Tagarchief: breuken

VRIJESCHOOL – Rekenen in beweging – hoofdstuk 6

.

REKENEN IN BEWEGING
.

Hoofdstuk 6: Reken-wiskundewerk vanaf klas 4

6.1 Decimale breuken
6.2 De wereld in verhoudingen
6.3 Procenten
6.4 Geometrie
Terzijde: Van oefenuren naar zelfstandig werken

Hier en daar is sprake van geld, dus van de gulden en de bijbehorende munten. Ik heb daar zoveel mogelijk euro’s van gemaakt. Waar het het voorbeeld onduidelijker zou maken, heb ik de gulden laten staan.

6. 1 Decimale breuken

ORIËNTATIE OP HET NIEUWE TERREIN

Wat zijn decimale breuken?

Decimale breuken worden ook wel eens aangeduid met ‘kommagetallen’. Daarmee is feitelijk het essentiële ervan aangegeven, zij het dat de bijbehorende positionele schrijfwijze als vanzelfsprekend wordt aangenomen. De uitvinding van de decimale breuken dateert van 1585, toen Simon Stevin zijn vondst publiceerde in het boekje De thiende. In feite was dat boekje een pleidooi voor het invoeren van de tientallige (positionele) schrijfwijze van de getallen. Met die getallen zou het rekenwerk (lees cijferwerk) namelijk heel wat gemakkelijker gaan dan met de gebruikelijke Romeinse cijfers en gewone breuken.
Met decimale breuken kun je dus gemakkelijker rekenen. Wie kan cijferen met gehele getallen, kan het eigenlijk ook met (decimale) breuken. Die gedragen zich in feite bij het cijferen net als gehele getallen. Slechts de rekenregel die het aantal cijfers achter de komma bepaalt, dient erbij in acht genomen te worden.
Vergelijk de berekening 23¾ x 5 ~ maar eens met 23,75 x 5,5. (Komt bijvoorbeeld voor in het geval je van een stukje multiplex van 23,75 cm x 5,5 cm de prijs wilt weten.)
Hoewel de kommagetallen eerst veel weerstand opriepen bij de gebruikers (kooplieden bijvoorbeeld, die ineens allerlei mogelijkheden voor vervalsingen zagen), zijn ze al lang niet meer uit ons dagelijks leven weg te denken. In het bijzonder waar gemeten wordt of met geldbedragen wordt omgegaan, treden kommagetallen op. Dit betekent onder andere dat decimale breuken als meetgetallen naar voren komen. Wie weet dat meten altijd neerkomt op een benadering en tevens inzicht heeft in de schrijfwijze van kommagetallen, kan aan de genoteerde meetgetallen iets aflezen over de nauwkeurigheid van de meting. Zo zegt bijvoorbeeld een afstandsmeting van 60,25 meter, dat er tot op de centimeter nauwkeurig gemeten is.
Het onderwerp decimale breuken staat niet op zichzelf. Het verband met ‘gewone’ breuken is natuurlijk duidelijk. Eigenlijk geldt dit ook voor de verwantschap met ‘procenten’ en ‘verhoudingen’. Goed beschouwd kan het laatstgenoemde leerstofgebied gezien worden als overkoepeling van breuken, kommagetallen en procenten.
Neem de breuk ¼. Als kommagetal genoteerd is het 0,25. En in procenten uitgedrukt: 25%. Wat betekent 25%? Van oudsher betekent 25% niet anders dan 25 per honderd, ofwel  25/100   = 0,25. We zijn rond.

225

Je kunt je afvragen waarom er na de uitvinding van de kommagetallen nog breuken bestaan. Er zijn ook in het (recentere) verleden stemmen van rekendidactici opgegaan, om het rekenonderwijs op de basisschool te beperken tot kommagetallen. Het is er niet van gekomen en wellicht gelukkig maar.
Behalve het feit dat kommagetallen de aandacht sterk op het cijferen richten, zijn er ook een paar beperkingen. Neem maar het geval dat je bij een verdeling tussen drie personen niet over  1/3     maar over zoiets als 0,333… beschikt. Er zijn maar weinig gewone breuken die zich zonder meer laten omzetten in kommagetallen. Bijvoorbeeld ½  ¼  3/5   7/25  en dergelijke. Het zijn de (niet meer te vereenvoudigen) breuken die louter factoren 2 en/of 5 in de noemer hebben. Voor alle andere gevallen moet men zich behelpen met een afronding 1/6    = 0,167 of afbreking 1/6    ~ 0,166. In het dagelijks gebruik van breuken zou dit trouwens weinig problemen veroorzaken. Overigens levert dit onderdeel, het omzetten van gewone breuken in kommagetallen, een interessant reken-wiskundig onderzoeksgebied voor leerlingen op.

Decimale breuken in de vijfde klas (en verder)

In de bovenstaande inleiding is het belang van het onderwerp aangegeven. De maatschappelijke relevantie en reken-wiskundige mogelijkheden zijn evident. Maar ook werden reeds de belangrijke aspecten van het leerstofgebied naar voren gebracht. We komen tot de volgenden aandachtspunten voor het onderwijs over decimale breuken in de vijfde klas:

Elementaire kennis en vaardigheden

Men kan daarbij onder meer denken aan:

• Een half = 1/2    = 5/10 = 0,5 = (50%)
• 0,25 = 25/100  = 25% = ¼ = een kwart.
• 0,125 = hondervijfentwintig duizendsten.
• De plaatswaarde van de cijfers in een kommagetal.
• Het idee van nauwkeurigheid in verband met het aantal cijfers achter de komma.

Cijfervaardigheid

Dit betreft de basiskennis en -vaardigheid die te maken heeft met de techniek van de rekenprocedures.

Daarbij valt te denken aan vragen als:

• Hoe reken ik uit 0,125 + 3,5?
• Hoe 2,25 x 3,75?
. Hoe 3,75: 5?
• Hoe 3,25 : 0,25?
• Tot hoever zet ik de staartdeling, achter de komma, in een bepaalde situatie voort?
• Zaag een plank van 2,25 m in 7 gelijke stukken. Hoe lang wordt elk stuk?
• Hoe zet ik eenvoudige breuken om in decimale breuken?
• Waarom is 10 x 12,25 =122,5? Waarom kan ik in dit geval beter zeggen dat het getal verschuift, en niet de komma?

226

227

Interessante reken- en wiskundige inzichten

Zoals bijvoorbeeld die van de wetmatigheden (eigenschappen, regelmaat, patronen), die bij het omzetten van gewone breuken naar kommagetallen, in zicht komen.

De toepassingsgebieden

Bijvoorbeeld op het gebied van geld. Omdat kinderen in het dagelijks leven veelvuldig met geld rekenen, biedt dit toepassingsgebied een goede mogelijkheid om het onderwerp decimale getallen te introduceren en het daarmee een concrete basis te geven op grond van eigen ervaring en beleving.
Bij het meten zijn decimale getallen essentieel. Een meetresultaat, uitgedrukt in een kommagetal (decimale breuk), geeft ook iets prijs van de nauwkeurigheid van de meting. Natuurlijk mogen daarbij de context van het meten en het metriek stelsel niet vergeten worden.
Er zijn op vele gebieden toepassingen te vinden van kommagetallen. Denk maar aan prijskaartjes, kassabonnen, reclamefolders, benzinepomptellers, sportrecords, afstandstabellen, windsnelheden, koerslijsten, wegwijzers, peilglazen, radiofrequenties, snelheidsmetingen, enzovoort. Het verdient sterke overweging om deze toepassingsgebieden van meet af aan te benutten, om het rekenen met kommagetallen voor de kinderen (een) ‘betekenis’ te geven.

Rudolf Steiner over decimale breuken

Rudolf Steiner geeft slechts aan dat je in de vierde klas al kan overgegaan op de decimale breuken. Verder is in de voordrachten niets te vinden wat direct met decimale breuken samenhangt.
In de vijfde klas wordt twaalf weken hoofdonderwijs ter beschikking gesteld. Er valt meer te doen dan alleen het meten en rekenen met kommagetallen. Ook de verbanden met gewone breuken en eenvoudige procenten (als aantal per honderd) worden, zo mogelijk ook in reële situaties, aan de orde gesteld.

WERKEN AAN ELEMENTAIRE INZICHTEN EN BASISVAARDIGHEDEN

Voorbeelden van onderwijsleersituaties met kommagetallen

Het onderwerp decimale breuken hoeft voor de leerlingen geen grote moeilijkheden op te leveren. Daartoe dient men de doelen die men zich stelt (zie H 9) gedifferentieerd op te vatten. De elementaire inzichten en basisvaardigheden op dit terrein, vertonen grote verwantschap met hetgeen eerder geleerd werd in het gebied van de gehele getallen. De bekendheid met geldbedragen en het rekenen ermee, kan goede steun bieden bij het verwerven van meer abstracte inzichten. Niet alle leerlingen hoeven alle leerdoelen op het hoogste niveau van abstractiete bereiken. Bij het ontwerpen van het eigen onderwijs kan men variëren (en dus differentiëren) op onder andere:

• Grootte van de getallen.
• Complexiteit van de berekeningen.
• Mate van concrete ondersteuning.
• Relatie met de toepassingen.
• Vereiste flexibiliteit.
• Keus tussen cijferen en (schattend) hoofdrekenen.

