andere keus maken, dan ik heb gedaan. Trouwens, mijn keuze heeft ook een zekere willekeur: er zijn legio andere mogelijkheden.
Er is wel veel aan de orde gekomen en aan het begin van zo’n laatste week is het goed om alles nog eens terug te halen.

eerste dag

Je zou van een bepaalde begrippenlijst uit kunnen gaan:

geometrie
-passer (passerpunt, benen van de passer)
-willekeurige vorm t.o. vastliggende (gegeven) vorm – onwillekeurig
-cirkel
-middel (midden-)punt
-middellijn
-liniaal (lineair)
-omtrek    omtrekslijn
-snijden
-horizontaal, verticaal, diagonaal
-gemeenschappelijk
-vlak
-snijden
-punt
-hoekpunt
-symbool
– ꙩ M
-lijnstuk
-straal
-radius = r
-construeren
-constructie
-daaruit volgt    →
-loodlijn    met constructie
-loodrecht op:   ⊥
-zesster – hexagram
-zeshoek – hexagoon
-verzameling
– hoek  ∠ : scherpe, rechte, stompe, gestrekte, inspringende
-middelpuntshoek
-omtrekshoek
-overstaande hoek
-verwisselende binnen- en buitenhoek
-nevenhoek
-complement   supplement
-graad   º
-groter dan >
-kleiner dan <  (je kunt er een k, van kleiner, van maken)
-parallel
-driehoek: gelijkzijdig, gelijkbenig, rechthoekig, rechthoekig gelijkbenig
-koorde   koordeboog
-segment
-stelling
-hoekdeellijn -bisectrice
-middelloodlijn
-zwaartelijn
-vijfhoek – pentagoon
-vijfster – pentagram
-hypothenusa

We kunnen dus nu een aantal hoeken construeren: van 90º, van 60º en als we teruggaan naar deze constructie:

meetkunde-62

en we trekken er de lijnstukken CA en CB in, hebben we  ∠ C in twee gelijke hoeken verdeeld. ∠ C is de ∠ van een gelijkzijdige Δ, een hoek van 60º, dus elk deel is 30º.

We hebben dus weliswaar een ∠ van 60º verdeeld, maar we mogen ook gewoon zeggen dat we een ∠ hebben gedeeld. We kunnen nu iedere willekeurige ∠ delen!

Een willekeurige hoek ( ∠ A) delen we als volgt middendoor: construeer een willekeurige cirkel met A als m.p.; deze snijdt de benen van ∠A in B en C (de cirkel wordt niet in zijn geheel geconstrueerd, maar alleen de punten B en C). Construeer om B een cirkel met een willekeurige straal en om C een cirkel met dezelfde straal; deze cirkels snijden elkaar in P (ook van deze cirkels tekenen we maar een klein boogje). De halve lijn AP deelt nu ∠ A middendoor ( ∠ A1 = ∠ A2).

De (halve)lijn AP heet hoekdeellijn en we leren naast de benen v.e. hoek ook de moeilijkere naam: bisectrice.

Uiteraard moet dit goed worden geoefend.
Deel de rechte  ∠.   = 45º. Deze gedeeld: 22,5º.
Laat de kinderen ook zelf combinaties uitdenken en construeren. Bijv. 15 en dan dus 22,5 en 15= 37,5;
Als je nog toe komt aan de constructie van een hoe overbrengen, is er nog veel meer mogelijk.

Je zou nu meer bijzonder lijnen kunnen behandelen: de middelloodlijn, die we eigenlijk al gedaan hebben, de zwaartelijn. Het feit dat ze door één punt gaan.
Zie bijv. dit artikel   Je zou een deel hiervan in je periode kunnen opnemen. Het gedicht is zeker een vondst, maar ik weet niet of je zoveel tijd moet gaan besteden aan het leren ervan. Dat zouden bijv. een paar kinderen, die de stof snel snappen en wellicht ook snel klaar zijn, samen kunnen doen.
Uiteraard moet iedereen wél proberen om een kartonnen driehoek op het zwaartepunt in evenwicht te houden. (Exacte constructie!)

tweede dag

Herhalen. Maar stel dat je deze periode tegen de kersttijd geeft, dan is het heel mooi voor de kinderen wanneer ze ook nog de vijfster (pentagram) en de vijfhoek (pentagoon) leren construeren.

De constructie is ingewikkelder dan die van de zesster en met de kennis die we tot nog toe hebben verworven, niet te bewijzen. Dat hoeft ons er niet van te weerhouden, de constructie te leren. Uiteraard eerst weer een cirkel met middelpunt M; willekeurige straal,  bijv, 3 cm.

 

 

 

  • Teken een cirkel met het middelpunt in O, waarop de hoekpunten AEGHF van de vijfhoek moeten komen te liggen. In de figuur is deze eerste cirkel groen. Een snijpunt van de verticale as en de groene cirkel is punt A.
  • Een van de snijpunten van de groene cirkel met de horizontale as is punt B.
  • Bepaal op de bekende manier het midden C tussen O en B.
  • Zet nu de passerpunt op punt C, en de potloodpunt op A. Teken een deel van de cirkel, in de figuur rood onderbroken, tot het snijpunt met de horizontale as. Dit is punt DD ligt aan de andere kant van de oorsprong O dan C.
  • Zet de passerpunt in A, trek nu een cirkel door D. Deze cirkel, in de figuur blauw onderbroken, heeft twee snijpunten met de eerste groene cirkel. Dit zijn de punten E en F, de eerste twee gevonden hoekpunten van de regelmatige vijfhoek.
  • Zet nu zonder de passer te veranderen de passerpunt in E en trek een cirkel, het snijpunt met de eerste groene cirkel is punt G.
  • Zet nu zonder de passer te veranderen de passerpunt in F en trek een cirkel, het snijpunt met de eerste groene cirkel is punt H.
  • Zet nu ter controle de passerpunt zonder de passer te veranderen in punt G, de cirkel moet nu door punt H lopen.
  • Het door rechte lijnstukken verbinden van de vijf punten AEGHF resulteert in een regelmatige vijfhoek.

Wikipedia

Vóór we aan de construcitie beginnen kunnen we 2 even grote cirkels tekenen. De ene wordt onze werkvorm, de andere – uiterst dun – wordt het resultaat, dus zonder uitgegomde lijnen en punten. Als we in de werkvorm de juiste afstand van de zijden tussen de passer hebben, brengen we die over op de andere vorm, vanuit het geschatte midden boven op de omtrek.
Nu is er een ‘schone’ vijfhoek ontstaan.

Door de punten met elkaar te verbinden – steeds 1 overslaan – ontstaat ook de vijfster:


en dan weer naar hartelust fantaseren en kunstzinnig uitwerken:

meer op VRIJESCHOOL in beeld: 6e klas meetkunde onder 5

Een bijzondere kunstzinnige verwerking van het pentagoon is het maken van een transparant of een lantaarntje:

zie voor een beschrijving:

Je kan hiermee, naast herhalen, de periode afsluiten als je deze de laatste week van december heb gegeven. Is dat niet het geval en wanneer je geen lantaarntje(s) of transparant wil maken, kan je ook nog kiezen voor de stelling van Pythagoras.
Sommige scholen geven die pas in de 7e. Dat vergt wel overleg met de leerkracht van die klas.

Of je een tweede periode kan geven, hangt van veel factoren af die ik vanhieruit niet kan overzien. Omdat ik zelf nog les kon geven in de 7e, omdat die toen nog bij de onderouw hoorde, heb ik het wel gedaan.
In Stockmeyers leerplan wordt voor de klassen 6-8 10 weken hoofdonderwijs uitgetrokken voor rekenen en wiskunde. En 1 uur per week om te oefenen, behalve als wiskunde hoofdonderwijs is. Maar toen golden er andere omstandigheden, al is het wel een indicatie.

Je kan ook verdergaan met, naast de driehoek, het vierkant, de rechthoek, de ruit, het trapezium, het parallellogram.

Steiner neemt de stelling van Pythagoras om aan te geven hoe je aanschouwelijk onderwijs kan geven.
In de pedagogische voordrachten GA 294, 295 en 311 staat:

GA 294
De meetkunde biedt u een buitengewoon fraai voorbeeld van de manier waarop een meetkundig probleem aanschouwelijk aangepakt kan worden. U tekent bijvoorbeeld een gelijkbenige recht­hoekige driehoek. Dan kunt u onder aan deze driehoek een vier­kant tekenen, zodat het vierkant grenst aan die gelijkbenige recht­hoekige driehoek [zie tekening 1]. Nu vertelt u de leerlingen, als u dat nog niet gedaan hebt, dat bij een rechthoekige driehoek de zij­den a en b de rechthoekszijden heten en c de hypotenusa wordt ge­noemd. Op de hypotenusa hebt u een vierkant geconstrueerd.* Dat geldt allemaal uiteraard alleen voor een gelijkbenige driehoek. Nu deelt u het vierkant in door middel van diagonalen. U maakt een deel ervan [boven en onder] rood en een deel [rechts] geel. Nu zegt u: ‘Het gele stuk knip ik eruit en ik zet het hiernaast’ [tekening 11].

Dan haalt u ook nog een rood stuk weg en u zet dat aan het gele stuk vast. Nu hebt u een vierkant gevormd op één rechthoekszijde, en dit vierkant bestaat uit een rood en een geel stuk. Dus wat ik ernaast heb getekend [tekening11], is net zo groot als rood en geel samen in tekening 1, en het is de helft van het vierkant op de hy­potenusa. Hetzelfde doe ik voor de andere zijde met blauw. Het blauw plak ik er aan de onderkant aan, zodat ik nog een gelijkbenige rechthoekige driehoek krijg. Dat teken ik er ook weer naast [tekening 111]. Daarmee heb ik nu het vierkant op de andere rechthoekszijde geconstrueerd.0

*voetnoot in de vertaling:
Een vierkant geconstrueerd: in de Duitse taal heeft de leraar bij deze verklaring van de stelling van Pythogoras het voordeel dat hetzelfde woord (Quadrat) zowel vierkant als kwadraat betekent
voetnoot in de vertaling:
voor wie de stelling van Pythagoras niet kent: het kwadraat van de hypothenusa is gelijk aan de som van de kwadraten van de rechthoekszijden, algebraïsch: c2= a2 + b2. De tussenstap die Steiner beschrijft – het aansluiten van een nieuwe (blauwe) driehoek onderaan het vierkant – is misschien verwarrend en in ieder geval overbodig; zie ook de pijlen die van tek. 1 naar tek. 3 gaan.

Dat geldt in eerste instantie alleen voor een gelijkbenige drie­hoek, maar bij een ongelijkbenige rechthoekige driehoek kunt u net zo goed de stukken op elkaar leggen, zoals ik u dat net heb la­ten zien. Dat is aanschouwelijk onderwijs. U kunt de meetkunde in de vorm gieten van aanschouwelijk onderwijs. Wanneer u
er­naar toewerkt om ook de stelling van Pythagoras voor kinderen na het negende jaar aanschouwelijk te maken, dan is het niet on­belangrijk – ik heb dikwijls de proef op de som genomen – dat u zich voor ogen stelt om de stelling van Pythagoras werkelijk op te bouwen uit de verschillende velden van het vierkant op de hypo­tenusa. En als u zich als leraar bewust bent dat u dat bij de meet- kundelessen wilt bereiken, dan kunt u in hoogstens zeven à acht lessen alles aanleren wat in de meetkunde nodig is om tot de stel­ling van Pythagoras – de bekende ezelsbrug – te komen. U zult ui­terst economisch te werk gaan wanneer u de eerste beginselen van de meetkunde op deze manier aanschouwelijk maakt. U zult veel tijd sparen en bovendien zult u de leerlingen iets heel belangrijks besparen – iets wat afbrekend werkt in het onderwijs als er niet spaarzaam mee wordt omgegaan – en dat is: u laat de kinderen geen abstracte gedachten volgen om de stelling van Pythagoras te begrijpen, maar u laat ze concrete gedachten volgen en u gaat van het eenvoudige naar het samengestelde. Het beste is om de stelling van Pythagoras eerst bij een gelijkbenige driehoek uit die verschillende velden op te bouwen zoals het hier in de tekening is gedaan, en dan pas over te gaan naar de ongelijkbenige driehoek. Zelfs daar waar de stelling van Pythagoras tegenwoordig aanschouwe­lijk wordt gebracht – wat zeker wel gebeurt – wordt dat niet vol­ledig gedaan. Men gaat niet eerst uit van het eenvoudige procédé bij de gelijkbenige driehoek, om daarmee het andere procédé goed voor te bereiden en over te stappen naar de ongelijkbenige recht­hoekige driehoek. Maar dat is belangrijk, dat men dat bewust op­neemt in de doelstelling van het meetkundeonderwijs. Wilt u er dus aan denken om verschillende kleuren te gebruiken. U moet de verschillende vlakken inkleuren en dan de kleuren over elkaar leggen. De meesten van u zullen iets dergelijks al wel eens gedaan hebben, maar toch niet op deze manier.
GA 294/148 e.v.
vertaald/148 e.v.

We kunnen in ieder geval aannemen dat de kinderen die we nu dit jaar krijgen bijvoorbeeld de stelling van Pythagoras verkeerd geleerd hebben, dat ze die niet geleerd hebben zoals wij dat be­sproken hebben. De vraag is dan wat we moeten doen om de leer­lingen niet alleen te geven wat ze gemist hebben, maar in zekere zin nog iets meer, zodat bepaalde krachten die al uitgedroogd en verdord zijn weer kunnen opbloeien, voorzover dat mogelijk is. We kunnen dan bijvoorbeeld een leerling vragen om zich nog eens de stelling van Pythagoras voor de geest te halen, we zeggen: ‘Je hebt die stelling geleerd. Hoe luidt die? – Inderdaad, dat is de stelling van Pythagoras: het kwadraat van de hypotenusa is gelijk aan de som van de kwadraten van de beide rechthoekszijden.’ Maar daarbij heeft zo’n leerling beslist niet dat in zijn ziel wat het leren van de stelling van Pythagoras hem gegeven zou moeten hebben. Daarom doe ik iets extra’s. Ik maak de zaak niet alleen aanschou­welijk voor hem, maar ik bouw die ‘aanschouwing’ ook nog eens genetisch voor hem op. Ik laat 181die op een heel speciale manier ont­staan. Ik zeg: ‘Ik wil graag drie leerlingen voor het bord. Eén van de drie kleurt dit vlak met krijt in. De anderen in de klas letten goed op dat hij niet meer krijt gebruikt dan echt nodig is. De tweede pakt een ander krijtje en kleurt dit vlak in. En de derde kleurt dit vlak, weer met een ander krijtje.’ En dan zeg ik tegen de jongen of het meisje dat het vierkant op de hypotenusa bedekt heeft: ‘Kijk, nu heb jij evenveel krijt gebruikt als de twee anderen samen. Jij hebt net zoveel krijt op dat vierkant gekalkt als de twee anderen bij elkaar, omdat het kwadraat van de hypotenusa gelijk is aan de som van de kwadraten van de rechthoekszijden.’ Ik maak de stelling dus aanschouwelijk door middel van het krijtverbruik. Dat gaat nog dieper in de ziel als de leerling ook nog bedenkt dat er iets van

het krijtje af is, iets wat nu niet meer aan het krijtje, maar op het bord zit. En dan ga ik nog een stap verder en zeg ik: ‘Nu verdeel ik de vierkanten in kleine vierkantjes: het eerste in 16, het tweede in 9 en het derde in 25 vierkantjes. Nu zet ik midden in ieder vierkantje één van jullie neer, 182 en je stelt je voor dat dat een akker is die je moet omspitten. De kinderen die deze 25 kleine vierkantjes hier omge­spit hebben, hebben net zoveel werk verzet als de kinderen van de 16 vierkantjes en de kinderen van de 9 vierkantjes samen. Door jul­lie werk is het vierkant van de hypotenusa omgespit, door jullie werk het vierkant op de ene rechthoekszijde en door jullie werk het vierkant op de andere rechthoekszijde/ Zo verbind ik met de stelling van Pythagoras iets wat de wil van het kind raakt, wat ten­minste de voorstelling oproept dat het kind met zijn wil zinvol in de wereld staat, en ik breng leven in iets wat tamelijk levenloos zijn schedel binnengekomen is.
GA 294/181 e.v.
vertaald/181 e.v.

 

Rudolf Steiner geeft vervolgens nog een aanschouwelijke toelichting bij de stelling van Pythagoras en verwijst naar een artikel van Ernst Müller: ‘Bemerkung über eine erkenntnistheoretische Grundlegmg des pythagoreischen Lehrsatzes’.
In de tekening is de stelling van Pythagoras (het kwadraat van de hypotenusa is gelijk aan de som van de gekwadrateerde rechthoekszijden) geometrisch aangetoond. De tekening laat in principe één driehoek zien met drie vierkanten, die de kwadraten vormen van zijn drie zijden. De beide ‘rechtopstaande’ vierkanten zijn de kwadraten van de rechthoekszijden, het ‘schuine’ vierkant is het kwadraat van de hypotenusa. Men ziet dat het rode deel van de eerstgenoemde vierkanten het vierkant op de hypotenusa al ten dele bedekt. Het restant wordt bedekt door de blauwe en de groene driehoek omhoog te schuiven, zodat het oppervlak van de kleinere vierkanten exact binnen het oppervlak van de grootste blijkt te passen.

Rudolf Steiner:… Men moet het allemaal uit karton knippen, pas dan wordt het aanschouwelijk.
GA 295/119
vertaald/110

GA 311
Hoe je alles vanuit het aanschouwelijke, niet vanuit wat men tegenwoordig dikwijls ‘aanschouwelijkheidsonderwijs’ noemt, in opvoeding en onderwijs moet doen, wil ik nog graag laten zien aan een bepaald iets dat in het onderwijs daadwerkelijk een bijzondere rol moet spelen. Dat is de stelling van Pythagoras die u allemaal wel kent, wanneer u in het onderwijs werkzaam bent, die u wellicht op een soortgelijke manier inzichtelijk is, maar we willen hem vandaag toch nog bespreken. Kijk, de stelling van Pythagoras is  iets wat je je concreet als doel kan stellen in de meetkunde. Je kan de meetkunde zo opbouwen dat je zegt: ik wil alles zo organiseren dat het uitmondt in de stelling van Pythagoras, dat het kwadraat van de hypotenusa van een rechthoekige driehoek gelijk is aan de som van de kwadraten van de beide rechthoekszijden. Dat is iets grandioos, als je er goed naar kijkt.
Ik moest eens een dame die toen al ouder was, omdat ze er zo van hield, meetkunde leren. Ik weet niet of ze alles vergeten was – maar vermoedelijk had ze op het meisjesinternaat waar je als meisje opgevoed werd niet veel geleerd – in ieder geval wist ze niets van meetkunde. Ik begon en liet alles uitmonden in de stelling van Pythagoras. Nu had deze stelling voor die dame inderdaad iets buitengewoon frapperends. Men is alleen gewend aan dit frapperende. Maar, niet waar, je moet simpelweg begrijpen dat wanneer ik hier een rechthoekige driehoek heb (het wordt getekend) het vlak dat als kwadraat op de hypotenusa staat, even groot is als het totaal van deze twee kwadraten op de rechthoekszijde. (Fig.l)

fig.lGA 311 blz. 91

Dat, wanner ik aardappelen poot en die  overal op gelijke afstand van elkaar zet, ik, wanneer ik deze akker en deze samen met aardappelen beplant, precies evenveel aardappelen zal poten als hier op deze akker. Dat is iets verrassends, iets heel verrassends en wanneer je er zo naar kijkt kun je het eigenlijk niet doorzien.
En juist dat je het niet kunt doorzien, dat het zo wonderbaarlijk is, moet je in het onderwijs benutten als een innerlijke stimulans; je moet ervanuit gaan dat je iets hebt wat niet zo makkelijk te doorzien is, dat moet je steeds weer toegeven. Je zou willen zeggen: bij de stelling van Pythagoras is het zo: je kan die aannemen, maar je raakt het houvast steeds weer meteen kwijt. Je moet steeds weer opnieuw geloven dat het hypotenusakwadraat gelijk is aan de som van de kwadraten van de beide rechthoekszijden.
Nu kun je allerlei bewijzen vinden en het bewijs moet eigenlijk heel aanschouwelijk geleverd worden. Het is makkelijk om het te leveren zolang de driehoek gelijkbenig is. Wanneer je hier een rechthoekige gelijkbenige driehoek hebt (het wordt getekend, fig.l l)

GA 311 blz. 93 1

dan is dit hier de kleine rechthoekszijde, dit is de andere, dit is de hypotenusa. Wat ik oranje teken (1,2,3,4) is het kwadraat op de hypotenusa. Wat ik blauw teken zijn de kwadraten op de beide rechthoekszijden.
Nu is het weer zo, wanneer ik op de juiste manier op deze beide blauwe velden (2, 5; 4, 6 ) aardappelen poot, dan krijg ik net zoveel als wanneer ik dat op de oranje velden (1, 2, 3, 4) doe. Het oranje veld is het kwadraat op de hypotenusa, de beide blauwe velden (2,5; 4,6) zijn de kwadraten op de beide rechthoekszijden.
Nu kun je het bewijs eenvoudig maken en zeggen: de twee stukken (2, 4) van de beide blauwe kwadraten die vallen daar (in het hypotenusakwadraat) binnen, die zitten er al in. Dit (5) kun je hier zetten ( op 3). Wanneer je het zou uitknippen, zou je het stuk (6) hier erop kunnen leggen (op 1) en dan heb je het al. Dus, nu is het goed te doorzien als je een zgn. rechthoekige gelijkbenige driehoek hebt. Maar als je die niet hebt, maar een met verschillende kanten (zoals fig.l) dan kun je het volgende doen: teken de driehoek nog een keer

(fig.lll: ABC)

GA 311 blz. 93 2

Teken nu het kwadraat van de hypotenusa ABDE. Nu kun je op de volgende manier tekenen: je kunt de driehoek ABC, die je hier hebt, er hier bij tekenen: BDF. Dan kun je deze driehoek ABC, respectievelijk deze BDF, die hetzelfde is, nog een keer hier tekenen: AEG. Doordat je deze driehoek hier nog eens hebt, kun je het kwadraat op deze ene rechthoekszijde zo opnieuw tekenen (rood) CAGH. Nu is dit, wat ik rood getekend heb, het kwadraat op de rechthoekszijde (CAGH).
Ik kan nu ook, zoals je ziet, de driehoek hier tekenen DEI. Hier heb ik die ook. Dan heb ik met wat ik hier nu groen teken, het kwadraat van de andere rechthoekszijde: DIHF; dan heb ik er twee, het kwadraat op de ene, het kwadraat op de andere rechthoekszijde. Ik gebruik alleen bij de ene deze rechthoekszijde AG, bij de ander deze DI. De driehoeken zijn daar (AEG) en daar (DEI); ze zijn gelijk (d.i. congruent). Waar heb ik het kwadraat op de hypotenusa? Dat wil ik nu paars tekenen, zodat we het goed kunnen onderscheiden: ABDE. Het kwadraat op de hypotenusa heb ik hier. Nu moet ik op de figuur zelf aantonen, dat rood (1,2) en groen 3, 4, 5) samen violet (2, 4, 6,7) oplevert.
Nu, dat zul je makkelijk kunnen snappen: ik neem dit rode kwadraat (1,2) hier eerst; wat de beide kwadraten gemeenschappelijkhebben (2), dat overlapt elkaar. Nu komt daar nog bij het stuk van het groene kwadraat (4). Dus krijg ik dit figuur (2, 4) dat je daar getekend ziet en dat niets anders is dan een stuk van het violette kwadraat ABDE, inderdaad een stuk van het violette kwadraat. Dit stuk van het violette kwadraat DE omvat dit stuk van het rode kwadraat (2); daarvan blijft alleen de punt hier over (1); die zit er nog niet bij. Maar bovendien bevat deze figuur de punt van het groene kwadraat (4). Nu moet ik er nog toe komen, onder te brengen wat ik nog over heb (1, 3, 5).
Nu moet je eens kijken: je hebt nog een stukje van het rode kwadraat over (1), daar een stukje van het groene (3) en daar is de hele driehoek (5) overgebleven, die ook bij het groene kwadraat DIHF hoort. Nu neem je wat je hier hebt, wat nog overgebleven is en dat leg je dan hier aan: wat je hier nog over hebt (5) neem je en leg je er hier aan (6). Nu heb je nog de punt (1, 3). Wanneer je die uitknipt, kom je er op dat deze beide vlakken (1, 3) in dit vlak (7) terecht zijn gekomen. Het kan natuurlijk nog duidelijker worden getekend, maar ik denk dat je de zaak wel doorziet. Het gaat er nu nog om dat je het door middel van de taal nog preciezer zegt. Op deze manier heb je eenvoudig door de vlakken over elkaar te leggen, laten zien, dat de stelling van Pythagoras juist is.
Wanneer je juist deze manier om de vlakken over elkaar te leggen neemt, dan zul je het vinden. Weliswaar zul je zien, dat wanneer je het uitknipt in plaats van te tekenen, de zaak dan heel eenvoudig te overzien is; ondanks dat: wanneer je er later over nadenkt, is het je weer ontschoten. Je moet het steeds weer opnieuw zoeken. Je kunt het niet goed in je geheugen krijgen, daarom moet je het steeds weer opnieuw uitzoeken. En dat is goed. Dat is namelijk heel goed. Dat hoort bij de stelling van Pythagoras. Je moet er steeds weer opnieuw opkomen. Dat je hem snapt, moet je ook steeds weer vergeten. Dat hoort bij het frapperende dat de stelling van Pythagoras heeft. Daardoor krijg jeleven in de zaak. Je zal wel zien dat wanneer je dit keer op keer door de leerlingen laat maken, zij daarbij nog aarzelen. Zij komen er niet meteen weer op, ze moeten iedere keer nadenken. Dat hoort echter bij die levendigheid die in de stelling van Pythagoras zit. Het is helemaal niet goed wanneer je de stelling zo bewijst dat die beperkt oppervlakkig te begrijpen is; het is veel beter dat je hem steeds weer vergeet en steeds weer opnieuw  moet zoeken. Dat hoort bij het frapperende, dat het toch iets wonderbaarlijk is dat het hypotenusakwadraat even groot is als de som van de beide kwadraten van de rechthoekszijden.
Nu kun je heel goed met elf-twaalfjarige kinderen zo ver met meetkunde komen, dat je de stelling van Pythagoras met een dergelijk vergelijken van de vlakken kan uitleggen; de kinderen zullen buitengewoon blij zijn, wanneer ze het gesnapt hebben en ze krijgen er zin in. Ze hebben er plezier in gehad. Nu willen ze het steeds opnieuw doen, vooral wanneer je ze laat uitknippen. Er zullen wel een paar intellectualistische deugnieten zijn die het heel goed in de gaten hebben, die het steeds voor elkaar krijgen. De meeste, verstandigere kinderen zullen het steeds weer verknippen en erbij aarzelen, tot het lukt, zoals het zijn moet. Dat hoort bij de wonderbaarlijke stelling van Pythagoras en je moet dit wonderbaarlijke niet kwijtraken, maar het vasthouden.
GA 311/90 e.v.
Vertaald  op deze blog

Het ziet er in eerste instantie wel ingewikkeld uit, maar als je het uitknipt – wat Steiner al aangeeft – is het veel makkelijker te doorzien. Ik heb de losse delen door de kinderen laten maken – vrij groot – en daarmee konden ze dan proberen de delen weer goed te leggen.

Tot zover een impressie van 4 weken meetkunde in klas 6.

Wanneer je er een geschikt ogenblik voor vindt, zou je nog kunnen teruggrijpen op de plantkundeperiode uit de vijfde klas.
Toen het over de bloem ging, moet haast wel aan de beurt zijn gekomen de bloem met de 5 blaadjes en die met de 6. Grohmann besteedt er hier aandacht aan:

Er bestaan prachtige foto’s van deze ‘meetkunde’bloemen. Een opdracht zou kunnen zijn dat alle kinderen met een bloemillustratie naar school komen en daarbij aangeven om welk getal het gaat:

bosanemoon (erachter speeenkruid)

ooievaarsbek

Ook in sneeuw- ijskristallen zit meetkunde:

Afbeeldingsresultaat voor sneeuwkristallen

wat opvalt is dat de kristallen alle van een 6- of veelvoud daarvan – structuur zijn.

 

suggesties voor de periode:

1e week
2e week
3e week

 

6e klasalle artikelen (waarbij de meetkunde-artikelen)

meetkundealle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

.

1391

 

 

 

 

 

 

 

 

 

 

.

 

 

 

VRIJESCHOOL – 6e/7e klas – meetkunde (2-4)

.

meetkunde klas 6 en 7

Een artikel in de Branding over meetkunde dat was de vraag die de redactie me stelde. Na nauwelijks deze vraag met ‘ja’ te hebben beantwoord, zag ik me voor de volgende moeilijkheid geplaatst: hoe kun je het wezenlijke van meetkunde dat zich tenslotte uitdrukt in lijnen en vlakken die tezamen de vormenwereld zichtbaar maken, beschrijven in woorden?
Om dit dilemma zoveel mogelijk op te lossen zal ik na een inleiding de vormen grotendeels zelf laten spreken en de woorden slechts als aanvulling gebruiken en om een overzicht te geven, hoe de meetkunde in de lessituatie in klas ó en 7 gestalte krijgt.

In de ontwikkeling van de mens van geboorte tot volwassenheid zijn 3 fasen te onderscheiden:

– van 0 – 7 jaar: baby-peuter-kleuterfase
– van 7 ~ 11 jaar; lagere schoolkind
– van 14 – 21 jaar: puberteit en adolecentie

In elke fase is er sprake van een samengaan van het willen, het voelen en het denken. Hoe deze drie zich in elke fase t.a.v. elkaar verhouden voert in het bestek van dit artikel te ver; enkel het volgende gegeven is van belang:

Bij de leeftijd van 0 tot 7 ligt het accent op het willen. Van 7 tot 14 ligt het accent op het voelen.
En bij de fase van 14 tot 21 ligt het accent op het denken.

Deze driegeleding van willen, voelen, denken is ook per fase een gegeven. Zo zit het benedenbouwkind in de lagere klassen nog sterk in de beweging (het willen) – denk aan het klappen en stampen van tafels, versjes etc. Vanaf ongeveer klas 6/7 groeit het kind langzaam naar de puberteit toe en ontstaat het vermogen tot o.a. het causale en abstracte denken. Het leerplan op de vrijeschool neemt de ontwikkeling van het kind als uitgangspunt. Zo komen dan in klas 6 en klas 7 voor het eerst een aantal vakken aan de orde waarbij een appèi op het causale en abstracte denken wordt gedaan zoals: natuurkunde, scheikunde, sterrenkunde, algebra en natuurlijk meetkunde.

Het verkennen, en op papier zetten van de vormenwereld begint al bij de peuter. De eerste dag in de 1e klas leert het kind twee oervormen: de rechte en de kromme.

meetkunde-6e

Vanaf deze dag zal het vormtekenen een dagelijkse of wekelijkse activiteit zijn. Een deel van de vormtekenlessen zullen bestaan uit geometrische vormen, die meerdere malen in één beweging worden getekend.

meetkunde-6e-2

 

In klas 6 gaan vele vormen die het kind al eens getekend heeft wederom getekend worden. Nu echter niet met de vrije hand als voordien, maar m.b.v. passer en lineaal.

De intentie van de meetkundeperiode kan het best als volgt omschreven worden;

“Exactheid, schoonheid en maat. Dat is waar het in de meetkunde om gaat”

Nadat de kinderen een gesprek te hebben gevoerd waar meetkunde overal in het praktische leven is toegepast, zijn de kinderen enthousiast en aangesproken in de wil om aan de slag te gaan met die fonkelnieuwe passer, of die passer die nog een erfstuk blijkt te zijn van de grootvader van moeder…

Zoals met vormtekenen veelal het geval was, zo zal men in beginsel ook elke vorm die op papier zal verschijnen eerst in het groot in de beweging doen; met de hele klas, een groepje of individueel.

De cirkel
Teken met grote bewegingen in de lucht of op de grond; een exacte cirkel vormen met de hele klas (een sociale oefening bij uitstek! )

Waar komen cirkelvormen voor? De aardbol, de schedel, een voetbal, een gloeilamp etc, etc. zullen als antwoorden van de kinderen komen. En dan uiteindelijk de eerste cirkel in het schrift; een lijn even dik of dun met de passer op bladzijde een – tongpuntje tussen de tanden! Vanaf nu heet dit geen “rondje” meer, maar een cirkel met al zijn andere namen erbij.

meetkunde-6e-3

Dan het eerste meetkundewonder!

De straal (afstand tussen de benen van de passer) blijkt precies 6x rond de omtrek van de cirkel afgezet te kunnen worden. De 6 punten kunnen dan op verschillende manieren met elkaar verbonden worden

meetkunde-6e-4

Vanuit deze mogelijkheid volgen dan een reeks tekeningen, waarbij het kleuraspect nog een zeer grote rol speelt voor de schoonheidsbeleving van het kind. Elk kind kiest eigen kleurcombinaties,- verhoudingen en hanteert de mogelijkheden hierin van de licht-donker effecten.

Voorbeelden vanuit de 6-deling:

meetkunde-6e-5

Dan komen er verschillende soorten hoeken aan bod. Ook weer om je heen kijken on hoeken benoemen of d© hoeken vormen met b.v, je lichaam (hoofd-romp, houding boven-benedenarin) of hoeken gevormd met meerdere kinderen samen.

Na de hoeken 2 constructies:
-het delen van een hoek (bissectrice)
-het oprichten en neerlaten van een loodlijn

Vanuit deze nieuw geleerde constructies zijn er weer talloze nieuwe figuren mogelijk. Zo kan men komen van de 6~deling naar een veelvoud hiervan:

meetkunde-6e-6

Als volgende is de mogelijkheid de driehoek te bekijken. Opdracht voor de kinderen voor thuis kan dan luiden: probeer eens uit hoeveel verschillende soorten driehoeken er zijn.

Bij het behandelen en het gebruik van de geodriehoek of de gradenboog greep ik terug op de geschiedenisperiode in de 5e klas. In deze periode wordt o.a. verteld over de Egyptische cultuurperiode en het ontstaan van de meetkunde aldaar. Het Egyptische jaar telde 5 heilige dagen en 360 overige dagen; de zon stond dan weer op hetzelfde punt.

Vandaar het volgende gegeven:

meetkunde-6e-7

Ook de termen complement, supplement en applement komen nu aan bod.

Nu kan er dan ook volop met gradenboog of geodriehoek worden gewerkt. Verder komen nog aan bod zaken als snijdende lijnen, parallelle lijnen, tegenoverliggende hoeken, verwisselende hoeken etc.

Als afsluiting in klas 6 wordt de 5-hoekconstructie geleerd. Tekeningen die vanuit deze constructie afgeleid kunnen worden volgen hierna. Ook kan gesproken.worden over de gulden snedeverhouding die in deze constructie te vinden is en terugkomt op vele wijzen in de menselijke gestalte.

meetkunde-6e-8

In klas 7 wordt het variëren en uitproberen van allerlei vormen nóg verder uitpewerkt. Het benoemen’en construeren van allerlei mogelijke meetkundefenomenen zal dan echter een groter accent krijgen.

Opgave waarin bepaalde constructies worden gegeven met daarbij een vraag zijn dan aan de orde.

Bijvoorbeeld:
1)gegeven: lijnstuk AB = 5 cm
lijnstuk BC 6 cm
LA of X = 90°

gevraagd:
a) teken een driehoek ABC
b) hoeveel graden zijn B en. X

2) Bewijs dat de 3 hoeiken van een driehoek samen. 180 zijn. etc.

Verder komen zaken als congruentie, rotatie en merkwaardige lijnen aan de orde.