228

Ik ben begonnen met de vraag waar in het dagelijks leven decimale breuken te vinden zijn. De kinderen kwamen vrijwel direct met geld. Dit heb ik dan ook als ingang genomen voor deze periode: “Neem het bedrag f€ 125,45. Bedenk nu eens hoe we dit bedrag aan de kassa kunnen betalen.” Dan komen de kinderen met een antwoord als:

“Eén briefje van honderd, twee briefjes van tien, vijf 1-eurostukken, vier dubbeltjes en vijf cent.”
Er zijn er ook die wat anders hebben bedacht:

“Twee briefjes van vijftig en een briefje van twintig en een van vijf, en twee 20-cent stukken en 1 van 10 cent, dan krijg ik nog 5 cent terug.’.”

De mogelijkheden schrijven we in ons notitieblokje:

Op deze manier hebben we allerlei bedragen ‘ontleed’. Later kwamen we ertoe om een tabel te maken:

Op die manier kun je ook bedragen samenstellen. Dat geeft goed inzicht in de plaatswaarden. Voorafgaand aan de tabel deden we al oefeningen als:
“Schrijf in je notitieblok en reken steeds het volgende bedrag direct uit:

Eén gulden 1,00
Erbij drie dubbeltjes 1,30
Erbij een stuiver 1,35
Erbij een kwartje 1,60
Eraf tachtig cent 0,80
……..                       ……..

229

Daarna hebben we boodschappenlijstjes en optellingen gemaakt. Reclamefolders boden allerlei interessante mogelijkheden om ‘wens’boodschappenlijstjes samen te stellen. De kinderen mochten dat ook doen voor andere kinderen. Ik vroeg dan wel of ze het totale bedrag op de achterkant van het lijstje wilden noteren.
Interessant was ook de vraag om inkopen te doen voor een feestje: “Er komen zes vrienden en vriendinnen, dus zijn ze met zeven personen. Je hebt een bedrag van f 23,75 te besteden. Kijk maar op de folder wat het zal worden.”

Het viel me op dat de kinderen spontaan de komma’s onder elkaar schreven, dus hoefde ik daar nauwelijks bij stil te staan.

Móet je de komma’s onder elkaar opschrijven of is het alleen maar ‘handig’ om dat te doen? Dat laatste natuurlijk. Door in een optelling of aftrekking de komma’s onder elkaar te zetten, is het cijferwerk al voor een goed deel georganiseerd. Dat organiseren van rekenwerk verdient in het rekenonderwijs aparte aandacht. Als de kinderen gebruik hebben leren maken van positiestrepen, is ook voor dit geval met decimale breuken het organisatieschema al gegeven:

Uitgaande van het concrete zijn er meer mogelijkheden om een instap te maken in de wereld van de decimale breuken. Zojuist werd geldberekening genoemd. Het kan ook via het meten.
Neem bijvoorbeeld een sportdag waarop de kinderen een bepaalde afstand geworpen hebben of een zekere afstand hebben gelopen in een bepaalde tijd. Wanneer de uitslagen bekend zijn, kan aan de hand van deze ‘metingen’ gewerkt worden aan het begrip van decimale breuken.
Stel bijvoorbeeld dat er een afstand van 16,25 meter geworpen is. Men kan dan het volgende daarmee doen:
“Wat is er geworpen?” “16,25 meter.” “Schets de situatie op het bord.”
“Waar kwam de bal terecht?”
“Ergens tussen de 16 en de 17 meterlijn.”
“Op ruim 16 meter.”
“Preciezer: op 16 meter en een kwart.”

230

“Met de centimeter erlangs: 16 meter en 0,25 meter.
Of: 16 meter, 2 decimeter en 5 centimeter.
16,25 m is dus:16 meter + 2/10  m + 5/100  m.”

Er is een wezenlijk verschil tussen het gebruik van kommagetallen in de context van geldrekenen en meten. Meten is namelijk nooit precies; een meetresultaat is slechts een benadering. Daarom lenen decimale breuken zich zo goed voor het meten. Maar pas op! Hoe meer cijfers achter de komma, des te nauwkeuriger de meting lijkt. Inderdaad: lijkt! Neem bijvoorbeeld een plank van één meter, die moet je in drie gelijke delen zagen. Voordat je echt gaat zagen, kun je uitrekenen hoe lang elk van de drie plankjes wordt. Wat komt eruit? 100 (cm) gedeeld door 3 levert de volgende repeterende decimale breuk op: 33,333333 cm. Je kunt zover achter de komma doorgaan, als je (rekenkundig) wilt. Maar hoever ga je door? De eerste 3 achter de komma staat voor 0,3 cm, dat is 3 mm. Met een goede liniaal zijn die 3 mm nog wel te zien, al moet je bedenken dat de zaagsnede die 3 mm aardig kan benaderen. De tweede 3 achter de komma (0,3 mm) is al niet meer met onze huishoudcentimeter vast te stellen. In de gegeven meetcontext heeft een lengte van 33,333333 cm dus geen betekenis.

231

Een dergelijke overweging zou niet aan de kinderen van de vijfde klas voorbij mogen gaan. Een reflectie op de meetprocedure in samenhang met het gevonden meetresultaat, kan leiden tot een rijker begrip van decimale breuken. Zowel rekenkundig als toegepast.
In andere situaties waarin de decimale breuken gebruikt worden, kunnen dergelijke dingen natuurlijk ook gedaan worden. Zoek maar in de krant of denk aan het Guiness Book of Records. Ook de doe-‘t-zelfwinkel heeft rekenwerk met decimale breuken in petto. De folders van de Hubo, Houtland, Gamma enzovoort vormen een onuitputtelijke bron voor realistisch rekenwerk met kommagetallen. Ook op verpakkingen kan men niet om kommagetallen heen.
Bijvoorbeeld de tekst op een melkpak:

Het is goed denkbaar dat dit alles het sterkst werkt wanneer de kinderen direct betrokken zijn; een sportdag, sporttijden bijhouden, metingen doen, zelf boodschappen bedenken, …

We hebben allerlei getallen ontleed. Beginnend bij geldbedragen, kwamen we tot de essentie van de decimale getallen.
Neem het getal 2345: de 5 staat op de plaats van de eenheden, de 4 staat op de plaats van de tientallen, de 3 staat op de plaats van de honderdtallen en de 2 staat op de plaats van de duizendtallen, dus 2345 = 2000 +300 + 40+ 5.
Elke cijfer verder naar links heeft een (plaats)waarde die tien keer zo groot is als de plaatswaarde van het cijfer ernaast.

Eenheden, tientallen, honderdtallen, duizendtallen, zo kunnen we verder gaan. Gaan we van links naar rechts (volgen we dus de leesrichting), dan is elke plaatswaarde verder dus nog maar van de vorige. We hebben gezien in de geldbedragen dat je dan niet bij de eenheden hoeft te stoppen. Je gaat dan ‘achter de komma’ verder, met de tienden en honderdsten. En, kun je je dan afvragen, waarom zouden we bij de honderdsten stoppen?

Duizenden, honderden, tienen, enen, tienden, honderdsten, duizendsten.
De komma staat dus op de grens tussen de hele getallen- en de breukenwereld. Dit alles wetende, hebben we vele getallen met bewegingen uitgebeeld; elke plaats van het cijfer in het getal had een bepaalde beweging.

232

Nu zijn we inmiddels toe aan het vermenigvuldigen van een getal met een tiental. We kunnen hierbij teruggrijpen naar wat in de jaren daarvoor bij de kinderen aangelegd is.
Bijvoorbeeld: 10 x 2 = 20. De 2 komt te staan op de plaats van de tientallen. Hoe deden we dat ‘vroeger’ ook weer? Weet je het nog, tien keer twee (schoenen) betekende natuurlijk dat we het aantal van tien paren (schoenen) moesten vinden. De positiestrepen waren toen pas in gebruik genomen. Het komt nu goed van pas daar nog eens op terug te zien.

Dit laatste is natuurlijk ook te lezen als 10 x ½. Gemakkelijker nog als ½ x 10; en zo komen we dus ook aan het antwoord 5. Nog anders; we kiezen namelijk verschillende inbeddingen van het inzicht: “Maak tien sprongetjes van 0,5 cm over de liniaal. Waar denk je dat je terecht komt?”

Zo hebben we dus drie sporen gevolgd:

1. Via het cijferen van vroeger.
2. Via de breuken uit de vierde klas.
3. Via meetgetallen op de liniaal (getallenlijn).

Deze activiteiten zijn bekend vanuit het verleden. De bedoeling is dat de kinderen bepaalde rekenregels ontdekken of zelf uitvinden. Bijvoorbeeld:
10 x 3,75 = 37,5 en 10 x 12,25 = 122,5. “Hé, wat gebeurt hier?”
Bedenk bij deze voorbeelden dat de kennis van geldbedragen goede steun kan bieden, als de rekenregels nog niet opgemerkt zijn:

10 x euro is 30 euro
10 x 75 cent is 7 euro 50 cent (10 x een dubbeltje is een euro, enzovoort).
Samen: 37 euro 50 cent, oftewel € 37,50.

In het geval van 100 x 0,5 = 50,00 wordt de aanpak van zojuist uitgebreid. Je kunt via 10 x (10 x 0,5) = 10 x 5 op 50 komen. Schrijf je de getallen tussen positiestrepen, dan ligt de rekenregel zichtbaar voor het oprapen: de 5 op de plaats van de tienden, gaat na vermenigvuldiging met 100 naar de plaats van de tientallen. Dat is twee plaatsen naar links. Dus een verschuiving van het getal en niet van de komma!