Voorbeeld van een soort merkwaardige lijn in dichtvorm:

We zullen eens proberen
Een lijn te constueren
Die vanuit een hoekpunt gaat
En loodrecht op de tegenoverliggende zijde staat
Deze hoeken zijn dus beiden recht
90º dat is goed gezegd
Deze lijn heet: hoogtelijn
Het geeft de hoogte aan
Maar dat zal duidelijk zijn

Ook de bissectrice en de zwaartelijn komen zo aan de orde.

De berekening van omtrek en oppervlakte van o.a de cirkel, de driehoek, het parallellogram, de trapezoïde etc. worden in dit jaar behandeld.

Langzaam kan er ook toegewerkt worden naar perspectief en 3-dimensionaliteit als voorbereiding op de platonische lichamen die in klas 8 een centrale plek zullen krijgen.

meetkunde-6e-9

De periode zal eindigen bij de stelling van Pythagoras, zichtbaar gemaakt in:

Tijdens of na de periode krijgen de kinderen opdracht om met alle mogelijkheden en constructies die ze hebben leren kennen zelf een vorm te bedenken en te ontwerpen. Deze worden dan beoordeeld op exactheid, schoonheid en originaliteit.

Peter Giesen, vrijeschool Nijmegen, nadere gegevens onbekend

 

6e klas: alle artikelen (waarbij de meetkunde-artikelen)

meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

 

1181

 

 

 

 

 

 

 

 

 

.

 

 

VRIJESCHOOL – 6e klas – meetkunde (2-3/3)

.

Hier volgt een impressie van de 3e week van de periode meetkunde in klas 6.

1e week    2e week    4e week

 

De derde week

Een eerste dag
Na een paar weken kan het zijn dat als je deze werkwijze volgt, toch in een heel andere tijdsindeling terechtkomt. Dat is uiteraard geen enkel punt: het gaat in jouw klas op jouw manier. Beschouw deze ‘weken’ en ‘dagen’ dus als een soort indicatie, maar bewandel je eigen weg.

Iedere dag weer herhalen wat er al geleerd is. Misschien huiswerkopdrachten om het geleerde toe te passen; gerichte opdrachten die ook over de stof van voorbije dagen kan gaan. Geef kinderen die gemotiveerd zijn extra opdrachten (mee), bijv. om ‘terug te herkennen’ hoe een vorm tot stand is gekomen; of vraag ze naar geheel eigen vormen (die als huiswerk niet per se (in)gekleurd hoeven te zijn.
Voor de natuurkunde gaf Steiner een bepaalde ‘leerweg’ aan. ‘De drie stappen‘. Daar heb je ook wat aan voor de meetkundedagen. Je moet ze inpassen in hoe jij je lessen hebt opgebouwd.

We gaan weer willekeurige lijnen trekken die elkaar moeten snijden:

meetkunde-36

 

 

 

 

 

 

 

We bekijken verschillende snijpunten:

meetkunde-47-1

 

 

 

 

meetkunde-47-2

meetkunde-47-3

 

 

 

 

En wanneer we die accentueren zien we hoeken ontstaan.
Bij alle kinderen heel verschillende. Die worden op het bord getekend. Dan zou je kunnen vragen die hoeken in een volgorde te zetten, een volgorde van bijv. groot naar klein of omgekeerd.
Wanneer je de kinderen vraagt die hoeken met hun armen te maken, de ene hoek na de andere, en dan heel snel, zien we als vanzelf ‘de’ hoek een beweging worden, zoals we de lijn als beweging hadden in de eerste week en wanneer we dan plotseling onze armen stilhouden, hebben we ‘een’ hoek.
De idee hoek is een beweeglijke hoek die zich bevindt tussen onze zich bewegende armen. Verrassend is, dat dus op zeker ogenblik wanneer de armen bijna horizontaal zijn, er nog steeds sprake is van een hoek en als we ze horizontaal hebben en nog verder gaan, we nog steeds een hoek hebben.

Dat betekent dat ook de horizontale, dus anders gezegd de lijn of het lijnstuk, vanuit een bepaalde optiek óók een hoek is.

Dat is bijzonder. Gevraagd naar een andere heel bijzondere hoek vinden de kinderen de rechte hoek. Alle hoeken die kleiner of groter zijn, zijn er in een groot aantal: er is maar 1 rechte hoek (en 1 gestrekte)

Hoe heten dan de andere. Opnieuw is het interessant om de kinderen zelf de namen te laten vinden. Natuurlijk leren we dan de officiële namen:
meetkunde-48

1.scherpe hoek
2.rechte hoek
3.stompe hoek
4.gestrekte hoek
5.inspringende hoek

Uiteraard komt nu ook het sympool voor hoek: ∠  en voor de rechte hoek:

meetkunde-49

voor deze bestaan er verschillende

 

 

Als opdracht zou je nu weer de zesster en zeshoek in 1 tekening kunnen laten maken en daarin moeten dan de verschillende hoeken zichtbaar worden.

meetkunde-50

rood= scherpe hoek
groen=scherpe hoek
paars=stompe hoek
blauw= gestrekte hoek
groen + rood=rechte hoek

Een tweede dag
We gaan terug naar de tweede week, de derde dag en herhalen het ontstaan van de rechte lijn en bepaalde eigenschappen daarvan, zoals ‘de verzameling puntjes’.

Dan kun je teruggaan naar de geschiedenisperiode van de 5e klas, naar Babylonië en weer wijzen op de sterrenkunde, de kennis van wat zich aan de hemel vertoont.
Wellicht vertel je een eigen ervaring, bijv. dat je in Ierland was, in Newgrange en heb je – al dan niet kunstmatig – gezien hoe de zon op midwinterdag naar binnen straalt en een bepaalde ruimte precies verlicht.
Je kunt nu vooruitlopen op de sterrenkunde van klas 7 en samen met de Babylonische geleerden de zonneboog aan de hemel beschrijven met een lijn als verzameling van puntjes: die dag staat de zon op tijdstip x daar; de volgende dag op hetzelfde tijdstip x daar (ietsje verder opgeschoven).

De zonnebaan wordt weergegeven met de cirkel en het verschuiven van het punt waar de zon opkomt met de punten, die eigenlijk heel dicht tegen elkaar aan horen te liggen, maar waarvan je er voor de duidelijkheid maar een paar tekent.

En, de Oude Babyloniërs stelden die zonnetijdstippen vast op een aantal van 360 per jaaromgang als product van 12 maanden en 30 dagen per maand.

meetkunde-29

 

 

 

 

 

 

 

Dat betekent dat we door de middellijn te tekenen 2 halve bogen krijgen, waarvan we er 1 tekenen:

meetkunde-31

 

 

 

 

Als de hele boog ‘volgens afspraak’ 360 punten heeft, dan de halve boog 180.
Stel dat deze punten naar de middellijn afdalen en ze nemen de kortste weg, dan moeten ze loodrecht naar beneden:

meetkunde-30

 

 

 

 

Dat betekent dat de middellijn uit 180 puntjes bestaat, hoe klein of groot deze ook is. Dat kunnen we voor iedere lijn zeggen: nee, lijnSTUK: het eerste en laatste puntje valt samen met het begin en einde van de cirkelboog.

Ik merkte altijd wel dat deze redeneringen voor sommige kinderen naar een abstractie gaan die nog moeilijk voor ze is. Maar meestal neem je ze wel mee in het begrijpen, als je het rustig opbouwt en er vooral weer op terugkomt en het juist door de kinderen die het nog moeilijk vinden laat uitleggen om te zien hoe ver ze zijn.

Omdat we het woord ‘punt’ al gebruiken voor een plaatsbepaling – op een lijn(stuk) of erbuiten, ligt het voor de hand dat de puntjes aan de hemelboog = halve cirkelboog – anders moeten heten. Die heten graden en hebben het symbool  º.  In hoeverre je nu al over ‘minuten en seconden’ moet spreken, hangt er misschien vanaf of je op de landkaart het plaatsbepalen al hebt behandeld.
Zo niet, dan zou ik wachten, want voor de meetkunde zijn ze in de 6e klas niet belangrijk.

Zo leren we nu dat de cirkel bestaat uit 360º  en de halve dus uit 180º. En deze is gelijk aan de gestrekte hoek, die dus ook 180º is.
We trekken de belangrijkste conclusie: dat een hoek ook graden heeft!

We strekken de armen weer horizontaal: de hoek is 180º. We maken de hoek kleiner. Hoeveel graden is die? Moeilijk te zeggen. Nog kleiner ( we hebben nog steeds een stompe hoek!). We weten het aantal graden niet. Wanneer weten we dat wel. Ah, ja: als we op de helft zijn. Dan hebben we 90º. Maar dat is de rechte hoek!
Hoewel we niet precies weten hoe groot een hoek is die kleiner is dan 90º, kunnen we nu wel de scherpe hoek nader definiëren:

rechte hoek: 90º
scherpe hoek: < 90º
stompe hoek: >  90º
gestrekte hoek: 180º
inspringende hoek > 180º

Het kan nog iets nauwkeuriger – dat wil de meetkunde: precies, exact zijn.

Als we met de armen in de rechte hoek = 90º deze kleiner maken en dus terugtellen, komen we uiteindelijk met de armen in de gestrekte hoek en met het tellen bij 0 uit. Dat is op zich weer verrassend: die gestrekte is dus 180º, maar tegelijkertijd ook 0º.
Nu kunnen we aangeven:

rechte hoek: 90º
scherpe hoek: 0º of >0º < 90º  (groter dan 0 en kleiner dan 90 of tussen 0 en 90º)
stompe hoek: ,  >90º maar kleiner dan <180º :  >90º   <180º
gestrekte hoek: 180º
inspringende hoek > 180º  = ?

Het blijkt bij de inspringende hoek, wanneer we die met de armen groter maken dat we uiteindelijk de hele cirkelboog beschrijven, dus tot aan de 360º:

inspringende hoek > 180º  < 360º

De kinderen kunnen dat dus verwoorden als: de inspringende hoek heeft een grootte die ligt tussen de 180 en de 360 graden.

Een ezelsbruggetje:

Nu tekenen we een lijn en richten op 2 punten met enige afstand van elkaar 2 loodlijnen op. We nemen voor de loodlijn een grootte van 3 cm. We verbinden de gevonden punten met een streepjeslijn. Die lijnen lopen dus evenwijdig. Een nieuw begrip, met het woord dat er bij hoort: parallel.

We gummen de loodlijnen weg. De parallelle lijnen blijven staan en daarvan maken we deze tekening:

meetkunde-67

Omdat de lijnen parallel lopen, is het niet moeilijk in te zien dat hoek A het spiegelbeeld is van hoek C1. We leren nu meteen dat we de gelijkheid van de hoeken aangeven met een boogje in de betreffende hoeken. Zo ook: hoek B met hoek C2.
We weten hoe groot hoek C is: als gestrekte hoek: 180º. We kunnen nu ook zeggen: C1  +  C3  +  C2 zijn 180º.
Voor C1 en C2 kunnen we echter invullen: A  en B.
De hoeken A + C3  + B zijn daarmee dus ook 180º.
En daarmee hebben we aangetoond dat de 3 hoeken van een driehoek samen 180º zijn.

Nu trekken we een lijn en nemen tussen de passer een grootte van bijv. 3 cm. We nemen op de lijn een willekeurig punt A en passen de afstand af op de lijn, snijpunt B. Vanuit A zetten we ook nog ongeveer middenboven de lijn een boogje. Dan doen we dat laatste ook vanuit B en het snijpunt noemen we C. We hebben nu een driehoek geconstrueerd. Wat kunnen we van die driehoek zeggen.

meetkunde-68

Dat de 3 zijden gelijk zijn. Hij heet dan ook: gelijkzijdige driehoek

Wat weten we van de hoeken? Ze zijn daarom ook gelijk en als 3 gelijke hoeken samen 180º zijn, dan is elke hoek 60º

We nemen weer een lijn en passen lijnstuk AB af. Met een grotere afstand tussen de passer cirkelen we vanuit A en B om boven de lijn: snijpunt C en trekken AC en BC:

meetkunde-69

Zo wordt de gelijkbenige driehoek gevonden. We kunnen alleen weten dat hoek A gelijk is aan hoek B, over de grootte weten we niets.

Nu tekenen we een rechthoekige driehoek met de al geleerde constructie: richt op een lijn op een willekeurig punt A een loodlijn op; pas op deze loodlijn een willekeurige grootte af: snijpunt C; cirkel vanuit A met een andere willekeurige grootte op de basislijn een lijnstuk af: snijpunt B; verbindt B met C:

meetkunde-70

gevolgd door een rechthoekige driehoek waarbij AC en BC even groot zijn:

meetkunde-71

Dit is de gelijkbenige  rechthoekige driehoek.
Hoek A = 90º; bij een gelijkbenige driehoek zijn er altijd 2 hoeken even groot; dat zijn hier dus hoek B en C. Samen zijn de hoeken 180º; voor hoek B en C blijven er 90 over: ze zijn ieder 45º.

Met deze kennis gewapend tekenen we een cirkel met middelpunt M en nemen een willekeurig punt op de cirkelboog A; met dezelfde passeropening cirkelen we vanuit A om op de cirkelboog: B; we verbinden MA; AB; BM en hebben een gelijkzijdige driehoek gekregen: (we noemen die lijnen weer even en passant de stralen)

Opdracht: hoe groot zijn ∠ M, A, B?
Omdat MA = AB = BM hebben we te maken met een gelijkz. ∆;  ∠ M, A, B zijn dan alle drie 60º.

meetkunde-72

We verlengen AM (we vragen steeds aan de kinderen wat voor lijnen we krijgen: hier dus de middellijn (2x straal = 2r) en richten in M de loodlijn op: snijpunt met cirkelboog: C; we trekken CB. We zien nu dat ∠ M eigenlijk uit 2 ∠ ∠ bestaat. Dat moeten we dan ook aangeven:   M1   M2.  Dat geldt ook voor ∠ B.

Kun je nu zeggen hoe groot M2  en B2  zijn?

meetkunde-73

∠  M1   M2  zijn samen 90º. ∠  M1  als hoek van een gelijkzijdige driehoek is 60º; dan is M90 – 60= 30º
CM = BM, de driehoek MCB is gelijkbenig en dus zijn de hoeken C en B2  gelijk. Omdat hoek M2  30º is, blijven er 180 – 30 = 150º over voor 2 hoeken, d.w.z. iedere hoek is 75º.

Probeer de grootte van de gekleurde ∠ ∠ te bepalen.

meetkunde-50

Met deze opdracht, die ook thuis afgemaakt mag/moet worden, is de derde dag voorbij.

Een vierde dag

Nadat we alles van gisteren herhaald hebben, bekijken we de opdracht. Hoe groot zijn de hoeken in bovenstaande tekening.
De rode hoeken bevinden zich alle in gelijkzijdige driehoeken, dus zijn die 60º.

De rode hoek van 60 ligt op een rechte lijn naast een paarse hoek. Samen zijn deze 180, dus de paarse hoek is 120. In de gelijkbenige driehoeken met de groene en paarse hoeken, blijven na aftrek van 180 – 120 = 60 over: Iedere groene hoek is 30º.

Gisteren stelden we vast dat de rode en de groene hoek samen een rechte hoek vormen = 90, dat hebben we hiermee dus bewezen.

We zijn nog niet klaar met onze ontdekkingsreis langs de hoeken. We nemen deze tekening weer:

meetkunde-72

We weten al een hele tijd dat AB een zesde deel van de cirkelboog is. Omdat de hele cirkelboog 360 is, is het stuk AB dus 60º.

Toen we voor het eerst kennis maakten met de graden, maakten we de tekening dat de puntjes van de cirkelboog loodrecht op de middellijn vallen.
Dat geldt ook voor de (denkbeeldige) puntjes op de cirkelboog AB. Dat betekent dat het lijnstuk AB ook 60º is.
Wanneer we de hoeklijnen van M volgen, komen we bij A en B uit. Hoek M, dat hadden we al gevonden, is ook  60º en nu zien we dat hoek M en het lijnstuk AB een soort eenheid vormen. Hoek M is dan ook eigenlijk hoek AMB. We ontdekken ook dat, wat de graden betreft hoek M = AB.

Hoe zouden we hoek M kunnen noemen. Het is de hoek van het middelpunt, dus ligt het voor de hand dat deze middelpuntshoek heet. Die is even groot als het lijnstuk waar hij bij hoort en bij de boog die daar weer bij hoort. Natuurlijk heeft die lijn ook een aparte naam: koorde: de lijn die twee punten op de cirkelboog verbindt.

Wat kun je nu ook van de middellijn zeggen? Het is de langste = grootste lijn die 2 punten op de cirkelboog verbindt, dus mag hij de grootste koorde worden genoemd.

De boog die bij de koorde hoort, zou natuurlijk koordeboog moeten heten, maar dat woord wordt zelden gebruikt.

De naam van het vlak tussen de boog en de koorde heet segment.

Nu kunnen we zeggen dat de middelpuntshoek even groot is als de koorde waar hij bij hoort en ook omgekeerdL weet je hoe groot de koorde is, dan weet je hoe groot de hoek is die erbij hoort.

We zien op de tekening hierboven dat er ook op de omtrek van de cirkel hoeken kunnen liggen. Vanzelfsprekend hebben die de naam  omtrekshoek. Wat kunnen we daarover te weten komen?

meetkunde-74

Dit is de tekening die we zojuist ook maakten: MA = AB. We weten al dat hoek A = 60. Hoek A is eigenlijk hoe CAB wat betekent dat de hoek bij de koorde(boog) CB hoort. Die is 180 – 60 = 120. Hoek A is als omtrekshoek even groot als de helft van de koorde die bij hem hoort.

Misschien heb je in klas 5 in de geschiedenisperiode waarin Griekenland aan bod kwam, iets verteld over Thales. Anders kun je dat nu doen.

Van hem stamt een stelling, je zou kunnen zeggen een wet waaraan niet te tornen valt: het is altijd zo!

Als de omtrekshoek de middellijn omsluit, is deze hoek 90º, waar deze zich ook bevindt:

meetkunde-75

Hoek C, D en E behoren als omtrekshoek bij de grootste koorde = AB = 180º en zijn daarvan de helft, dus 90º.

Dit gegeven is ook weer kunstzinnig te verwerken:

meetkunde-76

Ga uit van een middellijn; richt de loodlijn op; trek de loodlijn, ook naar de tegenovergestelde cirkelboog. Maak de omtrekshoeken. Deel de koordelijn doormidden; pas de helft af op de overige koordebogen en maak op de punten de omtrekshoeken; ga zo door.

Kleur kan, maar hoeft niet; ook zwart-wit is mooi:

meetkunde-77

Als afronding van ‘de hoeken’ zou je nog de volgende kunnen aanleren:

meetkunde-78

Lijn a en b lopen parallel; ze worden gesneden door lijn c die met lijn a de hoek A en met lijn b de hoek B vormt. Hoek A en B bestaan beide uit 4 hoeken.

Wanneer we uit A op a naar links omcirkelen met de afstand AB (op c) ontstaat de gelijkzijdige driehoek ABC en wanneer we dit vanuit B op lijn b doen naar rechts de gelijkz. driehoek ABD. De driehoeken zijn gelijk, de hoeken ook. Dat betekent dat hoek A3 even groot is als hoek B2. Deze hoeken kun je a.h.w. verwisselen. Omdat ze binnen de parallelle lijnen liggen heten ze:
verwisselende binnenhoeken – zijn even groot.

Voor hoek A2 en hoek B3 kunnen we hetzelfde verhaal houden: ze zijn even groot, maar liggen nu buiten de parallelle lijnen en daarom heten deze hoeken:
verwisselende buitenhoeken – zijn even groot.

De hoeken A1 en B1 (de hele hoek – de lijn CB is niet van invloed) zijn precies dezelfde hoeken, die heten:
overeenkomstige hoeken – zijn even groot.

De hoeken A1 en A2 liggen naast elkaar en heten:
nevenhoeken – zoals we al geleerd hebben:  zijn samen 180º

De hoeken A1 en A4 staan tegenover elkaar en heten:
overstaande hoeken – ze zijn evengroot

Met de opdracht om nog een fraaie tekening met de stelling van Thales te maken en alle hoeken van de hoekentekening te benoemen – ze kunnen dubbele namen hebben, is deze dag ten einde.

vijfde dag

De herhaling van dag 4 is belangrijk om al de nieuwe stof te laten beklijven. Wanneer je te snel verder gaat en de leerlingen maken zich de stof niet eigen die je behandeld hebt, is het net of het toch niet zo belangrijk is. als je het zelf niet belangrijk genoeg vindt, kan je het beter achterwege laten. Doe je het wel, dan moet je zorgen dat het bezit wordt van de leerlingen.
Dat betekent ook: oefenen met opdrachten.

Bijv.:
=Teken door een punt S drie lijnen. Geef de zes hoeken, die er ontstaan, met cijfertjes aan. Noem nu van elke hoek de beide nevenhoeken. Noem ook van elke hoek de overstaande hoek. Hoe groot is de som van alle zes de hoeken? Doet het er wat toe hoe groot de hoeken afzonderlijk zijn?

 

meetkunde 79

=Hier is /_ A3 = 20°. Hoe groot is /_ A1 en /_ A2?

=Een hoek is even groot als zijn nevenhoek. Hoe groot is die hoek?

=Twee overstaande hoeken zijn eikaars complement. Hoe groot is elk?

De begrippen complement en supplement zijn nog niet genoemd. Dat kan nu:
complement: twee hoeken waarvan de som 90º is heten elkaars complement

suppplement: twee hoeken waarvan de som 180º is heten elkaars supplement

=Een hoek is 2 x zo groot als zijn nevenhoek. Hoe groot is die hoek?

=Het verschil van twee nevenhoeken is 40°. Bereken ze allebei.

Je kan er zelf ook bedenken, maar de leerlingen snappen het pas echt als ze zelf opgaven – met het antwoord – kunnen maken en aan elkaar voorleggen. (Bijv. in groepjes van 2)

Omdat het volgende week de 4e en laatste week is van de periode, is het goed dat er niet te veel werk onafgemaakt blijft. Daarvoor zou je de resterende tijd van deze vijfde dag kunnen gebruiken.
Voor wie klaar is, bestaat weer de mogelijkheid om met alles wat tot nog toe geleerd is, een kunstzinnige tekening te maken.

 

meetkunde 80

Veel behandelde hoeken zichtbaar, evenals de koorden en segmenten; gelijkzijdige en gelijkbenig, ook rechthoekige. Een mooie vondst!
(Toch kan de leerling, na het compliment (geen complement) worden gevraagd de tekening nog eens te maken met dunnere potloodpunten, dunner aangegeven verdeelpunten en dunnere verbindingslijnen, exact getrokken – dit is te slordig).

.

suggesties voor de periode:

1e week
2e week
4e week

6e klasalle artikelen (waarbij de meetkunde-artikelen)

meetkundealle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

 

VRIJESCHOOL – Meetkunde (4-8)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 30 t/m 33

Over de driehoek

Met minder dan drie rechte lijnen is het niet mogelijk een gesloten figuur te maken. Daarom is de driehoek de eenvoudigste figuur. Maar wanneer je deze nader bekijkt, blijkt dat ze tegelijkertijd m.b.t. haar eigenschappen en haar relaties tot het hele vlak, het meest uitgebreid is.

Kijken we nog eens naar dit regelmatige cirkelveld:

meetkunde-49

 

 

 

 
dan zien we eerst alleen maar cirkels.Doordat deze er zijn, zijn er ook overal driehoeken:

meetkunde-strakosch-6-5

 

 

 

 

Op het eerste gezicht zie je zulke driehoeken die de rechte lijnen als zijde hebben die je vanuit een punt van een ‘klein blad’ naar de andere kan trekken. Daar sluit zo’n lijn in dezelfde richting aan bij een volgende en heel het vlak vertoont zich als overdekt met drie paar parallel getrokken lijnen die met elkaar allemaal hoeken van 60º vormen. Voor de lengte van een zijde kun je een veelvoud van ‘kleine blaadjes’ nemen, ook van ‘grote’, steeds krijg je driehoeken met gelijke hoeken, gelijke zijden, de een aan de ander. Zo kun je met gelijkzijdige driehoeken heel het vlak opvullen, zonder dat er ruimte overblijft.
Verrassend is het echter, wanneer je merkt, dat dit ook voor gelijkbenige driehoeken geldt, zelfs voor heel onregelmatige.
In het eerste geval staat het veld loodrecht t.o.v. van de basislijn van de gelijkbenige driehoeken die in de lengte getekend zijn.
Vergelijk deze tekeningen:

meetkunde-strakosch-6-6

 

 

 

 

meetkunde-strakosch-6-7

 

 

 

 

Bij deze laatste is het veld in de lengte getrokken en bovendien schuin vervormd, maar nog steeds bedekken de niet-gelijkzijdige-niet gelijkbenige driehoeken samenhangend het hele vlak.

Kijken we naar een gelijkzijdige driehoek in een cirkelveld op de volgende 3 tekeningen:

meetkunde-strakosch-6-8meetkunde-strakosch-6-9meetkunde-strakosch-6-10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

en trekken de hoogtelijnen (dat zijn zoals bekend de loodlijnen die vanuit een hoekpunt op de tegenoverliggende zijde neergelaten worden), dan zien we:

1.De drie hoogtelijnen van een driehoek snijden elkaar in een punt, waarbij ieder de beide andere in de verhouding 1 : 2 deelt, een deel is dus  1/3 , het andere   2/van de hoogte.
In deze tekening bij de ‘kleine blaadjes’ te zien:

meetkunde-strakosch-6-8

 

 

 

 

 

 

 

2.De op het midden van iedere zijde opgerichte loodlijnen: middelloodlijnen snijden zich in 1 punt. Omdat ze ook door het er tegenoverstaande hoekpunt gaan, vallen ze samen met de hoogtelijnen en er vindt dezelfde verdeling plaats. Het snijpunt is overal even ver van de hoekpunten verwijderd, dus middelpunt van de omgeschreven cirkel. Ieder punt van een middelloodlijn is van de eindpunten van de zijde die erbij hoort, even ver verwijderd, omdat hij als top van een gelijkbenige driehoek gezien kan worden:
meetkunde-strakosch-8-2

 

 

 

 

 

 

3.De rechte lijnen die het  midden  van een zijde met het daar tegenover liggende hoekpunt verbinden, hebben de eigenschap dat zij elke parallel aan deze getrokken rechte lijn halveren. Ze heten zwaartelijn.

4. Je kan ook nog rechte lijnen trekken die iedere hoek doormidden delen. Ook deze snijden elkaar in een punt en hebben dezelfde verdelingsverhouding als de andere lijnen. Hun snijpunt ligt even ver van de lijnen af, dus is dat het middenpunt van de ingeschreven cirkel.*

*Je vindt de raakpunten als je vanaf het middenpunt op iedere zijde een loodlijn neerlaat. – De tekeningen:

meetkunde-strakosch-6-8meetkunde-strakosch-6-9

meetkunde-strakosch-6-10

 

 

 

 

 

laten steeds een gelijkzijdige driehoek zien, maar in verhouding tot het cirkelveld met verschillende zijdegrootte: 2 grote bladeren, 4 kleine en 3 kleine blaadjes.

.

Daaruit kan geconcludeerd worden:
In een gelijkzijdige driehoek vallen
1. de hoogtelijnen,
2. de middelloodlijnen,
3. de zwaartelijnen,
4. de hoekdeellijnen samen en snijden elkaar in een  punt, waarbij ze zich t.o.v. elkaar verhouden als 1/3  : 2/kortweg in de verhouding  2/3.

5. In deze tekening:

meetkunde-strakosch-6-11

 

 

 

 

 

 

|

staat een gelijkzijdige driehoek met de omgeschreven cirkel en de cirkel die door het midden van de zijden, door de voetpunten van de hoogtelijnen en door de voetpunten van de middelloodlijn gaat. (Ook al vallen hier deze punten alle drie op een en dezelfde zijde, dan is het toch nuttig, dit feit te weten. Deze laatste cirkel heeft bij de gelijkzijdige driehoek ook de eigenschap, elk van de drie zijden in een punt, het middelpunt te raken. Het is een zgn. ingeschreven cirkel. Deze cirkel: zie volgende tekening:

meetkunde-strakosch-6-8
gaat ook door de halveringspunten van het deel van de hoogtelijn (nl. vanaf het middelpunt van de ingeschreven cirkel) die naar een hoek loopt. De verbindingslijnen van deze punten vormen een gelijkzijdige driehoek, die van de middelpunten van de zijden een tweede, beide driehoeken samen een hexagram.

De straal van de ingeschreven cirkel is een derde van de hoogtelijn. Wanneer je de lijn die de zijde doormidden deelt  60º draait in de richtinhg van de pijl:

meetkunde-strakosch-6-11

 

 

 

 

om het gemeenschappelijke middelpunt van de beide cirkels, dat echter tegelijkertijd het doorsneepunt van alle drie de lijnen die de zijde delen is, dan valt deze op de richting van de volgende deellijn.
Omdat de straal van de omgeschreven cirkel dubbel zo groot is als die van de ingeschreven cirkel en omdat het deelpunt van iedere zwaartelijn op de binnencirkel ligt, is bij de gelijkzijdige driehoek ieder punt van de binnencirkel vanaf het middenpunt net zo verwijderd als vanaf de buitencirkel. Dat zie je bijv. aan de dubbel getrokken lijn.
Dit feit kan ook zo worden verwoord:
Wanneer je de zwaartelijnen verlengt tot ze de omtrek snijden, dan is de afstand tussen deze punten en het gemeenschappelijke snijpunt van alle drie deze lijnen dubbel zo groot als de afstand van dit gemeenschappelijke snijpunt vanaf ieder punt waarin de zwaartelijn de binnencirkel snijdt.

Dat mag vanzelfsprekend lijken, er wordt toch op iets gewezen waarvan de betekenis later zal blijken.

Er liggen dus in een gelijkzijdige driehoek twaalf punten op de omgeschreven cirkel waarvan het middelpunt tegelijkertijd het middelpunt is van een ingeschreven cirkel:
1.de middelpunten van de zijden die steeds gelijk zijn aan de voetpunten van de middelloodlijnen;
2.de voetpunten van de hoogtelijnen;
3.de middelpunten van het bovenste gedeelte van de hoogtelijnen;
4.de punten waar dezwaartelijnen doorheen gaan naar de cirkel.

Omdat bij een gelijkzijdige driehoek de hoogtelijnen de zijden doormidden delen, vallen op iedere zijde deze twee punten samen, vormen een dubbelpunt. net zo vallen de net genoemde punten waardoorheen de zwaartelijnen naar de cirkel gaan, samen met de halveringspunten van de grotere stukken van de hoogtelijnen, omdat de hoogtelijnen tegelijkertijd zwaartelijnen zijn  Er zijn dus weer drie dubbelpunten, in totaal dus twaalf punten. 

*

Hoe liggen de verhoudingen bij de gelijkbenige driehoek met deze karakteristieken of bijzondere punten en de cirkel met de twaalf punten.

Teken je in een en dezelfde gelijkbenige driehoek:
1.de hoogtelijnen,
2. de middelloodlijnen,
3.de zwaartelijnen
4.de hoekdeellijnen

dan kun je vaststellen, dat de drie rechte lijnen van iedere groep zich in 1 punt snijden, maar de snijpunten vallen niet meer samen, ze liggen naast elkaar, echter allemaal op de hoogtelijn naar de basis:

meetkunde-strakosch-8-1meetkunde-strakosch-8-2meetkunde-strakosch-8-3meetkunde-strakosch-8-4

.

De cirkel met de twaalf punten heeft het middelpunt op de hoogtelijn. Van binnenuit raakt deze echter de zijden van de driehoek niet meer, maar snijdt deze op de middens en in de voetpunten van de hoogtelijnen. Alleen de basis raakt hij van binnenuit:

meetkunde-strakosch-8-7

.

dus dit punt is wèl een dubbelpunt. Ook hier deelt het snijpunt van de zwaartelijn deze in de verhouding 2/3. 

De zojuist uitgetekende relatie kan zo worden uitgesproken: de afstand van het snijpunt van de zwaartelijnen van hun snijpunten naar de cirkel met de twaalf punten is half zo groot als de afstand van het snijpunt van de zwaartelijnen naar de cirkelomtrek.

Het onderste punt van de cirkel met de twaalf punten moet hier dubbel tellen
1.als middelpunt van de zijde (en tegelijkertijd als voetpunt van een middelloodlijn).
2.als voetpunt van een hoogtelijn.

Het bovenste punt van de cirkel moet ook dubbel tellen:
1.als middelpunt van het bovendeel van de hoogtelijn,
2.als doorsnijdingspunt van een zwaartelijn door de cirkel die de middens van de zijden verbindt.
De overige acht punten liggen gescheiden, ieder op vier stralen die uit iedere onderste hoek komen.

Het middelpunt van de cirkel met de twaalf punten ligt op de hoogtelijn die bij de basis hoort en wel zo in het midden tussen de snijpunten van de drie hoogtelijnen en die van de drie middelloodlijnen.

Hoe is de verhouding nu tussen de beide driehoeken waaruit in deze tekening het hexagram gevormd kon worden?

meetkunde-strakosch-6-8

De hoeken van die driehoek die dezelfde positie heeft als de hoofddriehoek (tophoek naar boven) liggen op de halveringspunten van het bovenste deel van de hoogtelijn, de hoeken van de andere die op zijn tophoek staat, liggen op de halveringspunten van de driehoekszijden. De zijden van beide driehoeken zijn parallel aan een van de driehoekszijden.

De zwaartelijnen van de hoofddriehoek zijn tegelijkertijd de zwaartelijnen van een van de beide ingeschreven driehoeken en wel deze, die de tegenovergestelde positie heeft als de hoofddriehoek: dat was voor de gelijkzijdige driehoek vanzelfsprekend, maar het is toch belangrijk erop te wijzen dat deze verhouding blijft bestaan.

Dan zijn er nog de vragen:
1.Bij de gelijkzijdige driehoek zijn alle snijpunten van de speciale rechte lijnen samengevallen, bij de gelijkbenige driehoek is dit niet meer het geval. Is er nog een samenhang?
2.Bij de gelijkzijdige driehoek is de verhouding van de verdeling van deze lijnen  1/3  : 2/3.
Gaat deze verhouding helemaal verloren?

Deze tekening:

meetkunde-strakosch-8-7

laat zien dat alle drie de snijpunten op de hoogtelijn naar de basis liggen: het bovenste is van de middelloodlijnen (tegelijkertijd middelpunt van de cirkel), dan dat van de zwaartelijnen en ten slotte het snijpunt van de hoogtelijnen. De afstand van de beide laatstgenoemde punten tussen elkaar is precies dubbel zo groot, als de afstnad van de beide eerste. De verhouding  2/3. tot  1/komt hier dus op deze manier tevoorschijn.

Een bijzonder geval is een gelijkbenige driehoek, waarvan de benen een rechte hoek vormen. De tophoek is dan tegelijkertijd het snijpunt van de drie hoogtelijnen waarvan er zelfs twee samenvallen met de benen. Om de verhouding van de twaalf punten helder te krijgen, is het aan te bevelen, als vooroefening een gelijkbenige driehoek te bekijken, waarvan de overstaande hoek een beetje kleiner is dan een rechte hoek en dan pas de gelijkbenige rechthoekige driehoek. Op deze manier kun je goed volgen welke punten op elkaar vallen.
Het uitvoeren hiervan wordt aan de oefenende lezer overgelaten.

Meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas meetkunde

1152

.