233

In een spel maken we nog eens duidelijk dat de komma bij het vermenigvuldigen met tien een grens is, die door de cijfers van rechts naar links overschreden wordt.
De kinderen waren de cijfers in een bepaald getal. De honderdtallen stonden op een tafel, de tientallen op een stoel, de eenheden op de grond. Dan stond er een kind met een grote komma; de grens! Daarnaast weer de tienden knielend, de honderdsten zittend. Aan de buitenste zijden was er nog een tafel met een stoel erop voor de duizendtallen en aan de andere kant een plaats om te liggen voor de duizendsten.
Om een bepaald getal uit te beelden, kregen ze elk een kaart met een cijfer. Dan klonk de opdracht: “Ik vermenigvuldig dit getal met tien.” (Later ook met honderd, enzovoort). Alle kinderen klommen dan een of meer plaatsen omhoog.

Bij delen was dat natuurlijk weer anders. De rekenwijze hebben we daarna in het schrift op allerlei manieren beoefend.
Zo kwam het idee van getalverschuiving spontaan naar voren. De uitdrukking kommaverschuiving heb ik nooit correct gevonden.

Natuurlijk is dit ook maar, hóe je het bekijkt. Als je het getal fixeert dan verschuift de komma na vermenigvuldiging. Je zult zien dat het gebruik van positiestrepen er toe leidt dat kinderen zeggen: het getal verschuift want de cijfers gaan (bij de vermenigvuldiging met 10), een plaats hogerop (naar links dus). Logisch, want zo is ons positionele decimale systeem ingericht.

OEFENINGEN

Getallendictees

Getallendictees maken dat de kinderen de getallen op een geschikte manier gaan uitspreken. Wat wordt hier bedoeld met ‘geschikt’? Wel, kommagetallen worden in velerlei situaties gebruikt. En elke situatie heeft een eigen, specifieke context. Op school hoor je nogal eens het getal 425,12 uitspreken als vierhonderdvijfentwintig komma twaalf honderdsten. Dat is een manier om te laten zien, dat je

234

weet hebt van de waarde van de cijfers achter de komma. In een didactische context is het dus vierhonderdvijfentwintig komma twaalf honderdsten, of vierhonderdvijfentwintig twaalf honderdsten. Maar neem nu eens het bedrag € 425,12. Dat spreek je natuurlijk heel anders uit: 425 euro 12. Of 425 euro 12 cent. Of 425 12. Of 425 komma 12.

Decimale getallen ordenen

Zie de gewone breuk achter een decimale breuk:

• “Wat is groter 0,1 of 0,01?”
• “Welk getal ligt het dichtst bij 2,5; 2,45 of 2,449?” Hier kan een meetlat of een getallenlijn natuurlijk hulp bieden:

• “Tussen welke twee hele getallen ligt 2,3?”

Het omzetten van breuken in kommagetallen

Dit onderwerp brengt ons weer op het niveau van het abstracte rekenen. De vraag luidt: “hoe zet je een gewone breuk om in een decimale?” Begin bij ½ = 0,5. Dat wisten we al. Maar hoe doe je dat? Laat de kinderen aan het woord. Vaak komen ze zelf al met goede ideeën.

Bijvoorbeeld:

• Een halve euro is gelijk aan 50 cent. Heel concreet dus. Maar er moet wel ingezien worden dat  0,5 = 0,50. Is daar al aandacht aan besteed?
• Een half (½) betekent dat je 1 gedeeld hebt door 2. Dus ga die deling maar eens maken.
• Je kunt het ook zó zien: maak van ½ de ‘tiendelige’ breuk 5/10   of 5/100  .

Hoe vind je nu 3/8    = 0,375 ? Dat kan via 1/8   en dan 3x. Sommige kinderen weten 1/ al uit het hoofd, of kunnen het handig uitrekenen via de helft van ¼ (= 0,25 : 2, de helft van een kwartje, enzovoort). Zo niet, dan moet er gedeeld worden, of handig op een liniaal van 100 cm (= 1000 mm) gekeken worden. Deze opgaven zijn nuttig, want nu leren de kinderen onder meer uit het hoofd dat 1/ deel gelijk is aan 0,125 of 12,5%. En ze leren dat met een visueel beeld en met een concrete context op de achtergrond. Als je het goed beschouwt, komen hier diverse leerstoflijnen bij elkaar: staartdelen, handig rekenen, meten, breuken, en kommagetallen / procenten.

Wat doe je als leraar van een vrijeschool, wanneer de kinderen vragen waar je dat voorgaande voor nodig hebt; waarom je dat allemaal moet weten? Natuurlijk neem je die vraag uiterst serieus.

235

Wie geïnteresseerd is in getallen zal verrast worden bij het omzetten van 1/7          in een decimale breuk. Om een kader te scheppen waarbinnen de bijbehorende decimale breuk gecontroleerd kan worden, kun je beginnen met een schatting te maken: Er zijn zeven zesdeklassers die met oude kranten 100 gulden voor de school hebben verdiend. Hoeveel heeft elk van deze groep verdiend? Deel dan 100 gulden door 7. Dat kun je wel schatten: elk 14 gulden, want 7 x 14 = 98. Over 2 gulden, dat zijn 8 kwartjes. Verdeel die ook maar met z’n zevenen: ieder 0,25. Nog 25 cent over: deel door 7, er komt 3 cent. Over 4 cent, vergeet die maar. Dus 100 gedeeld door 7 is ongeveer 14,28.
Nu de staartdeling en vergeet niet gebruik te maken van wat we zojuist gedaan hebben.

Waarom enzovoort? kun je de kinderen vragen. En vervolgens: “hoe lang gaat het, denk je, duren met deze staartdeling? Ben je zeker van je antwoord? Kun je dat aan de anderen uiteggen?”
De essentie is natuurlijk dat er nooit de rest 0 komt. Je kunt dat op twee manieren ‘weten’.
In de eerste plaats kun je het inzien als op een zeker moment de rest 1 opduikt. Je bent dan weer op hetzelfde punt als waarmee de delingsprocedure begon: “1 als rest, haal een 0 aan, het wordt 10 gedeeld door 7. Dat gaat 1 keer enzovoort.”
Je kunt het ook anders inzien, wat abstracter. Om de breuk  1/7   om te zetten, zou je van de noemer 7 een macht van 10 moeten maken. En dat gaat niet, omdat machten van 10 slechts uit de factoren 2 en/of 5 bestaan. Basta. Overigens is deze redenering niet zo geschikt om aan de hele klas uit te leggen.

Het ambachtelijke werk van het omzetten veroorzaakte een waar enthousiasme in de klas. Ze vinden  1/7    maar een vreemd geval. We zochten met elkaar uit:

1/7    = 0,142857                                      4/= 2 x 0,285714 = 0,571428

 2/7   =  2 x 0,142857  = 0,285714         5/7 = 0,714285

3/= 3 x 0,142857  = 0,428571          6/7 = 0,857142

Als we de cijfers achter de komma van 1/7 in een cirkel opschrijven, dan zijn de andere breuken af te lezen. Je hoeft alleen maar een ander beginpunt te kiezen.

236

Kinderen kunnen zich afvragen hoe dat komt dat steeds hetzelfde patroon zich herhaalt;
1/7   = 0,142857 142857 142857 142857 142857 enzovoort.
Om de oorzaak daarvan te onderzoeken, moet je de staartdeling nog eens goed bekijken. Je ziet dan, net zoals daarstraks, dat na zes keer de eerste rest 1 weer terugkomt. Voordat het zover was, zijn er zes andere resten geweest: 1, 3, 2, 6, 4, en 5. Dat zijn precies de zes getallen kleiner dan 7.
Neem je nu bijvoorbeeld de breuk 3/, dan moet je eigenlijk de volgende staartdeling maken:

7 / 3,000000\ … De eerste deling, die je tegen komt, is dan 30 : 7. En dat was in het vorige geval precies de tweede deling. Wat daarna gebeurt, is in beide gevallen hetzelfde. En zo komen dan in het geval van 3/ de resten 3, 2, 6, 4, 5 en 1 achtereenvolgens tevoorschijn. In het quotiënt verschijnen dan ook in dezelfde volgorde de cijfers als bij 1/7   . Vandaar 3/= 0,4 285714 enzovoort.

We zetten natuurlijk slechts een bepaald aantal breuken om in decimale breuken. Dit doende wordt er ook geoefend met het delen; een goede rekenoefening dus.

237

Moeten de kinderen van de vijfde en zesde klas dit rijtje uit het hoofd weten? En zo ja, waarom dan wel? Moeten ze weten dat  1/3   tot een repeterende breuk voert? En als we op dat probleem in gaan, moeten ze dan leren dat er ook andere repeterende breuken bestaan, zoals we eerder bij 1/7   aantroffen? Wie in de bakens en concrete leerdoelen kijkt, vindt een antwoord. Dat kan persoonlijke elementen bevatten!
Laten we ook een breuk als  25/43  omzetten? Als we dat doen als een rekenoefening, dan moeten we de kans waarnemen om een schatting te laten maken.
Wat moeten de kinderen dan doen? Eerst inzien dat bijvoorbeeld  25/43  > 25/50
= ½ =  0,5.  Of preciezer: 25/43 > 25/45  = 5/9 = 0,555555.

Omzetten van komma getallen in breuken

Gaan we ook de weg terug? Dus zoeken we een oplossing voor de vraag van 0,55 een gewone breuk te maken? Wie de vraag beschouwt voor ‘niet’ repeterende decimale breuken is gauw klaar. Al het rekenwerk, dat nodig is om van 0,55 te komen tot  5/9  bestaat uit het vereenvoudigen van breuken. Dus technisch gezien uit het vinden van gemeenschappelijke delers, ontbinden in factoren en delen. Niet de moeite waard dus om gewichtig over te doen.

Kommagetallen en procenten

Belangrijker is dat er ook verband gelegd wordt met procenten. We zagen hierboven al ½ = 0,50 ofwel 50%.
Dit verband, dat tussen kommagetallen, breuken en procenten bestaat, kan ten nutte gemaakt worden. Het volgende voorbeeld, van een lastige procentenopgave, laat daar iets van zien:
De vraag luidt: “Hoeveel procent is 8 van 27?”
In de zestiende eeuw had de vraag geluid: “Hoeveel ‘ten honderd’ is 8 van 27?” In deze formulering komt de essentie van de vraag goed naar voren. Het gaat er immers om te zien, welk getal zich ten opzichte van 100 verhoudt, als 8 dat doet ten opzichte van 27.
Bekijk dan de breuk (beter verhouding) 8/27 . Maak er een decimale breuk van, door de deling uit te voeren:

Het antwoord is: 8/27  = 0,296. Wie afrondt, leest dit als: = 0,30. En ziet dan dat
8/27  = 30% (30 ten honderd!).

Zo ook :”Hoeveel procent is 3 van de 8?” Noteer  3/8   = 3 x 0,125 = 0,375 en zeg 3/8   =37,5%.”
Procenten vormen een onuitputtelijke bron van fouten. Veel ervan zijn te voorkomen als men het verband met decimale breuken kent en met decimale breuken weet om te gaan.

238

239

Een gedachte-experiment: procenten en kommagetallen

“De prijzen zijn vorige trimester met vijf procent gestegen. Nu heeft men gelukkig weer met een 5% prijsdaling de zaak recht getrokken.
Is dat zo, zijn de prijzen weer op het oude peil teruggebracht?
Laten we even rekenen. Neem een prijs van 100 euro. Prijsstijging 5%, dat betekent dat het artikel nu 1,05 x 100 = 105 euro kost.
Zie je hoe die vermenigvuldiging met 1,05 werkt? Vermenigvuldigen met 1,05 betekent vermenigvuldigen met 1 + 0,05, of met 1 + 5/100   . Je krijgt dus het getal vermeerderd met 5 procent ervan.
Nu dan de prijsdaling met vijf procent. Het artikel kost daarna 0,95 x 105 euro . Dat is € 99,75. Zie je hoe dat gekomen is?
Wat gebeurt er als eerst de prijsdaling had plaatsgevonden, en dan de stijging? Het antwoord in één keer: 0,95 x 1,05 x 100 = 99,75. Verrast? Niet als je de berekeningen met de decimale getallen goed in het oog hebt gehouden.”

Deze werkwijze levert ook een goede toegang tot berekeningen met rente en samengestelde interest. Je hebt € 525,00 op de spaarrekening. De rente bedraagt 4%. Na 1 jaar heb je dan 1,04 x € 525,00 = € 546,00 op de bank.
En na twee jaar? Wel, dat is dan 1,04 x € 546,00 = 567,84. Wie een
zakrekenmachientje mag gebruiken, vindt hier een opening naar een relevant wiskundig leerstofgebied: groeifuncties, samengestelde interest.

IDEEEN VOOR EIGEN ONTWERPWERK

Er zijn ook heel wat situaties waarin kommagetallen niet gemist kunnen worden. Elke situatie kan aanleiding zijn voor een verkenning, een probleemstelling, een toepassing, een oefening, een doordenking, een berekening of een reflectie. Hier volgen er een paar:

• Kilometerteller met één cijfer achter de komma (dagteller met hectometers).
• Boodschappenlijstjes met bedragen: schatten. (“Heb ik genoeg geld bij me?”).
• Liniaal met millimeter-indeling. Ook regenmeter en dergelijke. Om af te lezen.
• Uit een berekening komt 0,8. Welke deling kan dat geweest zijn? En in welke situatie?
• Het boek van de Olympische Spelen 1992 met records. Ook Guiness Book of Records.
• Geef jurypunten (met één cijfer achter de komma) en bepaal eindstanden.
• Maak prijsvergelijkingen.
• Buitenlands geld: omrekenen van prijzen.
• Omtrek en oppervlakte van cirkels: π – 3,1415.
• Omrekenen van zeemijlen naar kilometers, van km/u naar m/sec en knopen.
• De zuinigste auto bepalen, gegeven aantal kilometers en aantal gebruikte liters.
• Handig (schattend) rekenen met 0,25 (kwartjes) en dergelijke.
• Gordijnen maken.

240

6.2.De wereld in verhoudingen

De wereld in verhoudingen

Achtergrond

De wereld is vol met datgene wat wij verhoudingen noemen. In de proporties van mens en dier, in de vormen en ritmen der plantenwereld en in de kristalstructuren van de mineralen vinden we herkenbare verhoudingen. Ook binnen de stof zelf heerst structuur. Avogadro ontdekte, dat de elementen zich in verbindingen verhouden als eenvoudige, gehele getallen. (Bijvoorbeeld H2O)
Een schitterend voorbeeld van verhoudingen vinden we in de muziek. Al kunnen we ten aanzien van een muziekstuk van mening verschillen over de tempi, de verhoudingen binnen de maat blijven gelijk en bepalen mede de herkenbaarheid van het stuk.
Van stond af aan is het kind dus omringd door een wereld vol verhoudingen, uiterlijke zowel als innerlijke, die vormend op hem werken, op een geheel natuurlijke en veelal onbewuste wijze.

“Zondags in de Hout, kregen wij ons traditionele La Venezia-ijsje: onze ouders een ijsje van vijf, wij van drie cent en het kwam niet in ons hoofd op om daartegen te protesteren. Het was immers volgens de natuurlijke verhoudingen geregeld, destijds in de jaren dertig. (Leuk hè, bijna volgens de Gulden Snede!)”

In de eerste schooljaren knopen we bij het natuurlijke gevoel voor verhoudingen aan. Vragen we een eersteklasser zijn twaalf kastanjes eens mooi over de bank te verdelen, dan liggen er in negen van de tien gevallen op elke hoek drie. Ook bij het vormtekenen gaat het allereerst om mooie verdelingen en verhoudingen, om gestructureerde, ritmische vormen.
Het schatten, graag en veel door kinderen beoefend, heeft alles met het verder ontwikkelen van hun gevoel voor verhoudingen te maken.
Zo omstreeks het negende jaar treedt het kind bewuster de buitenwereld tegemoet. Het gaat de wereld met andere ogen bezien en wat beleefd is, wordt nu ook beschouwd. De doorleefde ervaring wordt tot voorstelling, tot ‘denkbeeld’. Het vermogen zich tegenover de dingen te kunnen plaatsen, ontwikkelt zich vanaf nu in toenemende mate. Het oordeelsvermogen maakt zich los uit de directe ervaring.

“Onlangs kwamen twee vierdeklassertjes aan de deur met een intekenlijst. Ik tekende achteloos voor twee euro in: leuk toch, zulke actieve kinderen! Maar ik had beter moeten luisteren! Voor elk rondje, dat zij binnen een kwartier rondom het hertenkamp zouden rennen, moest ik twee euro betalen. “Dus als we bijvoorbeeld vier keer rondrennen, moet u acht euro betalen meneer.” En lachend verdwenen zij.”

Een tweedeklasser zou de situatie zeker niet zo goed hebben doorzien. Vanaf klas vier komen de verhoudingen bij diverse thema’s aan de orde, ook naar maat en getal.

“Een olifant eet 325 kg groen per dag, een rinoceros 50 kg. Hoeveel keer eet een olifant meer dan een rinoceros?” Dat zijn sprekende feiten, waar de vierdeklasser dol op is. Wat in de tweede en derde klas aan winkelbedrijf en heemkunde is

241

bedreven, kan nu bewuster rekenkundig worden benaderd en de nieuwe onderwerpen, zoals breuken, decimale maten en het op schaal tekenen, zijn uiteraard geheel uitdrukkingen van verhoudingen.

Omstreeks het twaalfde jaar kan het kind een volgende stap nemen. Aansluitend op bovengenoemd ‘groenetersprobleem’ zou een volgende vraag kunnen luiden: “Als Artis drie ton groen voor de twee dieren samen aanvoert, hoeveel krijgt de olifant daar dan van?” Hier moet dan een gecompliceerde berekening uitgevoerd worden, waarbij verscheidene bewerkingen op elkaar betrokken worden. Rekenkundig zit dat zo: de olifant en de rinoceros eten per dag samen 375 kg groen; zij verorberen 3000 kg in (3000 : 375 = 6000 : 750 = 12000 : 1500 = …) 8 dagen. De olifant heeft daarvan 8 x 325 kg = 2600 kg gegeten. Een
beredeneersom dus, die aan het verstandelijke vermogen van een zesdeklasser appelleert.