VRIJESCHOOL – Meetkunde – (4-7)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz.26 t/m 30

Over de cirkel en over de rechte lijnen

Bij de ‘bloem’ en in het cirkelveld in ’t algemeen kunnen we zien, dat een cirkel een andere cirkel in de regel in twee punten snijdt. Verder kunnen we zien dat steeds de rechte verbindingslijn van de middelpunten, ‘centrale lijn’ genoemd, loodrecht staat op de rechte verbindingslijnen van de snijpunten. De ene rechte lijn is steeds de middellijn van een groot, de andere die van een klein blad en deze staan – zoals we al weten – loodrecht op elkaar.

Op deze tekening staan twee elkaar snijdende cirkels met willekeurige stralen. De stralen die de snijpunten met de middelpunten verbinden, vormen een deltoïde, waarvan de diagonalen de centrale lijn en de rechte verbindingslijnen van de snijpunten zijn; deze staan zoals bekend loodrecht op elkaar:

meetkunde-strakosch-5-8

 

 

 

 

 

 

 
In de volgende tekening is de linker cirkel even groot als de rechter, die t.o.v. de  tekening hierboven kleiner is geworden; de lengte van de centralen, dat is de afstand van de middelpunten, is hier en bij de volgende tekeningen even groot. Omdat hier de rechter cirkel even groot is als de linker, is de deltoïde een ruit geworden. Belangrijk is dat de afstand van de snijpunten kleiner is geworden; de figuur is vlakker geworden. De som van de stralen is nog steeds groter dan de centrale lijn:

meetkunde-strakosch-5-9

 

 

 

 

 

 
In de tekening hieronder is de som precies gelijk aan de centrale lijn. De deltoïde waarvan het langere paar zijden en het kortere, na door de ruit te zijn gegaan, van plaats gewisseld zijn, is nu geheel plat geworden; de beide snijpunten liggen bovenop elkaar, zijn in een dubbelpunt samengekomen. Dit punt ligt zowel op de ene als op de andere cirkel en heet raakpunt (Duits heeft ‘äussere‘ ‘buitenraakpunt), omdat het middelpunt van de ene cirkel buiten dat van de andere ligt. De beide cirkels hebben alleen dit punt gemeenschappelijk.

meetkunde-strakosch-5-10

 

meetkunde-strakosch-5-8

In bovenstaande tekening kunnen we de snijpunten van beide cirkels naar links laten lopen waarbij de rechter cirkel groter wordt en we kunnen waarnemen hoe deze zich steeds meer van elkaar verwijderen. De afstand zal het grootst zijn, wanneer het bovenste (snijpunt) het hoogste, het onderste het laagste punt van de cirkel heeft bereikt. Hun verbindingslijn gaat door het middelpunt en staat loodrecht op de centrale lijn; de deltoïde die uit twee gelijkbenige driehoeken ssamengesteld schijnt te zijn, is in één gelijkbenige driehoek veranderd, daar de linker driehoek steeds vlakker en tenslotte een rechte is geworden. Zoals op onderstaande tekening:

meetkunde-strakosch-5-11

Laten we de snijpunten nog verder naar links opschuiven, komt het middelpunt van de cirkel rechts van haar verbindingslijn te liggen. In onderstaande tekening met streepjes getekend:

meetkunde-strakosch-5-12Er vormt zich een gelijkbenige driehoek, die echter naar rechts ingestulpt is.

Gaan de snijpunten nog verder naar links, dan wordt de straal van de rechter cirkel nog groter, dan vallen ze weer samen, maar nu op het uiterste linkerpunt van de cirkel, op de centrale lijn; de beide cirkels raken elkaar zo, dat de ene binnen de andere ligt.

Hieruit volgt dat de afstand van middelpunt en straal van de beide cirkels zich zo verhouden: een cirkel raakt de ander aan de buitenkant: hun middelpuntsafstand is gelijk aan de som van hun stralen.
Een cirkel raakt de ander aan de binnenkant: hun middelpuntafstand is gelijk aan het verschil van hun stralen.

Kijken we nu ook naar de verbindingslijn van de snijpunten. Die staat als een diagonaal van een deltoïde loodrecht op de anderre diagonaal, de centrale. – Op de rechte. waarvan de richting bepaald wordt door de snijpunten van de twee cirkels, begrenzen de twee snijpunten een vlak dat in relatie tot de cirkel een ‘koorde’ wordt genoemd. Is deze rechte een niet begrensde lijn die de cirkel snijdt. wordt deze secant snijlijn’ genoemd. 

De lengte van een koorde groeit naar mate deze het middelpunt nadert. Wanneer deze door dit punt heengaat, heeft ze de grootste mogelijke lengte bereikt.

De doorsnede geeft de grootste koorde weer.

Iedere koorde is ook de basis van een gelijkbenige driehoek waarvan de beide benen door twee stralen worden gevormd. (Een driehoek die we in het cirkelveld overal gezien hebben met de drie zijden gelijk, heet gelijkzijdige driehoek; zijn er maar twee gelijk, dan heten de gelijke zijden ‘benen’, de driehoek: gelijkbenig).

Op iedere koorde als basis kun je nog een tweede gelijkbenige driehoek construeren. Die twee kunnen als een deltoïde beschouwd worden, waarvan de diagonalen loodrecht op elkaar staan en elkaar over en weer halveren. Daaruit volgt dat de op een basis van een gelijkbenige driehoek opgerichte loodlijn steeds door het er tegenoverliggende hoekpunt van een driehoek gaat en loodrecht op de tegenoverliggende zijde staat; de loodlijn die vanuit een hoekpunt op de tegenoverliggende zijde valt, heet een ‘hoogtelijn’. Bij een onregelmatige driehoek gaat de hoogtelijn niet door het middelpunt van de tegenoverliggende zijde.

De tekeningen die hierboven zijn gebruikt vatten we nu samen in  1 tekening:

meetkunde-strakosch-6-1hier staan alle snijlijnen (secanten)  – als diagonalen van deltoïden loodrecht op de centrale lijn. De koorden, d.w.z. de stukken van de snijlijnen binnen de cirkel, werden steeds kleiner, naarmate de rechte lijnen zich verder van het middelpunt (van de linker cirkel) verwijderen. In de getoonde tekeningen trekken de koorden zich in 1 punt samen; de richting van de rechten blijft echter onveranderd loodrecht t.o.v. de centrale lijn; het kleiner worden van de lengte is geen aanleiding tot een verandering van de richting. De rechte lijnen 1 en 6 snijden de cirkel niet meer, ze raken deze slechts aan. Daarom heten ze raaklijn of tangent of tangens.
Als je er zo naar kijkt is het duidelijk dat een tangens altijd loodrecht zal staan op de door het raakpunt getrokken straal (radius). Dat dit altijd zo is, blijkt ook uit hetvolgende:
Zou je de raaklijn ook maar met een oneindig klein hoekje om het raakpunt draaien, dan zou deze meteen de cirkel op nog een tweede punt snijden. Al naar gelang van de draairichting zou dit op de ene of op de andere kant van het raakpunt liggen en de hoek t.o.v. de centrale lijn zou geen rechte meer zijn.

Als we weer naar het cirkelveld kijken, dan kunnen we in deze tekening inzien, dat het zonet gevonden feit ook hier zichtbaar is.:

meetkunde-strakosch-6-2hier is de middellijn van het grootste blad gepuncteerd getekend als verbindingslijn van de snijpunten van twee cirkels. Deze staat loodrecht op de straal door het raakpunt, omdat deze straal de middellijn is van het erbij behorende kleine blad. Door het punt dat het raakpunt moet zijn, loopt de middellijn van de volgende grote bladeren parallel aan de eerste middellijn, dus ook loodrecht op de straal. Deze voldoet dus aan de voorwaarden van een tangens, zoals hierboven geformuleerd. In het maken van deze tekening ligt dus de oplossing van de opgave:

In elk gegeven punt van een cirkel een raaklijn tekenen.

In de eerste tekening lopen de tangenten 1 en 6 parallel, hun snijpunt ligt in het oneindige. Vanuit een punt in het oneindige kunnen we dus twee raaklijnen op 1 cirkel trekken, meer kunnen het er niet zijn. Dit blijft ook zo, wanneer het punt niet in het oneindige vanaf de cirkel ligt. Dat is hier te zien:

meetkunde-strakosch-6-3De verbindingsrechte van de beide raakpunten gaat niet meer, zoals bij de eerste tekening door het middelpunt van de cirkel (hier is ze middellijn van een groot blad); de stralen naar de raakpunten vormen geen rechte lijn meer, ze vormen een hoek die kleiner wordt naar mate het punt buiten de cirkel naar de cirkel toe komt te liggen. Deze twee stralen vormen samen met het vlak dat de raaklijnen begrenzen tussen de punten van waaruit de raaklijnen beginnen en de snijpunten een deltoïde met de bijzondere eigenschap dat de ongelijke zijden een rechte hoek vormen en alle vier de hoekpunten op een cirkel liggen.

Nu moet echter eerst in deze tekening de algemene oplossing van de opgave getoond worden hoe vanuit een punt buiten de cirkel de twee raaklijnen aan deze cirkel te trekken:

meetkunde-strakosch-6-4De oplossing moet eruit bestaan dat wat net getoond is, een deltoïde in een cirkel te tekenen. Het middelpunt van deze cirkel ligt op het midden van een rechte lijn die het beginpunt van de beide raaklijnen met het middelpunt van die cirkel verbindt waaraan de raaklijnen moeten komen. De snijpunten van de beide cirkels zijn de gezochte raakpunten.

meetkunde-strakosch-7-1

Op bovenstaande tekening zien wij verschillende punten op de omtrek van een cirkel en iedere keer blijkt uit de verhouding van de hoek tussen die van een klein en een groot blad, dat deze hoek de beide verbindingslijnen naar de eindputen van de doorsnedelijn, de zogenaamde omtrekshoek, een rechte hoek is. Het zijn hier echter punten waarvan de plaats door het cirkelveld wordt bepaald en wij moeten ons afvragen of in het algemeen iedere hoek op de omtrek een rechte hoek is.

Hiertoe willen we twee verschillende gezichtspunten uitvoeren waarvan elk tot het gewenste doel kan leiden. Echter is het steeds een verrijking van de ervaring via twee verschillende wegen een doel te bereiken.

Met bovenstaande tekening kunnen we zeggen: Er zijn bepaalde punten op de cirkelomtrek die aan de vereiste voorwaarde voldoen dat hun verbindingslijnen naar het uiteinde van de middellijn een rechte hoek vormen. (Wanneer er voor een andere richting van de middellijn wordt gekozen, verandert de rechte hoek alleen van plaats. Laten we ons voorstellen dat deze hoek groter en kleiner wordt, dus vlakker of spitser dan 90º zou worden, dan zou het hoekpunt niet meer op de cirkel liggen, dat zou zich erbinnen of erbuiten bevinden. Deze kan derhalve alleen maar het hoogste punt van een rechte hoek zijn, wanneer deze op de cirkel zelf ligt. Daarmee is vastgesteld  dat het deel van de hele cirkelboog dat overblijft precies zo groot moet zijn als dat waartoe de rechte hoek behoort.
Op de andere helft van de cirkel ligt echter ook een punt met dezelfde eigenschappen, maar symmetrisch daarop. – Je moet erop letten dat er steeds sprake van is, dat deze hoek tegenover de middellijn ligt. Draaien we de middellijn een hoekpunt verder, dan gaat hij niet meer door het middelpunt en is dus geen middellijn meer. Het ene been van de hoek (die bij het draaipunt) behoudt zijn positie, de andere moet anders worden wanneer hij het andere zich bewegende snijpunt volgt. In welk van de beide mogelijke richtingen deze zich ook mogen bewegen, de hoek kan geen rechte meer zijn. We kunnen dus zeggen:

Alleen de hoek op de halve cirkelboog (namelijk boven een middellijn) is een rechte hoek, maar ook: iedere hoek op de halve cirkelboog is een rechte hoek.

Dit feit kunnen we ook nog op een andere manier aanschouwelijk maken. We nemen deze tekening nog een keer:

meetkunde-strakosch-5-7We kijken nog eens naar de benen van de gelijkbenige driehoek. Die zijn – de naam zegt het al – in iedere driehoek van gelijke lengte en kunnen daarom ook als stralen van een cirkel met het middelpunt in de tophoek van de driehoek beschouwd worden. Wanneer je deze cirkels nu trekt, dan gaan ze vanzelfsprekend allebei door de beide eindpunten van de basis die alle driehoeken gemeenschappelijk hebben, zoals hier is te zien:

meetkunde-strakosch-7-2Er ontstaan in in iedere cirkel twee gelijkbenige driehoeken met een gemeenschappelijke basis die samen in iedere cirkel een vierhoek vormen en wel een deltoïde. Iedere vierhoek waarvan de hoekpunten op een cirkel liggen, heet een koordenvierhoek, omdat iedere kant een cirkelkoorde is. De basis van de driehoeken, een diagonaal, zal over het algemeen een koorde vormen en zolang dat het geval is, zullen de hoeken van de top van de driehoek  de ene groter, de andere kleiner dan 90º zijn. Alleen wanneer de koorde de bijzondere positie van de middellijn aanneemt:

meetkunde-strakosch-7-3en daarmee tegelijk haar grootste lengte heeft, worden deze beide hoeken gelijk en ieder ligt op een halve cirkel, ieder wordt een rechte hoek, de koordenvierhoek wordt een vierkant.

We zouden nog steeds te maken hebben met een bijzonder geval wanneer in iedere vierhoek elke twee aangrenzende zijden gelijk waren, wanneer het uit twee paren van gelijke zijden zou bestaan die elkaar raken, dan was het dus een deltoïde.

Om het algemeen te maken, trekken we door het middelpunt van de basis in een willekeurige richting een rechte:

meetkunde-strakosch-7-4die zal iedere cirkel in twee punten snijden. Deze snijpunten en de hoekpunten van de basis vormen in iedere cirkel een koordenvierhoek met vier ongelijke zijden en even zovele verschillende hoeken. Volgen we de veranderingen van de hoeken die op de rechte liggen wanneer we van de grootste cirkel naar binnen gaan. Van de beide hoeken wordt de spitse steeds vlakker, de vlakke steeds spitser. Dan komt de cirkel waarin ze allebei even groot zijn, dan veranderen ze weer in omgekeerde verhouding en de cirkels worden steeds groter.
In die kleinste cirkel echter is de basis een middellijn. De bogen aan weerszijden zijn halve cirkels en de hoeken moeten recht zijn, want bij de minste positieverandering van de basis (door groter worden van de cirkel naar rechts of links) zouden de hoeken opnieuw – zoals beschreven is, ongelijk zijn. We mogen weer zeggen:
Iedere hoek op een halve cirkelboog is een rechte hoek.

 

Meetkunde: alle artikelen

Vrijeschool in beeld: 6e klas meetkunde

 

1148

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Meetkunde (4-6)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz.22 t/m 26

Over de geometrische basisfiguren
Deze zijn: cirkel, gelijkzijdige driehoek, vierkant en de regelmatige vierhoeken. Zoals we hier oefenend waarnemen, kunnen de regelmatige figuren niet alleen maar als ‘speciale gevallen’ worden gezien. In het verdere verloop zal blijken dat zij het juist zijn waaraan je de wetten het eenvoudigst en duidelijkst kunt aflezen die – in erbij behorende afwijkende vormen – dan overal gevonden kunnen worden.

Van tevoren – als een vorm van vervolmaking van het handwerk – zal steeds sprake zijn van een eenvoudige, steeds terugkerende constructie. Het gebruiken van de rechte hoek is daarbij nuttig, waarbij twee basisvragen beantwoord moeten worden.

1.Op een bepaalde plaats op een rechte lijn een loodrechte lijn oprichten:

meetkunde-strakosch-5-1

 

 

 

 

Vanuit het gegeven punt als middelpunt teken je het bovenste deel van de ‘bloem’. Aan weerszijden van dit punt ontstaan twee kleine blaadjes, loodrecht daarop een groot blad, waarvan de middellijn de gezochte loodlijn is.

Op de volgende tekening zie je, dat je uit het gegeven punt als middelpunt een cirkel kunt trekken met een willekeurige straal die wel groot genoeg moet zijn, zodat op de rechte lijn twee snijpunten ontstaan. De doorsnede van deze cirkel neem je dan tussen de passer en vanuit de twee snijpunten trek je twee cirkels. Deze vormen weer een een ‘groot’ blad, de eerste cirkel kan als ‘klein’ blad gezien worden:
meetkunde-strakosch-5-2

 

 

 

 

Als je goed kijkt, zie je dat het erop aankomt dat een of ander punt van de gezochte rechte lijn vanuit twee punten op de gegeven lijn dezelfde afstand heeft, die dus zelf vanaf het gegeven punt even ver verwijderd zijn.

2.Vanuit een gegeven punt op een gegeven rechte lijn een loodlijn neerlaten, d.w.z. een lijn trekken die door dat punt gaat en loodrecht op de rechte lijn staat.
Met een  willekeurige  straal maak je een cirkel vanuit dit punt; deze cirkel zal de rechte lijn op twee plaatsen snijden die even ver van het gegeven punt verwijderd zijn:
meetkunde-strakosch-5-3

 

 

 

 

De afstand van die punten tot het gegeven punt is de straal van die cirkel. Vanuit die punten trek je nog twee cirkels. Die gaan door het gegeven punt en je vindt de loodlijn als je de middellijn van het ‘blad’ trekt dat ontstaan is. De stralen van deze cirkels zijn op de tekening even groot als die van de eerste cirkel, maar ze mogen ook anders zijn, als ze maar even groot zijn. De middellijn van het ontstane blad zal steeds door het gegeven punt gaan en loodrecht op de rechte lijn staan.

3.Een vierkant tekenen waarvan de diagonalen zijn gegeven.
meetkunde-strakosch-5-4

 

 

 

De dubbelgetrokken horizontale lijn is de gegeven diagonaal waarvan de eindpunten twee hoekpunten van het vierkant vormen. Vanuit deze als middelpunten trekt je twee cirkels met de gegeven diagonaal als straal. De middellijn van het ontstane grote blad deelt de diagonaal middendoor en staat er loodrecht op. Vormt daarmee de tweede diagonaal. Met het punt van de twee zich snijdende diagonalen als middelpunt en de halve diagonaal als straal, trek je een cirkel die de vertikale diagonaal op twee plaatsen snijdt. Dat zijn de twee andere punten van het vierkant.