Omstreeks het veertiende jaar kan de leerling het vraagstuk in een algemene, abstracte vorm oplossen: O : R = 325 : 50 = 13 : 2. O eet  13/15   3000 kg = 2600 kg.
Met deze algebraïsche benadering kunnen we elke situatie van O en R oplossen, tot grote vreugde van de puber, die nu op zo’n slimme manier de werkelijkheid kan bemeesteren.

Kort samengevat: zie verhoudingen in de juiste verhouding tot leeftijd en de totaliteit van het leerplan. En vooral: zie ze niet over het hoofd!

Verhoudingen in het traditionele rekenonderwijs

Tot in de jaren zeventig werden de verhoudingen in het rekenonderwijs aan het eind van de vijfde klas, meestal pas in de zesde klas behandeld. De breuken, kommagetallen en de procenten waren dan inmiddels al aan de orde geweest. Dat mag op z’n minst merkwaardig heten, want het verschijnsel verhouding ligt ten grondslag aan elk van die onderwerpen.
Waarom dan toch pas zo achteraan in het rekenprogramma? Het antwoord op die vraag wordt duidelijk als we zien welke leerstof behandeld werd. Goed beschouwd werd het verschijnsel ‘verhouding’ nauwelijks in beschouwing genomen. Het ging hoofdzakelijk over evenredigheden (‘reden’ voor verhouding en ‘even’ voor gelijk, dus over de gelijkheid van verhoudingen) als a : b = 3 : 4. En bovendien werkte men louter getalsmatig en meetkundige situaties werden niet in beeld gebracht.

Het hoofdstuk verhoudingen bestond in principe uit vier paragrafen.
Eerst een introductie op het begrip en de notatiewijze: “De waarden van een stuiver en een dubbeltje verhouden zich als 5 en 10. Je mag ook zeggen dat ze zich verhouden als 5 staat tot 10, geschreven als 5 : 10. En dat is hetzelfde als 1 : 2. Dus stuiver : dubbeltje = 1 : 2.” (Een echte schoolmeester voegde daar aan toe: “het moet natuurlijk zijn, de waarde van een stuiver staat tot de waarde van een dubbeltje is als één staat tot twéé.”) Hier staat ook te lezen dat een dubbeltje twee keer zoveel waard is als een stuiver. Of dat een stuiver de helft is van een dubbeltje. Dan kwam er een paragraaf met opgaven als: “Twee kapitalen verhouden zich als 3 : 4. Het grootste kapitaal is f 200,-, hoe groot is het kleinste kapitaal?”
De oplossing verliep via een evenredigheid als K : 200 = 3:4. Soms pastte men de hoofdeigenschap van de evenredigheden toe: 4 x K = 3 x 200, dus K =  600/ = 150.

242

Wie inzag dat 200 = 50 x 4 en dus K = 50 x 3 moest zijn, was sneller klaar.
De volgende paragraaf behandelde opgaven als: “De aantallen knikkers van Jan en Wim verhouden zich als 3 : 5. Samen hebben ze er 40. Hoeveel heeft elk?”
De oplossing ging ongeveer aldus: ‘Jan’ : ‘Wim’ = 3 : 5. J + W = 40. Dan heeft Jan 3/8    x 40 = 15 en Wim  5/8   x 40 = 25 knikkers. Het getal 8 kreeg je door 3 en 5 op te tellen, en je wist dat omdat het aantal knikkers was gegeven, dat ze samen hadden.
In de laatste paragraaf was de verhouding en het verschil gegeven: “Twee stokken verhouden zich als 3 : 8, de ene stok is 40 cm langer dan de andere. Hoe lang zijn de beide stokken?”
Oplossing: Stok A =  3/5   x 40 cm = 24 cm. De andere is dus 64 cm. (Routineuze rekenaartjes vonden dit via  8/5 x 40 cm = 64 cm).

In de jaren vijftig werd de didactiek van de verhoudingen verrijkt met het zogeheten verhoudingsblok. Hiermee konden de drie genoemde typen vraagstukken in één klap en met inzicht worden opgelost.
De evenredigheid a : b = 3 : 6 werd in een schema geplaatst:

                  a                      b            of                    a                          3

                  3                      6                                   b                          6

Kijkend van a naar b zie je ook de stap van 3 naar 6. Dat is dus een vermenigvuldigingsfactor van 2. Je krijgt b door a met 2 te vermenigvuldigen.

Is nu bijvoorbeeld gegeven dat B – A = 40, zoals in het vraagstukje met de twee stokken, dan breid je in gedachten het schema uit:

A                     B                                 B – A = 40

3                      8                                8 – 3 = 5
(Vermenigvuldigingsfactor is: 8)

Je ziet dat de stap van de onderste rij verhoudingsgetallen naar de bovenste rij ‘werkelijke’ getallen een is van vermenigvuldigen met 8. Hieruit volgt direct a = 8  x  3  en  b = 8  x  8

Dit verhoudingsblok is nauw verwant met de ‘evenredigheidsmatrix’ die door de didacticus P.M. van Hiele werd geïntroduceerd. In dit boek zijn we het idee ook al tegenkomen in het hoofdstuk over breuken: de verhoudingstabel. Met deze constatering wordt ook duidelijk dat de verhoudingen in het rekenonderwijs al vóór de introductie van de breuken, vóór de vierde klas dus, aandacht verdienen.

Kinderen ontmoeten verhoudingen

Observatie: het haantje van de toren

Met een paar kleuters bij een toren. “Kan iemand vertellen hoe groot dat haantje op de toren is?” K: “Ik weet het.” “Zo groot ongeveer? Wat denk jij?” K: “Hij is nog veel groter.” “Ik zag laatst dat ze de haan naar beneden haalden. Hij was wat kaal geworden en ze wilden ‘m schilderen. Toen stond hij dus op de grond. Hier vlak bij. Wat denk je, hoe groot was het haantje toen hier?” K: “Zoiets. Een kip is toch niet zo lang!” “Nee, een echte kip niet. Maar is dit een echte kip?” K: “Nee.”

243

“Het is een haantje van ijzer. Hoe groot is een vliegtuig in de lucht? K: “Heel klein!” K: “Ik weet het, net zo groot als het schoolplein.”… “Denk nog eens aan de haan. Hoe groot was die op de toren? En hoe groot als die hier op de grond staat?” K: “Groter, nog veel groter.” “En als ik nu naar boven zou gaan op de toren, hoe groot zou ik dan worden?” K: “Zo’n klein mannetje.” “Nu neem ik het haantje mee als ik naar boven ga. En ik word kleiner en kleiner.” K: “Ik zie geen haan.” “Nu moet jij zeggen hoe groot ik ben als je me boven op de toren ziet.”… K: “Zo’n klein mannetje.” “En de haan naast me?” K: “Zó klein.” “Nu komen we allebei naar beneden. Ik heb de haan meegenomen. Hoe groot zou die haan zijn?” K: “Dan is de haan net zo groot als de schoolbank …”

(Uit Goffree,F.(1979). Leren onderwijzen met wiskobas, IOWO Utrecht.)

Of je zo’n vraag aan kleuters moet stellen? Misschien beter aan de leerlingen van de vierde klas, die op weg zijn naar de grote kerk om de toren te beklimmen en dan de stad in vogelvluchtperspectief willen zien.

Observatie: Bastiaan en de regenwolken

Bastiaan (7;6). Na een reeks zonnedagen ziet hij wolken en zegt: “Het gaat regenen.” “Neen”, zeg ik, “dit zijn heel hoge wolken, daar komt geen regen van; regenwolken zijn laag en donker .”Hij: “En hoe hoog zijn die wolken?” Ik: (overdrijvend) “Tienduizend meter.” Hij: “En hoe hoog zijn die regenwolken?” Ik: “Duizend meter.” Hij: “Dus (met de hand op de grond) als wij hier zijn en de regenwolk zó hoog (wijst ongeveer dertig centimeter boven de grond), dan zijn dat (wijst ongeveer één meter boven de grond), geen regenwolken.”

(Geciteerd in Tijdschrift voor nascholing en onderzoek van het reken-wiskundeonderwijs, jrg.8 nr.2, blz.57)

Het blijkt dat het verschijnsel verhoudingen niet zonder meer aan kinderen voorbijgaat. Ze voelen soms de zaak intuïtief heel goed aan, kunnen zelfs aan hun intuïtieve noties uiting geven, in gebaar en woord. Maar ook kunnen ze door de omstandigheden misleid of door hun intuïtie in de steek gelaten worden. Hoe het ook zij, de wereld om hen heen en de kinderen zelf geven aanleiding om verhoudingen niet buiten beschouwing te laten.