4.Een gegeven hoek doormidden delen, d.w.z. een rechte lijn trekken die met de beide benen een even grote hoek vormt.
meetkunde-strakosch-5-5

 

 

 

 

Dit is in deze tekening met cirkels uitgewerkt. Links wordt een hoek van 60º in twee delen van 30º gedeeld; rechts een hoek van 2  x  60º  = 120º  in twee delen van ieder 60º . – In de tekening is het proces goed te zien: (links) met behulp van een cirkel waarvan het middelpunt in het toppunt ligt van de te verdelen hoek, worden op de beide benen van de te delen hoek gelijke stukken afgepast (de straal van de cirkel). Met dezelfde straal worden vanuit de gevonden snijpunten twee cirkels getrokken die elkaar snijden en een groot blad vormen. Het ene punt ligt in het gegeven hoekpunt; het andere daar tegenover. De verbindingslijn is de middellijn van het blad en tegelijkertijd de lijn die de hoek deelt.

Deze tekening laat de gang van zaken zien voor een willekeurige hoek:
meetkunde-strakosch-5-6

 

 

 

 

 

De hoekdeellijn wordt bepaald door de tophoek en het snijpunt van de twee cirkels die het blad vormen. Die moeten wel even groot zijn, maar de straal kan anders zijn dan van de cirkel die op de benen de gelijke afstand heeft, en de middelpunten aangeeft van de andere cirkels. In het algemeen, d.w.z. wanneer de drie cirkels niet allemaal even groot zijn, zal het tweede punt niet in de tophoek liggen, maar ergens op de hoekdeellijn en dan wel binnen de hoek wanneer de cirkel die het blad vormt kleiner is dan de eerste en erbuiten wanneer het omgekeerde het geval is. Omdat echter één punt van de hoekdeellijn altijd in de punt van de te delen hoek moet liggen en een rechte lijn door twee punten moet gaan, is het voldoende, om slechts één snijpunt van die twee cirkels die het ‘blad’ vormen, te vinden.

Wanneer je echter alleen het hoogst nodige van de constructie wil tekenen, dan zijn de sterker benadrukte cirkelstukjes genoeg. – Iemand zou kunnen zeggen: waarom dan eerst die constructie van deze tekening:
meetkunde-strakosch-5-1

 

 

 
het kan toch simpeler?
Bij het puur technisch tekenen komt het – waar hier sterk naar gestreefd wordt – op de eenvoud aan. Maar we willen zo werken dat we door het oefenen juist veel leren van de verschijnselen en we de daarin tot uitdrukking komende wetten leren kennen. Want we willen ons, zogezegd, oefenend inleven in de geometrie. Steeds maar naar het simpele kijken, betekent: oogkleppen opzetten, i.p.v. steeds verder en dieper doordringen in de rijke wereld van de meetkundige feiten en de geheimzinnige en belangrijke wetten doorgronden. De mooiste constructie is, die ons de meeste samenhangen tot bewustzijn brengt. Wanneer je er steeds naar streeft, de blik op het geheel niet te verliezen, wordt later de praktische toepassing – je zou kunnen zeggen – een peulenschil. Bij het eenvoudiger maken, blijven we ons bewust van de samenhang. We hebben niet simpelweg een regel van buiten geleerd, die we weer snel vergeten; we hebben dan veel meer de samenhang innerlijk paraat, we kunnen dus uit het overzicht steeds opnieuw het detail halen. De ervaring leert dat degene die op deze manier oefent, in stijgende mate wat geoefend werd in zijn voorstellingsbeleven heeft en in staat is, ‘in het hoofd’ de meetkundige operatie uit te voeren; ja, hij zal daarbij ook op nieuwe ideeën komen en veel zelf vinden dat erbij hoort en pas later wordt besproken. Je leert met dezelfde intentie voorstellen, waarmee je voordien waargenomen hebt en dat is waardevol.

In deze trant nemen we deze oefening:
meetkunde-strakosch-5-7

 

 
We hebben deze aleens gezien (meetkunde 4-2, tek.7) en later komt die nog terug.

In het midden hebben we een lijnstuk (zo noem je ter onderscheiding van een onbegrensde rechte lijn, een door een of twee daarop liggende punten begrensd deel(stuk) van een (rechte) lijn.(pw.: let op het is de dikke vertikale (korte lijn).
In een rechte hoek daarop staat een gepuncteerde loodrechte lijn die het lijnstuk in het midden snijdt; die noemt men middelloodlijn.

Het woord loodlijn heeft te maken met het schietlood die de richting van de zwaarte aangeeft, namelijk van boven naar beneden. De richting staat ‘loodrecht’ op de oppervlakte dat gevormd wordt door stilstaand water. In de meetkunde wordt echter het begrip ‘loodrecht’ gebruikt, onafhankelijk van de richting van die krachten die ieder object wanneer het wordt losgelaten rechtlijnig naar beneden aanhoudt. Hier wordt alleen gekeken naar het feit van een rechte hoek. Men zegt dat rechte lijnen loodrecht op elkaar staan, wanneer ze een hoek van 90º vormen, een rechte hoek omsluiten en dat totaal onafhankelijk van hun positie. Ga je dus, zoals hierboven van een lijnstuk uit dat van boven naar beneden loopt en wil je de rechte lijn benoemen die door het middelpunt van dit lijnstuk gaat en daarmee een rechte hoek vormt, dan noemt men dat een ‘middelloodlijn’. 
Net zo noemt men in de meetkunde de ‘hoogte van een driehoek’ de kortste afstand, het lood van twee snijpunten op de derde driehoekszijde, dus de rechte lijn die loodrecht op een zijde staat en daarbij door de snijpunten van de beide andere gaat. Ook dat is onafhaneklijk van de positie van de driehoek op het vlak. De zijde waarop de hoogte loodrecht staat, heet haar’ basis’; deze kan dus elke willekeurige lengte hebben. – Staat ze horizontaal dan kan de hoogte zelfs in de oorspronkelijke zin een ‘loodrechte’ lijn of ‘loodlijn’ genoemd worden.

(Terug naar bovenstaande tekening): Een paar punten van de middelloodlijn(en) zijn verbonden met de hoekpunten van het lijnstuk en door het cirkelveld zie je dat ieder punt van de gepuncteerde horizontale lijn even ver verwijderd is van de eindpunten van het lijnstuk. – Dit feit kun je ook zo uitspreken, wanneer je allereerst de daardoor ontstane gelijbenige driehoeken op het oog hebt:
richt men op een gegeven basis alle mogelijke gelijkbenige driehoeken op, dan liggen alle tophoeken steeds op de middelloodlijn op de basis. Of: de middelloodlijn op de basis is de ‘meetkundige plaats‘ voor de tophoeken van alle op haar opgerichte gelijkbenige driehoeken.

De van de tophoek naar de eindpunten van de basis gaande rechte lijnen vormen een bepaalde hoek die kleiner wordt naarmate de tophoek zich verwijdert van de basis. Daarbij worden de steeds gelijkblijvende basishoeken groter. – In de tekening zie je naast het ‘grote’ blad, waarvan de lengteas de basis is, een zich steeds herhalende rij van ‘grote’ bladeren. De spitsen ervan liggen op twee rechte lijnen die steeds even ver van elkaar verwijderd blijven, hoe ver je ook het cirkelveld (in beide richtingen) uitbreidt: zulke rechte lijnen noemt men parallellen en zegt dat deze elkaar pas snijden in het ‘oneidige’. Aan de tekening kun je aflezen dat de middelloodlijnen op de basis ook parallel zijn aan deze beide rechte lijnen; verder, dat de zijden  (verbindingslijnen tussen de tophoek en eindpunt op de basis) de eerstgenoemde parallel steeds dichter naderen, naarmate de tophoek zich verder verwijdert naar het oneindige. Dat gebeurt wanneer ieder been zich om het eigen eindpunt op de basis draait. Hierbij wordt de hoek die ze insluiten, steeds groter en wanneer zij parallel gaan lopen, wordt deze recht = 90º (de rechte lijnen gaan dan door de spitsen van de boven- en onderrij van de ‘grote’ bladeren).
Je kan een hoek beschouwen als de mate waarin twee rechte lijnen samenlopen of uit elkaar bewegen, al naar gelang in welke richting je je op de rechten beweegt, naar het kruispunt of daar vandaan. Wanneer twee rechte lijnen samen lopen, noch uit elkaar gaan, dan is er geen hoek tussen hen; je kunt zeggen: de hoek die ze omsluiten is gelijk aan nul, ze zijn parallel.
Bij een driehoek met de hoogte ∞ (dat is het teken voor ‘oneindig’) zijn dus de basishoeken allebei recht, de tophoek is = 0: de som van alle drie de hoeken = 2  x  90º =  180º. Daaraan verandert niets, ook al heeft de hoogte een eindige lengte, want iedere basishoek wordt om de helft van de tophoek kleiner, als de met zwarte dubbelboogjes aangegeven hoeken gelijk zijn. omdat namelijk hun benen dezelfde richting hebben, parallel zijn.

De som van de binnenhoeken van een driehoek zijn steeds 2 R = 180º
Hiermee wordt op een feit gewezen en een oefening gegeven die later vruchtbaar blijkt te zijn.

In de tekening (boven) zijn rechts en links van de vertikale lijn punten van de horizontale middelloodlijnen met de beide eindpunten van de vertikale lijn verbonden. Zulke punten die van daaraf gelijke afstanden hebben wat je aan de kleine blaadjes makkelijk kan zien, zijn met de eindpunten van de vertikale lijn door lijnen verbonden die op dezelfde manier uitgetrokken zijn (gepuncteerd, gestippeld enz). Zo ontstaan geheel gesloten figuren, zgn. ruiten of rhomben (enkelvoud: rombe) Je kunt ze bestempelen als bestaand uit ieder twee gelijkzijdige driehoeken die allemaal de vertikale lijn als gemeenschappelijke basis hebben. Maar je kunt ook vierhoeken maken die uit twee paar even lange rechten bestaan, waarbij de rechten van ieder paar verschillend zijn; de tophoeken van de beide driehoeken waaruit ieder figuur bestaat, liggen op de middelloodlijn, maar niet op gelijke afstand van de vertikale lijn zoals bij de ruiten het geval is. Zulke vierhoekn zijn deltoïden of vliegers. De laatste naam komt van de verwantschap met de vlieger die de kinderen zo graag oplaten.

Ruiten en deltoïden hebben de belangrijke eigenschap dat hun diagonalen steeds loodrecht op elkaar staan. Bij de ruiten halveren de diagonalen elkaar over en weer, bij de deltoïden wordt alleen die diagonaal gehalveerd die de hoeken verbindt waarin de ongelijke zijden bij elkaar komen. – Uiteindelijk kun je ook vierhoeken uit zulke driehoeken met verschillende hoogte vormen die op dezelfde vertikale lijn liggen:
meetkunde-strakosch-5-12

 

 

 

 
Je kunt ze ingestulpte deltoïden noemen. De diagonaal die gehalveerd wordt, ligt buten de figuur. Om het snijpunt te bepalen, moet je de andere diagonaal langer maken.

.

Meetkunde: alle artikelen

Vrijeschool in beeld: 6e klas meetkunde

 

1140

 

 

 

 

 

 

 

 

 

 

.

 

 

VRIJESCHOOL – Meetkunde (4-4)

.

Ter verduidelijking heb ik in een tekening wat letters aangebracht – het is een deel uit de grotere tekening.

Over het ontstaan van een gelijkzijdige driehoek

Teken eens drie cirkels X. Y, Z die ieder door het middelpunt van de twee andere gaan. Er ontstaan drie grote bladeren: AYZX; YZCX; XYBZ  en door de punten van ieder blad trek je een rechte lijn: a, b en c. Het resultaat is het belangrijke feit dat deze drie rechten elkaar in één punt D snijden. Dat kan niet anders, want dan zouden de drie grote bladeren uit ongelijke boogstukken moeten bestaan. En dan zou echter iedere cirkel onmogelijk door het middelpunt van de beide andere kunnen gaan.

 

meetkunde-strakosch-3-1

 

 

 

 

 

 

 

Voor twee van de drie punten pas je nu toe wat voor deze tekening al werd gezegd, (meetkunde 4-3) wanneer je de cirkelmiddelpunten op de drie rechten steeds verder naar buiten op laat schuiven. Zodra deze middelpunten in het oneindige vallen, worden de ieder door twee punten gaande cirkelbogen tot rechten:

In deze tekening (uit 4-3) is er 1 zo’n rechte lijn ontstaan; hier doet Strakosch
meetkunde-53

het met 2 punten en dan zie je de rechte lijnen – die met de vele steeds vlakker wordende boogjes ontstaan:
meetkunde-strakosch-3
Je.kan echter ook, zoals hieronder, de middelpunten op de drie rechten in plaats van naar buiten, ook naar binnen laten verschuiven, naar het middelpunt van de driehoek toe, het snijpunt van de drie rechten. Daarbij worden de boogstukken tussen elke twee punten meer gebogen. Wanneer tenslotte de drie middelpunten met het snijpunt van de drie rechten samenvallen, dan ontstaat een drievoudige cirkel door de drie punten. (Worden bij het opschuiven naar binnen de drie middelpunten even ver van het snijpunten van de drie rechten genomen, wat vrij staat, dan liggen de snijpunten van de deze cirkels op dezelfde rechten – en wel op het gepuncteerde deel.):
meetkunde-54

Wanneer je de beweging van de middelpunten naar buiten en naar binnen in dezelfde tekning weergeeft, krijg je een cirkel waarin een gelijkzijdige driehoek ingeschreven is, een van de basisfiguren van de geometrie.

Op basis van wat zojuist werd opgemerkt en door de tekeningen hoef je het trekken van rechte lijnen in regelmatige cirkelvelden niet meer als een vreemd, erbij gehaald element te zien..

Ook het vierkant kun je in het cirkelveld intekenen.
In de middencirkel van een ‘bloem’ teken je een zeshoek:

meetkunde-31

 

 

 

 

 

 

 

meetkunde-strakosch-4-1
Op  iedere hoek komen twee grote bladeren bij elkaar waarvan de middelpunten (deels verlengd en gepuncteerd) loodrecht op de zijden van de zeshoek staan die door de aanliggende kleine blaadjes gevormd worden. Ieder door een van de hoekpunten gaande cirkels snijdt op de middellijnen de lengte van zeshoekszijde. De verbindingslijnen van deze punten zijn de vier zijden van de zo ontstane zes vierkanten.

Snijd je de inzet tussen de vierkanten weg en breng je de vierkanten omhoog, dan krijg je een doosje. De vlakken kunnen binnen en buiten (wanneer je de tekening op de achterkant met behulp van de middelpunten nog een keer maakt) met behulp van de cirkels, gekleurd worden. –

Tussen ieder twee vierkanten ligt een klein blad. Snijd je ze langs hun middellijn door en schuif je de zo ontstane tussenruimten over elkaar, dan krijg je een schaal.

Meetkunde: alle artikelen

 

Vrijeschool in beeld: 6e klas meetkunde

1134

 

 

 

 

 

 

 

 

 

 

 

.

 

VRIJESCHOOL – 6e klas – meetkunde (2-3/2)

.

1e week    3e week   4e week

Hier volgt een impressie van de 2e week van de periode meetkunde in klas 6.

Als voorbereiding is het raadzaam Meetkunde [1]   en [2] te bestudere

Vakkenintegratie is belangrijk: de leerlingen kunnen ervaren hoe alles met elkaar samenhangt. En wat ze in het ene vak leren, zien ze in een ander vak, vanuit een ander standpunt, terug.

Een indeling in dagen is nu niet zo makkelijk te geven, want als je bijv. teruggaat naar de 5e klas – Egypte – en je laat na, na het vertellen over hoe de akkers werden gemeten, de ‘godin van de richting’te tekenen – of aan het eind van de 1e dag daar een begin mee maken, wordt de tijdsindeling anders.

De tweede week

Een eerste dag

In klas 5 kwam in de gechiedenisperioden ook Egypte aan de beurt.

In het hier al genoemde boek van Alexander Strakosch besteedt de schrijver ook aandacht aan Egypte:

Wanneer duidelijk is geworden dat je kennelijk ‘stukken grond’ met een stok en een touw kunt bepalen, moet dat ook worden bekeken:

meetkunde-32

En hierin is wel een rechthoekige akker te zien:

meetkunde-33

Dit is een zeer belangrijk ogenblik in de meetkundeperiode: voor het eerst wordt duidelijk dat een meetkundig figuur – hier de rechthoek – ontstaat vanuit de cirkel. We gaan natuurlijk vanaf nu na of dat voor elke andere figuur ook geldt.

We gaan terug naar de eerste week en nemen deze tekening:

meetkunde-23

Daarin tekenen we alle mogelijke lijnen, nadat we ons goed gerealiseerd hebben, dat de lijnen een verbinding vormen tussen punten, zoals bij de rechthoek ontdekt werd.

meetkunde-34

De kinderen zien in ieder geval driehoeken en ja, ook deze figuur ontstaat in de cirkel; en ‘déze figuur’, waarmee ze de ontstane ruit bedoelen.

Maar ‘deze figuur’ is niet echt handig als mogelijkheid om iets in een meetkundige tekening aan te duiden.
En daar hebben de mensen iets voor bedacht. Een afspraak die over de hele wereld geldt: punten geven we een letter uit het alfabet en we schrijven die met een hoofdletter.

meetkunde-35

Wanneer je naar die punten kijkt, blijken het hoekpunten te zijn, maar D bijv. is ook middelpunt van een cirkel.

Meestal gebruiken we voor het middelpunt de letter M, maar het is niet verplicht.

Het telkens moeten opschrijven: ‘teken een cirkel met een middelpunt M’ zijn wel veel woorden en daarom werken de mensen liever met symbolen en dat gaan wij ook voortaaan doen, dus zo:

ꙩ M

En nu we toch weer bij de cirkel stilstaan en aan het benoemen zijn, willen we ook weten hoe we de lijn noemen die de grootte van de cirkel bepaalt.

Wanneer de leerlingen ‘middellijn’ zeggen, is dit niet fout, maar hoe ontstaat dan die middellijn. Met een bepaald stukje lijn tussen de passer.

Dat bepaalde stukje lijn noemen de mensen een lijnstuk: van A naar B; of van D naar E. En omdat we het woord ‘naar’ niet echt nodig hebben, laten we dat weg: lijnstuk AB en/of DE enz.

In bovenstaande tekening kunnen we nu alle lijnstukken benoemen.

En we zien nu dat lijnstuk AD; DC; DB; DE; AB; BF even groot zijn, want het zijn dezelfde lijnstukken die we tussen de passer hadden toen we met de 1e cirkel begonnen.

Toen we in de 1e week deze tekening maakten:

meetkunde-10

was het woord ‘stralen’ al eens gevallen en ja, al deze lijnen zijn stralen.

Het Latijnse woord voor straal  = radius en de =r= staat symbool voor dit lijnstuk.

Dus als er dit staat:

Ꙩ M  r=5, dan weet je dat je een cirkel M – dit is het middelpunt – moet tekenen met een straal van 5 cm.

Ook de middellijn kunnen nu nog anders benoemen: 2 x de straal of wel 2  x   r. Dus 2r.

Uiteraard is het goed om te kinderen zelf de omschrijvingen te laten vinden! Zoals al eerder gezegd: ze zijn soms sprekender dan de officieel gangbare; maar de laatste leren we.

Een tweede dag
Voor je weer verder gaat met de lesstof, is het iedere dag belangrijk te herhalen wat er eerder werd geleerd. De ontstane begrippen, symbolen. Of in het algemeen: wat hebben we tot nog toe geleerd.

We gaan ook weer naar de ‘bloem’ kijken en tekenen Ꙩ M   r=5    r = MA

meetkunde-38

r blijft 5 en we tekenen nu vanuit A  Ꙩ A. De snijpunten waar deze cirkel de omtrek van Ꙩ M  raakt, noemen we B en C. Je ziet meteen dat AC een straal is van  Ꙩ A en AB eveneens.

meetkunde-39

We kunnen nu al de conclusie trekken dat MA=AB=AC

Met dezelfde passergrootte trekken we vanuit B    Ꙩ  B:
Het snijpunt op de omtrek van Ꙩ  M   noemen we D

meetkunde-40

En: BD = MA= AB (= AC, die ik hier niet teken om duidelijker te laten zien hoe de figuur verder groeit)

Weer verder met vanuit D: Ꙩ  D

meetkunde-41

We vinden op de omtrek van Ꙩ  M een nieuw snijpunt dat we E noemen.

Je kunt de letters omkeren, wanneer je vanuit de andere richting benoemt, wat je zeker moet doen om te laten zien dat het niet per se op één manier hoeft:

ED = DB =BA = AM

Vanuit E doen we het nog eens: snijpunt F

meetkunde-42

MA = AB = BD = DE = EF

En nog eens vanuit F: het snijpunt C staat er al!

meetkunde-43

CF = FE = ED = DB = BA = AM

Wanneer we dan nog C als middelpunt van de Ꙩ  C nemen:

meetkunde-44

zijn we rond en kunnen we concluderen dat AB =BD=DE=EF=FC=CA=AM

Dat betekent dat al deze lijnstukken evengroot zijn. Dat we hier 6 even grote stralen hebben en als we naar cirkel M kijken, hebben op die cirkelboog 6 punten gekregen die evenver van elkaar moeten liggen, omdat de afstand die tussen deze punten ligt dezelfde lijn is: straal MA.

Daarmee hebben we bewezen dat de straal van een cirkel 6 x op de omtrek past, m.a.w. we kunnen nu een cirkelboog in 6 gelijke delen verdelen.

Ook zien we in, dat we niet steeds de volledige cirkel hoeven te tekenen, maar alleen de punten die we nodig hebben.

meetkunde-45

De kinderen moeten er goed van doordrongen zijn, dat we, telkens als we iets willen construeren en we deze kleine boogjes zetten, we eigenlijk cirkels tekenen die we niet echt nodig hebben, maar die, als we ze wel volledig tekenen ons laten zien waarom het juist is wat we doen: het bewijs is er in te lezen!

Nu we de cirkel geometrisch juist in 6-en kunnen verdelen, levert dat weer nieuwe mogelijkheden op:

We zijn in staat een zeshoek én een zesster te construeren – het nieuwe woord dat we voortaan zullen gebruiken, mét het woord ‘constructie’.

En als we de cirkel(s) niet echt nodig hebben, tekenen we die uiterst dun, zodat we de overbodige lijnen later kunnen verwijderen:

meetkunde-46

Uiteraard levert dat weer vele schoonheidsvormen op:

6e-klas-meetkunde-2d

VRIJESCHOOL in beeld: 6e klas meetkunde onder nummer 2

Na een best inspannende manier van voorstellen om tot bovenstaande bewijzen te komen, is het fijn als er in het kunstzinnige toepassen weer een andere kwaliteit wordt aangesproken dan het denken: de wil in de exacte uitvoering van bijv. de zesster  en het gevoel in het zoeken van mooie kleurcombinaties.
Daarmee wordt dan dag 2 afgesloten.

Een derde dag
Nu we een tijdlang aan de cirkel hebben gewerkt, is het misschien een mooi tegengesteld onderwerp: de rechte lijn.
Als voorbereiding zou je nu meetkunde 4-3 kunnen bestuderen.
Omdat het goed is er telkens aan te denken, hoe kun je met de leerlingen ‘levend’ denken, welke weg kun je gaan om van levende begrippen – en hoe minder subjectief die zijn, des te meer zijn het ‘ideeën’, geestelijke realiteiten, in een zekere verstarring te komen, dus bij het begrip dat weinig ruimte meer laat: de definitie.
Zo zou je hier – zie Strakosch – ook van een cirkel uit kunnen gaan en – in gedachten – de middellijn langer kunnen denken . Wat gebeurt er dan met de cirkelboog. Deze komt dus steeds lager te liggen, totdat hij samenvalt met de middellijn. Je kunt even een uitstapje maken naar ronde of bijna ronde voorwerpen in je omgeving en deze op soortgelijke manier veranderen. Hilariteit! Ook als je de omgekeerde weg bewandelt en een rechte lijn probeert ‘naar een halve boog te denken’. Hoe wonderlijk en vreemd zou de wereld eruit zien, als dit ook met de materie zou kunnen. (Het principe van de lachspiegel!)

Nu laten we deze oefening even rusten.
We nemen de passer en tekenen Ꙩ,  r=willekeurig (maar niet te groot). We trekken de straal. Iets verder naast het middelpunt zetten we de passerpunt op de straal en in het verlengde van de straal, met dezelfde straalgrootte, zetten we een klein boogje ( dat is dus weer een heel klein gedeelte van een cirkel. Dat herhalen we een aantal keren.

meetkunde-55
Nu kunnen we weer een voorstellingsoefening doen: Denk je eens in dat we de passerpunt op de straal bijna op het middelpunt hadden gezet en zoals boven, een cirkelboogje getrokken en dat vele keren achter elkaar. Wat zie je buiten de cirkel in het verlengde van de straal ontstaan: heel veel dicht bij elkaar liggende kleine boogjes. Als je die boogjes nog kleiner denkt, krijg je het kleinst denkbare boogje: een punt. En als je die punten heel dicht tegen elkaar aan denkt, heb je een……lijn.
En daarom wordt er van de lijn gezegd dat het een verzameling van punten is.

meetkunde-56

We hebben de lijn dus leren kennen als ‘een spoor van een beweging’, onzichtbaar totdat er concreet – op aarde, op papier enz. – een stukje ervan zichtbaar wordt; en nu als een verzameling punten.

meetkunde-57Dit is een lijn

meetkunde-58Het zichtbaar geworden stuk: een lijnstuk. Een begrensd stuk, vandaar dat het afgebakend dient te worden:

meetkunde-59

strikt genomen kunnen we dus niet zomaar over ‘een lijn’ spreken als we die in de meetkunde nodig hebben. We moeten eigenlijk steeds ‘lijnstuk’ zeggen. Maar in het dagelijks spraakgebruik zeggen we toch meestal: een lijn van 5 cm bijv.

Wanneer je dit consequent verder denkt is een halve lijn dus dit:

meetkunde-60

Niet dat de leerlingen dat allemaal hoeven te weten (maar er zijn er altijd bij die deze wetenschap prachtig vinden, dus waarom niet), het is wél goed dat ze kennis maken met een wereld waarin het om exact formuleren gaat, om goede afspraken die voor iedereen gelden.

Uiteraard komt de vraag: wat is dan de helft van een lijn, dus in het spraakgebruik: een halve lijn – meetkundig gezegd: een half, de helft van een lijnstuk.
En als je dit niet met liniaal mag meten – of kunt meten – dan moet deze geconstrueerd kunnen worden. Hoe?
Je raadt het al: terug naar de cirkel(s).

meetkunde-35

De driehoeken ABC en ADC zijn op precies gelijke manier getekend. Als je ABC omklapt met AGC als vouwlijn, vallen ze precies over elkaar: ze zijn dus gelijk. Dat geldt ook voor ABD en CBD. Als je die omvouwt met BGD als vouwlijn, vallen ze ook precies over elkaar. Dat geldt dan ook voor ABG en BGC.
Daaruit volgt dat AG = GC en BG=GD.

Omdat we ‘daaruit volgt’ nog vaak nodig hebben, leren we alvast het geometrische teken daarvoor: →

M.a.w. we hebben het lijnstuk AC precies in het midden gedeeld in G.

We trekken een lijnstuk AB van bijv. 5 cm. Deze nemen we als straal en maken vanuit A en B 2 cirkels met de snijpunten C en D. We trekken CD die AB snijdt in G. G is het midden van AB.

meetkunde-61

Nu gaan we de overtollige lijnen weglaten:

meetkunde-62

Alleen de kleine omcirkelboogjes zijn nodig en punt G.

Het is goed om dit zo (lang) te oefenen (tot)dat ieder kind het moeiteloos kan. En ook weet waarom het goed is.
Dat hoort dus bij het herhalen, de volgende morgen: wat hebben we gisteren geleerd.
Nu komt het zeker aan op juist en in volgorde van handelen te formuleren.
Natuurlijk worden ook alle begrippen en symbolen iedere keer herhaald.

Nu we een lijnstuk kunnen delen, nemen de mogelijkheden om dit kunstzinnig toe te passen enorm toe. Want de 6-ster en de 6-hoek kunnen nu 12-ster en 12-hoek worden, met al die variaties waarvan we hier maar een klein deel zien:
(voor meer achtergrond: meetkunde 4-5)

VRIJESCHOOL in beeld: 6e klas meetkunde –  (onder nr. 4)

.
6e-klas-meetkunde-23

Een vierde dag
De geleerde constructie van gisteren wordt, nadat deze door de kinderen mondeling beschreven is, in het periodeschrift bij de constructies nauwkeurig schriftelijk beschreven. Dit kan bijv. ook een opdracht zijn voor thuis.

Het zal niet moeilijk zijn in te zien, dat je met het delen van een lijnstuk – zie boven – wanneer je G gevonden hebt – tegelijk eigenlijk een loodrechte lijn in G hebt opgericht. Loodrecht omdat G van driehoek ABG net zo groot is als hoek G van driehoek CBG, dus moet de lijn precies loodrecht staan.

Van hieruit proberen we nu een loodlijn op te richten op een willekeurig punt G op lijnstuk AB:

meetkunde-63

Gegeven: lijnstuk AB = 5cm
Punt G willekeurig
Gevraagd: loodlijn in G

Je zorgt ervoor dat G in het midden komt te liggen door GB als straal te nemen en deze af te zetten op GA, snijpunt C. Nu ben je bij het uitgangspunt van de constructie om een lijn doormidden te delen. Je neemt de opening tussen de passer iets groter en cirkelt boven G om vanuit C en B. Snijpunt D. Vanuit G naar D getrokken is de gevraagde lijn de loodlijn. Je kunt hem ook doortrekken naar E als je vanuit C en B omcirkeld hebt.

Een nieuw symbool: staat loodrecht op:   ⊥

Bij de constructie van een lijnstuk halveren, een loodlijn oprichten op een gegeven punt op een willekeurig(e) lijn(stuk, ‘hoort’ eigenlijk nog de construcite vanuit een gegeven punt boven (of onder) een willekeurig(e) lijn(stuk een loodlijn neerlaten, dan wel oprichten. ‘Hoort’ omdat ze bijna hetzelfde zijn.

Voor het lijnstuk onder de gegeven punt, nemen we nu eerst maar wat het meest natuurlijk lijkt: een horizontale.

Rond deze vorm kun je het nog over de heemkundeperiode in de 3e klas hebben, waarin de huizenbouw aan de orde kwam. Bij alle gereedschappen is zeker ook het schietlood behandeld en is het ‘lood’ in loodrecht weer wat duidelijker.

Gegeven:
willekeurig punt X en lijn a
Gevraagd: vanuit X een loodlijn op a

meetkunde-64

Neem een straal tussen de passer zo groot dat omcirkelen vanuit X op a twee snijpunten geeft: A  en   B.
Cirkel vanuit deze punten onder lijn a zo om dat de boogjes elkaar snijden: Y
Trek vanuit X met een liniaal het lijnstuk X tot op lijnstuk AB: C
XC is de gevraagde lijn.
Het is goed om zo precies te zijn, dat – hoewel XC en CX even groot zijn, tóch XC te zeggen, omdat de vraag is: vanuit punt X
C is dus ook het punt wanneer we vanuit Y een loodlijn op a construeren.

Om nog even bij de loodlijnen te blijven en ons te realiseren dat we de constructies eigenlijk maken met behulp van cirkels waarvan echter alleen maar kleine (om)cirkelboogjes worden gebruikt, is dit bijv. een mooie kunstzinnige verwerking:

Vanuit (het denkbeeldige) A en B is op XY steeds met een kleiner wordende straal omcirkeld. Zou je de straal bijv. steeds 1 cm kleiner willen maken, dan moet je die grootte vanaf een liniaal overnemen.

6e-klas-meetkunde-29

Een vijfde dag
Het herhalen neemt elke dag wel een bepaalde begintijd in.
Soms moet er ook gelegenheid zijn om dingen af te maken.
vooral de kunstzinnige tekeningen. Die kunnen ook wel als huiswerk thuis afgemaakt worden.

Inmiddels kunnen de leerlingen zessterren- en hoeken tekenen; daarin driehoeken; twaalfsterren- en hoeken met daarin ook weer driehoeken en vierkanten enz.
Omgekeerd is het ook een hele opgave om een kunstzinnige tekening zo te doorzien, dat je weet hoe die tot stand is gekomen.

Hoe is deze gemaakt?

6e-klas-meetkunde-31

Vanuit de waarneming de volgorde van handelen proberen te zien.
1)  de grote cirkel
2) zesmaal de straal afzetten op de cirkelboog
3) het midden bepalen van 1 zo’n boogje
4) vandaaruit weer zes keer afzetten op de cirkelboog: er zijn nu twaalf punten
5) De punten zo verbinden dat je er telkens twee overslaat
6) Het staande vierkant helemaal tekenen
7) Het vierkant daaronder: alleen de lijnen die zichtbaar zijn
8) Het onderste vierkant: alleen de lijnen die zichtbaar zijn.

Uiteraard maken de kinderen er zelf ook een, met andere kleuren; of halen bijv. als laatste de cirkel weg, waardoor er een puntiger karakter ontstaat.

Je kunt ervoor zorgen dat je een aantal van bovenstaande vormen – oplopend in moeilijkheidsgraad – klaar hebt liggen, die de leerlingen kunnen uitzoeken en meenemen naar hun plaats om de constructie ervan te vinden en uit te voeren.

cirkel; liniaal; lineair; willekeurig; onwillekeurig; omtrek; middellijn; middelpunt, verticaal, horizontaal, diagonaal; vlak; snijden; straal; snijpunt; constructie, construeren; zesster; zeshoek (hexagram, hexagoon); cirkelboog; verzameling; lijn; lijnstuk; loodlijn;

symbolen:
Ꙩ             cirkel met middelpunt
cirkel met middelpunt M
r              radius = straal
2r           2x de radius = de middellijn
→           daaruit volgt
⊥            staat loodrecht op

suggesties voor de periode:

1e week
3e week
4e week

6e klas: alle artikelen (waarbij de meetkunde-artikelen)

meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

.

1130

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

VRIJESCHOOL – Meetkunde (4-5)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 21 t/m 22

Over de bloem met de twaalf blaadjes

meetkunde-strakosch-4-2

Tussen twee kleine blaadjes* ontspringt een groot blad als direct vervolg van de bogen die de kleine blaadjes insluiten. De punten van de grote blaadjes liggen weer op een cirkel waarvan de straal even groot is als de lengte van het grote blad.**

Trek je door de grote alsmede door de kleine blaadjes een rechte lijn van punt naar punt, ontstaan er om het gemeenschappelijke middelpunt twaalf gelijke hoeken van ieder 360° : 12 = 30°  (tekening hierboven)

De punten als een rondje waar de cirkel de zes assen van de grote blaadjes snijdt, halveren ieder de boog tussen de punt van de kleine blaadjes. Wanneer je vanuit die punten met een gelijke straal cirkels trekt, ontstaan opnieuw zes blaadjes; in totaal krijg je dus een ‘bloem’ met twaalf blaadjes:

meetkunde-strakosch-4-6

Je kan echter niet een heel blad met ‘bloemen van twaalf blaadjes vullen; want bij ieder ring van cirkels die je rond de begincirkel tekent, verschuiven de middelpunten ieder met de breedte van een klein blad, zoals je kan ervaren bij het maken van deze tekening.