Het verschijnsel verhoudingen

Onze wereld zit vol met verhoudingen, visueel en numeriek (meetkundig en getalsmatig), onopvallend en aandachttrekkend, om accenten te plaatsen en om verschillen te verhullen. Vul zelf maar in en aan, wie om zich heen ziet en een verhoudingenbril opzet, kan daar tegen deze bewering geen bezwaar hebben.
Wat overigens direct opvalt, zijn de zaken waarbij sprake is van
‘wan’verhouding. Neem bijvoorbeeld een karikatuur, waarin karakteristieke trekken buiten verhouding zijn weergegeven. Maar ook de plaat waarop het menselijk lichaam in bepaalde ontwikkelingsstadia is weergegeven, vraagt aandacht voor verhoudingen: Is het hoofdje van de baby niet veel groter dan dat van de volwassene verder op in de rij? Natuurlijk niet in absolute zin, maar wel ‘naar verhouding’. Wie let daar in het bijzonder op? De schilder, die een jong kind wil tekenen! Diezelfde schilder weet veel meer van verhoudingen met betrekking tot het menselijk lichaam. Een mooie geheugensteun werd eens getekend door Leonardo da Vinci:

244

Het zijn verhoudingen die opvallen als je je er niet aan houdt. Veel gewone verhoudingen vallen haast nooit op. Neem de vakantiefoto’s, waarop de mensen, dieren en dingen vele malen kleiner staan afgebeeld dan ze in werkelijkheid zijn. Niemand zal daar een aanmerking op maken, want alle objecten zijn naar verhouding evenveel verkleind. En geldt niet hetzelfde voor hetgeen juf of meester op het bord zet? Die vormtekening van een meter lijkt achter in de klas maar een decimeter en wordt vervolgens weer vergroot tot twintig centimeter, geen kind of leraar die daarover valt. En dan de dia’s of misschien wel de transparanten op de overheadprojector: vergrotingen van verkleiningen van de werkelijkheid. Wie de dia tegen het licht houdt, meent toch ‘hetzelfde te zien’ als hetgeen op de wand wordt geprojecteerd! Wij zijn eraan gewend en zolang niet aan de onderlinge verhoudingen wordt getornd, valt het verschijnsel ons niet meer op.

Wanneer maken we gebruik van verhoudingen? Daar is al sprake van op het moment dat kinderen zich in de fysieke ruimte gaan oriënteren. Als ze schattingen maken, bijvoorbeeld: “Wat is verder vanaf het tafeltje voor de klas, de deur in het lokaal of de kast achterin? Even afpassen met stappen.” Of als kinderen een legpuzzel maken. Eén achteloos gesteld vraagje kan de aandacht richten: “Hoe groot denk je dat de puzzel zal worden?” Het antwoord kan globaal, louter met gebaren worden gegeven. Net zoals Bastiaan dat deed met de regenwolken. Maar het kan ook heel precies, als kinderen het meten al onder de knie hebben.
Foto’s, waar de verhouding onopvallend aanwezig is, geven ook aanleiding tot het doen van schattingen en dus het gebruiken van het verschijnsel verhoudingen.

“Hoe hoog is die boom? Ik denk dat dat grootste kind ongeveer 1,55 m is. Dan is de boom, laten we zeggen …”

245

Wie schat, zoekt vergelijkingsmateriaal. We zeggen ook wel: referentiepunten. Ieder mens bouwt in de loop van de jaren een repertoire op van persoonlijke referentiematen. Ik ben 1.69 m lang en dus schat ik de hoogte van die keukenplank op ongeveer 1.85 m. Deze balk is ongeveer 2,5 cm dik, dat zie ik door mijn duim ertegen aan te houden. Een mok is ongeveer 2 dl, dus kan ik gemakkelijk een halve liter melk afpassen: 2½ mok. En in mijn kookboek vind ik dat één theelepeltje hetzelfde is als drie gram. Maar dan gaat het wel over …
Later komt de laatste overweging terug als het begrip dichtheid aan de orde is. Massadichtheid, wat vroeger soortelijk gewicht werd genoemd. Het is de verhouding van gewicht en volume; anders gezegd is het het gewicht van een bepaalde hoeveelheid van een stof. Hoeveel kg weegt 1 dm3 lood? Of, meer van deze tijd: wat is de massa van 1 m3 lood?
Ook bevolkingsdichtheid (verhouding van aantal bewoners en oppervlakte van het land waarop gewoond wordt).
Met deze verhoudingsproblematiek zijn we te snel door de wereld van de verhoudingen heen gesneld. We hebben het vergroten van foto’s en platen (kopieerapparaten doen dat momenteel procentsgewijs) niet genoemd. En het werken met landkaarten en stadsplattegronden, waarbij het begrip schaal essentieel is. Zowel getalsmatig (schaal 1 : 10 000 bijvoorbeeld) als meetkundig (dit lijnstuk is 1 km). Ook nebben we de modelbouw niet behandeld, met speelgoed op schaal of Madurodam op schaal 1 : 25. Ook de Mercatorprojectie niet, waarop Groenland naar verhouding veel te groot is afgebeeld.

En wat te zeggen van de verhoudingen die schaduwen met zich meebrengen? De schaduw van de vlaggenmast was om vijf uur langer dan om twaalf uur. Wat zegt die lengte, van de hoogte van de zon en dus van de tijd? Later, in klas 10, zie je dat het om een hoek, dus om een goniometrische verhouding gaat.
We zijn meetkundig bezig. Dat geldt ook voor het verschijnsel van de grijstinten op papier (of op een computerscherm). De indruk ‘grijs’ ontstaat door een mengsel van witte en zwarte puntjes. De verhouding ‘wit : zwart’ bepaalt de donkerheid van het grijs:

Mengsels worden ook bepaald door verhoudingen. Kinderen hebben ervaringen op dit terrein met limonadesiroop, waarschijnlijk niet zozeer getalsmatig, maar zeker intuïtief.
Pas echt moeilijk wordt het rekenwerk als we ons begeven op het terrein van scheikunde. Daar moeten verdunningen precies naar voorschrift gemaakt worden. De verhoudingen van het metriek stelsel (“Hoeveel cc gaan er ook weer in een ml?”) komen nu ook in beeld. En hoe zit dat ook weer met de verhouding tussen km/uur en m/sec of het Angelsaksische miles/hour (knoop)?
Omrekenen doe je ook op reis, bijvoorbeeld naar de V.S.. Euro’s  voor dollars, tegen een vastgestelde verhouding (wisselkoers). En wie in het buitenland prijsbewust is, loopt al winkelend verhoudingsrekenen te beoefenen.

246

Met voorgaande beschouwing is het verschijnsel nog lang niet uitputtend behandeld. Zo zijn voor de hand liggende zaken als prijs-kwaliteit verhouding, prijs per gewicht-lengte-aantal en dergelijke, inflatie en koopkracht, indexcijfer, kiesdeler, kijkdichtheid, … niet behandeld. Een leraar, die oog heeft voor het onderwerp, hoeft niet ver te zoeken. En als hij ook verder ziet dan de basisschool, komen onderwerpen als lineaire verbanden, formules en grafieken in zicht.

Verhoudingen in het leerplan

Het is niet mogelijk een volledig leerplan voor verhoudingen te geven. Dat moet met de bovenstaande verkenning van het gebied al duidelijk geworden zijn. Verhoudingen moeten in het kader van veel andere onderwerpen aan de orde worden gesteld. Dit houdt een gevaar in, namelijk dat het onderwerp in de vergeethoek geraakt. Er kan echter van een minutieus gefaseerde leergang, zoals in het geval van de tafels en de cijferalgoritmen, hier geen sprake zijn omdat elke vrijeschoolleraar de onderwerpen kiest, die in zijn klas geschikt zijn en hij ze vervolgens in de context van andere onderwerpen aan de orde stelt.
Globaal kan men het volgende als richtlijn beschouwen: Verhoudingen vormen in de eerste drie klassen geen leerstof die expliciet aan de orde komt. Toch is er een bedding voor te vormen middels het schatten en vormtekenen. In de vierde klas is door het denken in breuken een goede basis te leggen voor de verhoudingstabel, die handig is om verhoudingsvragen mee te bewerken. Zo ontstaat de verhouding als relatieve maat.
De laatste stap kan dan in de hogere klassen plaatsvinden, waar inzicht in de dubbele open getallenlijn en het gebruik van de verhoudingstabel worden geleerd. Met de laatste kunnen verhoudingssvragen ook algoritmisch worden opgelost. Bij een goed doordachte keuze kan in de loop van acht jaar het onderwerp verhoudingen doorgewerkt worden. Tot en met de toepassingen binnen en buiten de wiskunde, tot en met de lineaire functies en als een goede basis om het gebied van de hogere machts- en exponentiële functies te betreden.

Nu volgen suggesties om het onderwerp door alle lessen en perioden heen aan de orde te stellen.

1 vormtekenen

Wat op het bord voorgedaan is, wordt ‘in verhouding’ overgebracht op het eigen papier.

2 Het elementaire meten

Hier worden natuurlijke grootheden vergeleken, vaak met behulp van het eigen lichaam als maatstaf. Meetgetallen zijn verhoudingsgetallen.

3 Schatten met referentiematen

In het dagelijks leven, maar ook op foto’s en platen. Het is een waar feest wanneer de kinderen in de lagere klassen mogen schatten. Er verschijnen vele antwoorden op het bord. Ze zoeken nog houvast bij elkaar: “Zou ik er helemaal naast zitten of heeft Johan ‘het’ te ruim genomen?” Dan mag iemand het gaan nameten. Met ingehouden adem wacht de klas af, tot de ‘nameter’ met het juiste antwoord terug komt en een gejuich stijgt op, wanneer iemand dat antwoord ook geschat heeft.

247

De bakker had aan de school een oude balans uitgeleend met grote gewichten. We waren net begonnen met metselen in de huizenbouwperiode en een eerste zakje met cement stond in de hal klaar. Ik gaf een van de kinderen de opdracht het te halen en op de balans te plaatsen. Daarna gaf ik hem een gewicht in zijn handen en vroeg: “Hoeveel van die gewichten moet ik aan de andere kant op de weegschaal zetten?” Daarna deden we dat dan ook met grotere en kleinere gewichten.