Daarvoor in de plaas biedt de bloem met de twaalf blaadjes de gelegenheid een nieuwe wetmatigheid in te zien. Terwijl zich bij de zes-bloem steeds gelijkzijdige driehoeken vormden of figuren die daaruit te vormen zijn (zeshoeken, ruiten) kan je hier ook vierkanten ontdekken. De volgende drie tekeningen laten een serie voorbeelden zien waarmee de hoeveelheid nog lang niet uitgeput is en de liefhebber rijkelijk gelegenheid biedt om ze zelf uit te werken. Daarbij moet je er echter op letten, dat de verlengde zijden van de vierkanten, ruiten of zeshoeken op de snijpunten van cirkels of in het midden van de driehoeken liggen. Je vindt steeds aanknopingspunten in de omgeving, je hebt een goede controle voor een precieze tekening en leert steeds meer de wetmatigheden kennen.

meetkunde-strakosch-4-3

 

meetkunde-strakosch-4-4

 

meetkunde-strakosch-4-5

 

*kijk naar de bovenste twee cirkels De twee kleine blaadjes met de stippellijn erdoorheen zijn ‘de kleine blaadjes’ en het ‘grote blad’ is het blad waarin deze twee kleinere liggen met ook nog een grotere ronde punt.
**Dat zie ik niet. Strakosch merkt over die lijn op: deze lengte, preciezer gezegd de lengte van zijn middellijn is √3, wanneer de lengte van het kleine blad als eenheid wordt genomen. √3 is echter ook de lengte van de ruimtediaognaal van een kubus met een lengte van 1. Zo zit in deze eenvoudigste constructie in het plattevlak een belangrijke wetmatigheid van de ruimte verborgen.

 

Vrijeschool in beeld: 6e klas meetkunde

Meetkunde: alle artikelen

 

1129

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Meetkunde (4-3)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 19 t/m 20

Over het ontstaan van de rechte lijn

Na wat over de cirkel als oervorm is gezegd, zou het als een soort inbreuk beschouwd kunnen worden, wanneer je rechte lijnen in het cirkelveld zou willen tekenen.
Daarom zal er aan een paar oefeningen getoond worden, hoe er in een cirkelveld lijnen kunnen ontstaan en wel zo, als zogenaamde grensgevallen van cirkels. Hiervoor moet je het feit helder hebben dat een cirkelboog, d.w.z. een deelstuk van de cirkelomtrrek des te vlakker wordt, naarmate de doorsnede van de betreffende cirkel langer wordt. Stel je dan voor dat het middelpunt steeds verder in de verte verdwijnt. De doorsnede kan uiteindelijk zo lang worden dat voor het oog en zelfs bij meting het boogstuk geen duidelijke afwijking meer vertoont t.o.v. een rechte lijn.  Zolang echter de doorsnede – ook al is deze nog zo groot – een meetbare grootte heeft, dus mathematisch gesproken: meetbaar _ eindig, zolang is een boog van zo’n cirkel, mathematisch gezien, nog geen rechte lijn. Dat wordt deze pas op het ogenblik dat het middelpunt in het ‘oneindige’ verdwijnt en de doorsnede dus geen begrensde lengte meer heeft, maar een die boven al het meten en voorstellen uitgaat, dus ‘oneindig’. Je kunt een rechte lijn dus opvatten als een boogstuk van een cirkel, waarvan het middelpunt in het oneidige licht.

Maar een rechte lijn kan ook ontstaan als een rij punten die bij een bepaalde plaats horen, de zgn. ‘geometrische plaats’:

meetkunde-52

 

Om twee willekeurige punten als middelpunt trek je cirkels en wel met zo dat iedere twee dezelfde straal hebben. Iedere twee van die even grote cirkels snijden elkaar in twee snijpunten en al deze snijpunten liggen op een rechte lijn.

meetkunde-53

Hier zijn twee willekeurige punten genomen als middelpunt waaromheen twee cirkels zijn getrokken. Door hun snijpunten is – zoals hierboven – een rechte ontstaan (met puntjes getekend) Door de middelpunten die we net genomen hebben, kun je cirkelbundels trekken; de middelpunten van de cirkels liggen op de rechte met de puntjes. Hoe verder die middelpunten in beide richtingen uit elkaar gaan, des te vlakker worden de boogstukken tussen de beide punten. Wanneer de middelpunten aan beide kanten in het oneindige verdwijnen, dan worden de boogstukken tussen de beide punten rechte lijnen, die op elkaar liggen, een dubbele rechte vormen; want door beide punten kun je nu maar een rechte lijn trekken. (Dit behoort tot de grondbeginselen, de zgn. axioma’s van de geometrie, die ogenschijnlijk hun geldigheid vertonen en geen bewijs nodig hebben).

In de tekening is zo gewerkt dat van de ‘bloem’ de middencirkel en de drie onderste getekend zijn. (De eerste is wat benadrukt). Zo ontstaat een groot blad, waardoorheen de rechte met de punten vastgelegd is en een kleine waarbij de dubbele rechte door hun toppunten loopt*. (De bedoeling van dit boek is dat de vriend van de meetkunde zich niet tevreden stelt alleen naar de tekeningen te kijken, maar deze vaak en vanuit verschillende standpunten zelf uitvoert)

Wanneer je de bladeren met als vouwlijn de lijn met de puntjes omgevouwen denkt, dan zullen alle lijnen boven precies op dezelfde lijnen onder komen te liggen. Zo’n rechte lijn heet een symmetrie-as. Wanneer je goed kijkt zul je moeten bevestigen dat ook de dikke lijn door de twee punten een symmetrie-as is. Uit deze dubbele symmetrie wordt duidelijk dat alle vier hoeken die rond het snijpunt van deze beide rechte lijnen liggen, even groot moeten zijn; dan moeten het rechte hoeken zijn. Je komt weer bij het feit dat een klein blad loodrecht op daarbij behorende grote blad zal staan.

* van de onderste cirkels is dit toppunt beneden

.

Vrijeschool in beeld: 6e klas meetkunde

Meetkunde: alle artikelen

 

1123

 

 

 

VRIJESCHOOL – Meetkunde (4-2)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 16 t/m 19

Over het regelmatige cirkelveld
De bol kunnen we als een soort oervorm in de hele natuur vinden; van de planeten tot in de cellen waaruit alle levende wezens bestaan. Alle vruchten en zaden neigen min of meer tot een ronde vorm en in het mineralenrijk neemt ieder deeltje kwik een bolle vorm aan. Doe je bijv. een druppel olie in een daarbij passend mengsel van water en alcohol, dan zweeft deze daarin als een bol, net zoals iedere in evenwicht zich bevindende druppel. Zelfs een wond in onze huid wordt naarmate deze weer geneest ronder van vorm, ook als deze aanvankelijk nog lang was door een snee of een schram.

Wanneer een lichaam in trilling wordt gebracht, begint deze bij een bepaald trillingsgetal te klinken en van hem uit gaan geluidsgolven. Deze gaan gelijkmatig naar alle kanten en vormen een zgn. bolvormige golf. Dat staat los van de vorm van het lichaam dat tot klinken is gebracht, wanneer we een punt bekijken dat ver genoeg van de geluidsbron vandaan is. Een ronddraaiende staaf, een bel waarop is geslagen worden het middelpunt van een bolvormige golf.
Een ander voorbeeld is nog de zeepbel. Dat allemaal wijst op een onstoffelijk element dat overal de neiging heeft bollen te creëren.
In de mathematica hebben we alleen met de vorm van de bol te maken. Wanneer je probeert een heel precieze beschrijving te geven die ieder ander lichaam wat zijn vorm betreft, uitsluit – een zgn. definitie – dan kun je er niet omheen op een belangrijk punt te wijzen dat niet op de oppervlakte van de bol ligt, maar erbinnen. Dit punt ligt zodanig dat het van alle punten op het oppervlak van de bol even ver af ligt.
Dus wanneer je in een willeleurige richting een rechte lijn door het middelpunt lopend denkt, dan zijn de beide delen tot aan de punten die samenvallen met de oppervlakte van de kogel, dus tot de zgn. snijpunten, in alle gevallen, even groot. Het totaal van alle door een middelpunt gaande stralen ( rechte lijnen zonder einde) noemt men een stralenbundel. Wanneer je alle door een middelpunt gaande stralen bekijkt, kun je zeggen: de kogelvorm snijdt van alle door het middelpunt van een kogel gaande stralenbundel precies even grote stukken ( rechte lijnen van een bepaalde grootte) af. –

Het stuk tussen het middelpunt en de twee snijpunten van een en dezelfde straal heet doorsnede.

Het stuk tussen het middelpunt en één van de snijpunten (je kunt ook zeggen: een willekeurig punt op het oppervlak) heet ‘halfdoorsnede’ (omdat deze half zo lang is) of met een dikwijls gebruikt Latijns woord ‘radius’ – de straal.

Je kan de kogel echter ook door een geheel vlak doorsneden denken en wel zo dat de snede steeds door het middelpunt gaat. Er zijn oneindig veel van deze vlakken die door het middelpunt gaan, een zgn. vlakkenwaaier/bundel. Iedere doorsnijding door het middelpunt snijdt de kogel in twee gelijke halve kogels. Daarbij zal ieder snijvlak iedere keer een cirkel zijn en uit wat hierboven is gezegd, zal makkelijk in te zien zijn,  dat al die cirkels even groot zijn. Dan begrijp je de zin, de definitie, van de grote Oud-Griekse mathematicus Archmedes: “Wanneer alle doorsneden van een lichaam door het middelpunt cirkels zijn, dan is het lichaam een kogel.

We tekenen met de passer ergens op het papier een cirkel. Dan zetten we de punt van de passer op een willekeurig punt van de omtrek en tekenen een nieuwe cirkel, zonder de opening van de passer te veranderen. De nieuwe cirkel zal de eerste op twee punten snijden, die evenver van het middelpunt liggen. In een van de twee punten zetten we weer een cirkel – met dezelfde passeropening -. Daardoor ontstaat weer een nieuw snijpunt en we stellen vast dat dit andere snijpunt samenvalt met het middelpunt van de vorige cirkel. Als we verder gaan, komen wij weer bij het eerste cirkelmiddelpunt uit, waarbij in totaal zes cirkels getrokken zijn, waarvan het middelpunt op de oorspronkelijke cirkel ligt.
Nu stellen we vast:

1.Met dezelfde passeropening kun je op de omtrek van een cirkel zes andere zo neerzetten dat een zevende weer precies op de eerste zou vallen:

meetkunde-31

 

 

tek 2

.
2. De omtrek van de cirkel wordt door de zes middelpunten in zes gelijke delen verdeeld. (Dat deel van de cirkelomtrek noemt men een boog). Dit basisfeit is zo gewoon geworden, dat bijna niemand de diepe betekenis ervan nauwelijks nog bewust is.
Maar stel je eens voor dat de straal niet precies zes maal op de omtrek afgezet kan worden, of niet zou passen; dat er dus een stuk over zou blijven, dat zelfs geen bepaald deel ervan zou zijn – of zelfs dat hij vijf of zeven keer erop zou passen. Dan zou de gehele meetkunde, de hele wereld een andere ordening hebben. Daaraan moet je ook eens denken, zodat je niet vergeet je te verbazen, dat volgens Goethe toch ‘het betere deel van de mensheid’ is. –

Sinds oude tijden moet de cirkelomtrek in 360 delen verdeeeld worden, die men graden noemt. Een boog van een zesde deel van de omtrek meet dus 60° (graden).
Deze indeling werd in de oudste tijden afgeleid van de jaaromloop van de zon. De gradenmaat was oorspronkelijk nog ruimtelijk in de tijd, in de meetkunde is deze alleen nog ruimtelijk.

We hebben dus door de zojuist uitgevoerde constructie een deling in zes delen gekregen. Een andere die in het praktische leven bijzonder belangrijk is, is die in vier gelijke delen van ieder 90°; zo’n hoek heet een rechte hoek en wordt in de meetkunde aangeduid met R.

3.De zes cirkels waarvan het middelpunten gelijkmatig verdeeld op de omtrek van de cirkel liggen, gaan alle door hetzelfde middelpunt. (zie tek. 2)

4.De cirkels snijden elkaar over en weer en er ontstaat een zesbladige vorm = ongeveer zoals die boven het hoofd van de ‘godin van de richting hangt'[1] – de bruine blaadjes:

6e-klas-meetkunde-1a

 

 

 

 

tek. 3

5.Elke twee van de zes cirkels snijden elkaar zo, dat de een door het middelpunt van de ander gaat. Op deze manier ontstaan zes grote bladeren, velden, eveneens om het middelpunt van de eerste cirkel gegroepeerd. De grootste breedte van elk is gelijk aan de straal die alle cirkels gemeenschappelijk hebben (velden in oranje, groen en violet in tekening boven).

6.Laat je van de zes cirkels twee die tegenover elkaar staan weg, dan zie je dat steeds een groot veld met een klein een rechte hoek vormt. Trek je door de punten van de velden rechte lijnen, dan zullen deze loodrecht op elkaar staan:

meetkunde-47

 

 

 

tek. 6

 

7a) Teken je drie cirkels zo, dat ieder door het middelpunt van de ander gaat , dan ontstaan drie grote velden:

meetkunde-29

 

 

 

 

tek 5

7b) Laat je iedere tweede cirkel weg, dan ontstaan maar drie kleine velden, waarvan de drie toppen de cirkel in drie gelijke bogen verdelen van ieder 120°:

meetkunde-30

 

 

 

 

tek 4

Om meer te weten te komen van onze ‘bloem’- de kinderen gaven hem zelfs de naam ‘wonderbloem’- nemen we de kleur als hulp, waarbij we drie basiskleuren nemen: geel (kadmium), rood (karmijn) en blauw (Pruisisch).*

Een blik op de tekeningen hierboven leert, hoe daarbij door het over elkaar kleuren (van te voren goed laten drogen!) de mengkleuren: groen, oranje en violet ontstaan en in het midden een mengkleur uit alle drie. (Om echt zuivere kleuren te krijgen, beginnen we steeds met dat deel van de cirkel te kleuren, dat wit is en dan gaan we – met niet te veel verf op de penseel – over de vlkakken die al eerder gekleurd werden.

Al deze tekeningen laten zien dat je door steeds weer andere kleurpatronen tot een bijna grenzenloze hoeveelheid vormen komt. We vergissen ons als we zouden menen dat een uitvoerig bezig zijn op deze manier als een beetje spelen wordt gezien of als tijdverdrijf. Dat is in tweeërlei opzicht niet het geval. We ontwikkelen een grotere vaardigheid in het nauwkeurig tekenen en in het kleurgebruik, vooral het eerste is onmisbaar  voor ieder die serieus met meetkunde bezig wil zijn. Maar we ontdekken ook steeds weer nieuwe mogelijkheden tot vormgeving; we halen er steeds meer uit als we ons in vrijheid op het trerrein van de wetmatigheid begeven. Dat heeft een diepe betekenis voor het leven; hier wordt het een innerlijke aangelegenheid en zoals je wellicht spoedig merkt, een kracht die harmonisch is, omdat de bron schoonheid is.
Dat geldt nog in hogere mate voor deze oefeningen:

meetkunde-48
tek 7

meetkunde-49

 

 

 

 

 

tek 8

meetkunde-50

 

 

 

 

 

 

 

tek 9

meetkunde-51

 

 

 

 

 

 

 

tek 10

 

Dit versterkt ook het voorstellingsvermogen  en later zullen we in staat zijn ons voorstellend – dus zonder te tekenen – bezig te houden met geometrische waarnemingen en opgaven; bij het tekenend werken zullen we zogezegd meer zien dan dat er op papier staat.

.
meetkunde-30

 

 

 

In tekening 4 worden de drie cirkels waarvan het middelpunt op de in het midden liggende cirkel ligt, in de basiskleuren geel, blauw en rood gekleurd; daarbij ontstaan drie kleine velden in de mengvormen: groen, violet en oranje.

Kleur je in tekening 5 elke cirkel met de primaire kleur, dan ontstaat naast de drie mengkleuren in het midden, waar alle drie de kleuren elkaar overlappen, bruin.

Het is een goede voorbereiding tek. 8 meerdere keren te doen (met zelfgekozen kleuren) en iedere keer de kleuren zo te ordenen dat de rechts en links van het grote veld in het midden liggende helften m.b.t. het grote veld symmetrisch zijn.

Tek. 8, 9 en 10 zijn voorbeelden die een aansporing willen zijn voor de eigen activiteit.
De beoefenaar wordt aangeraden veel meer kleurcombinaties voor het cirkelveld te vinden.

In tek. 9 verschijnen in de mengkleuren aaneengesloten grote en kleine velden die een soort trap vormen. De cirkels in de primaire kleuren zijn louter in parallelle rijen aangelegd.

Net zo in tek. 10, alleen zijn hier de rijen meer over elkaar geschoven en er verschijnen in bruin parallelle rijen kleine velden.

In tek. 8 staan de cirkels in de primaire kleuren in een driehoekopstelling!

Ook in dit opzicht zijn er nog vele nieuwe mogelijkheden.

Het is stimulerend en voor kinderen aan te bevelen, i.p.v. de cirkels helemaal met kleur te vullen, alleen de kleine velden op verschillende manieren te kleuren.** Daarbij ontstaan driehoeken, zeshoeken en zessterren. De laatste ontstaan uit ieder twee zich doordringende gelijkzijdige driehoeken, waarvan de zijden elkaar over en weer in drie gelijke stukken delen.

[1] godin van de richting (Meetkunde 4-1, door Strakosch als tek.1 genummerd)

 

*Strakosch schildert hier klaarblijkelijk. Dat is met de kleinere cirkels die je in het periodenschrift gebruikt, bijna niet te doen. Je moet bijv. over heel fijne penseeltjes beschikken; maar echt precies wordt het nooit en dat is toch de charme van de gekleurde figuren: dat het er exact uitziet.
Dus bleef ik bij het kleurpotlood.

**Kinderen kunnen veel als je het langzaam opbouwt.
Vrijeschool in beeld: 6e klas meetkunde

Meetkunde: alle artikelen

 

1119

 

 

 

 

 

 

 

 

 

.