Zo is tot in de hoogste klassen bij kinderen in het ‘schatten’ gevoel voor verhoudingen te stimuleren.

4 ruilhandel

Het begint voor de kinderen al in de knikkertijd op het schoolplein. Knikkers, bammen en supers staan in vaste verhouding tot elkaar. Omrekenen naar knikkers is het gemakkelijkst om ruilhandel te kunnen plegen. Maar op een zeker moment komen koerslijstjes in de klas …

5 Vergroten en verkleinen

Met roosters op papier en met een projector in werkelijkheid.
Bouwen van een voorbeeld, een plattegrondje van de klas maken, een tekening maken van de weg van huis naar school, met karakteristieke punten op de juiste plekken.
Op een overheadprojector liggen drie munten. Op de wand zijn drie zwarte
cirkelschijven te zien. Welke munten zijn dat? Het antwoord wordt gemakkelijker als een van de munten wordt geïdentificeerd als een dubbeltje. Hoe kunnen we zeker zijn?

6 Vervormen

Met behulp van roosters: van vierkantenrooster naar rechthoeken. Uitrekken in de lengte of in de breedte. De verhoudingen ‘kloppen niet meer’.

248

In de handwerklessen van de zevende klas maken de kinderen vergrotingen en verkleiningen met behulp van een raster. Wellicht hebben ze in de zesde klas al eens de kaart van het Romeinse Rijk vergroot, maar er komt meer bij kijken als het erom gaat een kledingstuk passend te krijgen.
In de voorgaande klassen maakten de kinderen patronen voor handschoenen, stoffen beesten of sloffen, door bijvoorbeeld de voet om te trekken en dan de stof iets groter te knippen. Nu, in de zevende klas, wordt er een blouse ontworpen. Om een blouse of bodywarmer op de juiste maat te krijgen bepalen de kinderen de verhouding tussen patroon en lichaam. Het meten aan lichaam en patroon levert dan de vergrotingsfactor, die vertelt hoe de ruitjes van het raster vergroot moeten worden.
Daarbij komt het vraagstuk of het kledingstuk misschien langer of wijder moet worden dan het patroon aangeeft. Dat vraagt om veranderingen (vervormingen), waarbij de verhoudingen niet in stand blijven. Hoe brengen we die vervormingen tot stand in het op ruitjespapier getekende patroon?

En vanuit een andere invalshoek komen er vragen als: “Wat is er aan de hand met die karikaturen?” “Is het hoofd van die getekende baby niet te klein?” “Hoe lang moet je de armen van een mens tekenen?”

249

7 Referenties voor schaal

Gegeven een foto van een bij. De afbeelding van het insect is veel groter dan het in werkelijkheid is. Dat kun je zien omdat er en liniaaltje naast ligt.

Je ziet dat het een vergroting is. Wie weet hoe groot die bij in werkelijkheid is? Op het fotokopieerapparaat kun je ook vergroten en verkleinen. Wat betekent een vergroting van 125%? Probeer het maar uit.

8 schaal

Maak een schets van je kamer op schaal. Wat is een geschikte schaal? Lukt het met 1 : 10? Of moet je naar 1 : 20? Welke schaal staat op stadsplattegrond? Wat betekent die visuele schaal: een lijntje van 1,5 cm staat voor 1 km? Wat betekent schaal 1 :100 000? Weet je een grotere schaal? Weet je wat een curvimeter is? Hoe werkt dat met schalen?

9 Schattend rekenen met aandacht voor de relatieve fout

Afronden gebeurt binnen bepaalde grenzen. Hoever ga je door met de staartdeling 3 / 100,0000\ … als het erom gaat een plank van 1 meter in drie gelijke plankjes te zagen? Welke benadering is nauwkeuriger: 7,8 = 8 of 97,8 « 100?

10 Opgaven ‘onderweg’

Die kaars heeft volgens de fabriek 10 branduren. Hoelang zou hij al gebrand hebben? Die wegwijzer moet ergens op de weg van Driebergen naar Arnhem gestaan hebben? Waar precies? Hoe kunnen we een ‘schaalmodel’ maken van de aarde, maan en zon? Kunnen we ook de grootten van de hemellichamen op die schaal maken? Leg eens uit waarom de zon en de maan even groot lijken als ze aan de hemel staan? Weet je een manier om de snelheidsmeter in de auto van je vader (of een ander) te controleren? Kun je uitrekenen hoeveel de afstand van 12 cm op een kaart met schaal 1 : 100 000, in werkelijkheid is?

11 Stok-schaduwmodel

Zet een stok van één meter verticaal op het schoolplein en meet met vaste tussenpozen de schaduwlengte op. Gebruik de verhouding stok-schaduw om de hoogte van een boom, schutting, hek, muur of iets dergelijks in de buurt te vinden. Let eens op de driehoeken, die hebben dezelfde vorm.

250

12 Dichtheid en mengverhouding

“Pap kom eens kijken, deze struik zit vol bosbessen, hij ziet helemaal blauw, de blaadjes zie je haast niet meer!” We kwamen allemaal aanrennen, misschien zaten er op die fantastische plek van Bride nog meer van die struiken. “Poeh, wat een klein struikje”, riep Jannes mijn andere spruit, “de mijne ziet wel niet zo blauw, je ziet meer blaadjes, maar er zitten veel meer bessen aan! Ik ga terug.” “Dat kan niet!” zei Bride, “ik heb nog nooit zo’n volle struik gezien.”
Wie heeft er gelijk? Als je rekening houdt met de grootte, verhoudingsgewijs dus, dan zitten er absoluut gezien misschien wel meer bessen aan de struik van Jannes, maar relatief gezien zijn het er minder.
Verhoudingsgewijs … in verhouding tot wat? Relatief … ten opzichte waarvan?
Als de struik van Jannes even groot was als die van Bride dan zaten er aan zijn struik minder bessen. Om Bride gelijk te geven moet je dus beide struiken even groot denken, terwijl je de blauwheid -dat is de verhouding tussen bessen en blaadjes- van elke struik gelijk laat en de afmetingen in gedachten verandert.

13 Verhoudingen in de breukenleergang

Zie hoofdstuk 5 en denk in het bijzonder aan de introductie van de dubbele getallenlijn. Ook het breukenelastiek is gebaseerd op inzicht in verhoudingen.

Enkele opgaven ertussendoor: Ze kunnen nu ook verhoudingsopgaven aan. Voorbeelden:

• Dit recept… is voor vier personen er komen negen gasten, …

• Mijn flat is keer  1½  zo hoog als die aan de overkant, die is 20 meter hoog Hoe hoog is mijn flat ?

• De vader van Brandaan ziet op zijn dashbord dat de benzinetank nog maar voor ongeveer  2/5    gevuld is. Er passen 70 liter in een volle tank. Maar er moeten nog heel wat kilometers gereden worden voor hij thuis is. Hoeveel liter ongeveer zit er nog in die tank?
Deze opgave is heel goed op te lossen met de dubbele open getallenlijn.

14 Introductie en verkenning van de verhoudingstabel

Het begint eigenlijk al bij de tafels van vermenigvuldiging, een rij als 3, 6, 9, 12, 15, 18, 21, … hoort bij de rij 1, 2, 3, 4, 5, 6, 7, … Zet je beide rijen in één mooi schema:

dan heb je een verhoudingstabel, met vele eigenschappen om al te verkennen. Bijvoorbeeld in de bovenste rij 1 + 4 = 5, geeft in de onderste rij ook een juiste optelling: 3 + 12 = 15. Logisch, zeggen we later, alle getallen zijn naar verhouding vergroot (vermenigvuldigingsfactor 3).

251

In de lessen over breuken, in de vijfde klas, komt de verhoudingstabel uitvoerig in beeld. Daar ziet men dat een breuk ook steeds een verhouding weergeeft, waarbij een deel (teller) op een geheel (noemer) betrokken wordt.

Kinderen kunnen het ‘relatieve’ van de getallen in de context van verhoudingen ook (leren) ervaren, wanneer ze bezig zijn met gelijkwaardige breuken. Met het breukenelastiek (blz. 191) is dit ook mooi te demonstreren. We hoeven het hen daarbij nog niet in abstracte zin bewust te maken, maar ze werken er mee wanneer een gelijkrij wordt aangelegd:

De verhoudingstabel is op te vatten als notatieschema (om evenredigheden in op te slaan) en rekenschema (om te rekenen met verhoudingsgetallen) voor het oplossen van verhoudingsproblemen. Hiermee kunnen we nu verschillende opgaven te lijf:

• Hoeveel kwartjes in 13 gulden?

• Als 1 Franse franc ongeveer 32 cent is, hoeveel gulden krijg je dan ongeveer voor f 250,-?

De benadering scheelt dus ongeveer 0,12 francs, laat maar zitten.

• Als 0,25 % van een bedrag f 70,- is, hoe groot is dan het hele bedrag?

Procenten zijn dus op te vatten als op 100 genormeerde verhoudingen. (In plaats van 1 : 4 zegt men dan 25 : 100, ofwel 25%).

• We kopen in voor f 12.500,-; we willen 8 % winst maken. Wat is de nieuwe prijs?

In dit voorbeeld zien we dat uit verhoudingen (inkoop : winst) nieuwe verhoudingen (inkoop : verkoop) door optelling (en de andere basisbewerkingen) te vormen zijn. De verhoudingstabel maakt dat rekenwerk overzichtelijk.

252

15 Verhoudingen bij procenten

Procenten zijn verhoudingen met die bijzonderheid, dat de verhouding steeds ten opzichte van het getal 100 wordt beschouwd.( zie ook H 6.3) Dat maakt het vergelijken van twee of meer ongelijke verhoudingen gemakkelijker.
Welk grijs is donkerder: 17 witte puntjes op 19 zwarte, of grijs van 33 wit en 37 zwart? In het eerste geval zijn er 17 wit op een totaal van 36, in het tweede geval 33 wit op een totaal van 70. Hoeveel procent?
17 op 36 is
(17 : 36 = 0,4722222… = 0,472 =  472/1000   =) ongeveer 47,2%.
En 33 op 70 is
(33 : 70 = 0,4714285… » 0,471 = 471/1000   =) ongeveer 47,1%!

16 Rekenregels met letters in verhoudingen

Twee gelijkvormige driehoeken, de ene met zijden p = 5,0;   q = 5,5;   r = 7,5.
De andere met zijden a; b; c.
Als a = 10,0 bereken dan b en c. Een opdracht, die met behulp van een verhoudingstabel eenvoudig tot een oplossing leidt.

17 Op onderzoek naar het getal π

Het gaat om de onveranderlijke verhouding tussen de omtrek van een cirkel en zijn middellijn (of straal). Laat de kinderen dit merkwaardige verschijnsel nameten aan allerlei cirkelvormige figuren: rijksdaalder, schoteltje, kopje, bord, lampenkap, … Verzamel de gegevens in een mooie tabel en laat de verhouding (= quotiënt, de uitkomst van een deling) uitrekenen tot achter de komma. Wie bedenkt vervolgens een formule voor de omtrek van alle cirkels?
Zou er ook een formule bestaan voor de oppervlakte van een cirkel?

18 Lineaire verbanden in formules
Verder in de zevende klas (H 7).

253

6.3 Procenten

Uit de Cijfferinge van Mr. Willem Bartjens, 1 February, 1763.

Geschiedenis

Bovenstaande opgave is overgenomen uit een van de vele herdrukken van het beroemdste rekenboek in de Nederlandse taal, de Cijfferinge van Willem Bartjens. Het woord ‘procent’ komt er niet in voor, maar het gaat wel over procenten, men wil namelijk van die 600 gulden 7 ten honderd rente per jaar ontvangen. Dat is van elke 100 gulden er dus 7 gulden op toe krijgen. Of anders gezegd: voor elke 100 gulden die je uitleent, krijg je er na één jaar 107 terug.
De eigenlijke vraag is in dit geval anders, en behoorlijk lastig: “Wat mag je verwachten te ontvangen als men je nu contant terugbetaalt?” Dan kun je dat bedrag zelf op rente zetten en dan groeit het successievelijk weer in drie jaar aan tot 600 gulden.
De antwoorden en de berekeningen zijn er in het boek bij gegeven. Voor het rekenen is gebruik gemaakt van de ‘Regel van Drieën’. Eigenlijk de ‘Verkeerde Regel van Drieën’, die in de regel 107____100____200 | 186  98/107      tot uitdrukking is gebracht: “zoals 100 groeit tot 107, zo groeit het getal dat ik zoek tot 200.” Wie de goede opstelling van de getallen heeft,107____ 100____ 200 , kan gaan rekenen, middelste getal maal het meest rechtse, gedeeld door het meest linkse getal:  100 x 200/107    = 186 98/107  

Wie denkt dat deze opgave in het rekenprogramma van de vrijeschool anno 2000 thuishoort, heeft het mis. De opgave kan hoogstens als uitdaging voor een rekenbolleboos achter de hand worden gehouden. Nee, deze opgave is bedoeld om te laten zien dat het rekenen met procenten niet van de laatste tijd is en dat het behoorlijk lastig kan zijn om een ogenschijnlijk eenvoudige opgave met de gegeven middelen op te lossen.

254

De geschiedenis van het procentrekenen gaat verder terug dan het begin van de zeventiende eeuw, toen de eerste druk van de Cijfferinge uitkwam. Reeds de Grieken konden al tegen betaling geld lenen bij de bank. De rente werd vastgesteld per 100 drachmen. In de Middeleeuwen en daarna kende men het verschijnsel, dat boeren een tiende deel van de opbrengst van hun land moesten afstaan aan de kerk. In Brabant vindt men nog steeds landerijen die in het verleden van een dergelijke belasting vrijgesteld waren .’Tiendvrij’ werden deze stukken land genoemd. Toen zich in de twaalfde eeuw de handel en dus ook het boekhoudkundig rekenen begonnen te ontwikkelen, behoorde daartoe ook het rekenen met procenten.
Simon Stevin (1548-1620) stelde Tafelen van Interest samen om het berekenen van rente gemakkelijker en sneller te maken. Soortgelijke ‘tafels van rente’, of beter ‘kortingstafels’, vinden we heden ten dage in grootwinkelbedrijven, als er weer uitverkoop is.
Het woord procent (percent) komt van ‘per honderd’, of ‘ten honderd’, zoals in de opgave uit het boek van 1763. Op een gegeven moment is ook het symbool % uitgevonden.
Zo te zien werden aanvankelijk de procenten alleen gebruikt in de context van rente, maar momenteel komen ze in allerlei andere contexten voor. Denk maar aan ‘geen alcohol in het verkeer’ met alcoholpromillage en -percentage. Of aan de samenstelling van vezels in kleding (50% wol). Andere contexten zijn bevolkingssamenstelling, werkeloosheid, ziekteverzuim, AOW, loonsverhoging, winst en verlies, belasting, prijsverlaging, inflatie, koopkracht, uitverkoop, BTW, de discount, stoffen oplossen in een vloeistof, legeringen, kijkdichtheid, hypotheek, …
Procenten zijn niets anders dan verhoudingen. Als je wilt weten welke verhouding groter uitvalt, 17 op de 35 of 19 op de 39, dan kun je beide verhoudingen herleiden tot ‘per honderd’; 17 : 35 = 49 : 100 en 19 : 39 = 49 : 100. Allebei dus ongeveer 49 procent. Reken je wat nauwkeuriger, dan blijkt de eerste ongeveer 48,6 en de tweede ongeveer 48,7 procent te zijn. (Je vindt dat bijvoorbeeld door de delingen 17 / 35 \… en 19 / 39 \… te maken, en af te lezen ‘hoeveel honderdsten’ er zijn. Hiermee is dan ook weer een verbinding gelegd met de decimale breuken).

Achtergronden

In de veertiende voordracht van Erziehungskunst, Methodisch-didactisches koppelt Rudolf Steiner de behandeling van de rente, de procenten en het disconto aan de leeftijd van twaalf jaar. Hij stelt dat rond deze leeftijd de laatste instincten van de ziel overwonnen moeten worden door het oordeelsvermogen. Duidend op de renteberekening voegt hij er de waarschuwing aan toe, dat we met de genoemde stof niet te laat moeten zijn. Op de leeftijd van twaalf jaar zijn in het kind de innerlijke egoïstische gevoelens nog niet ontwaakt. Het werken met procenten in de context van renteberekeningen, appelleert dan nog niet aan een mogelijk sluimerende hebzucht.
In de dertiende voordracht van Erziehungskunst, Seminarbesprechungen und Lehrplanvortrage ligt de nadruk op de
overgang van interestformule

R = K x P x T
                 100                 
naar de algebra. In die voordracht komen ook andere onderwerpen aan de orde, die destijds maatschappelijk relevant waren, zoals rabat, emballage en het rekenwerk met betrekking tot een wis-

255

sel. Handelsrekenen, zeggen we nu. De relevantie voor het reken-wiskundeonderwijs van nu heeft zich gewijzigd.

We kunnen ons afvragen of Rudolf Steiners aanwijzingen voor het leerplan gelden voor het hele gebied van de procenten. We menen van niet, de dominante context van weleer, de renteberekening, is vervangen door een scala van andersoortige contexten, waarvan vele een duidelijke maatschappelijke relevantie hebben zonder in direct verband te staan met het vermeerderen van eigen bezit of vermogen.

Bakens voor een rekenperiode over procenten zijn:

• Procenten worden visueel in beeld gebracht.
• Schattingen maken van percentages in concrete voorstellingen.
• Percentages van stroken; percentages bepalen met ‘breukenelastiek’ (met een indeling ‘in 100’); gebruik leren maken van de dubbele lege getallenlijn.
• Gebruik leren maken van de verhoudingstabel (zie blz. 251) om percentages te berekenen.
• Procenten als groei/krimpfactor.
• Toepassingen.

Procenten in de zesde en zevende klas

Vragen, waarvoor op dit terrein samen met de leerlingen een antwoord gezocht moet worden, zijn:

• Waar zijn we het % begrip (al) tegengekomen?
• Wat zijn procenten?
• Waarvoor gebruikt men procenten?
• Wat is de meerwaarde van procenten ten opzichte van gewone en decimale breuken?
• Hoe rekent men met procenten?
• Hoe kun je het reken- en denkwerk bij procenten ondersteunen?
• Wat zijn de knelpunten bij het procentrekenen?
• Welke toepassingen zijn er?
• Wat is het verband met decimale breuken?
• Wat is het verband met verhoudingen?

Gezien het veelvuldig gebruik van procenten en de vele contexten, waarin dit gebruik zinvol is, is het verstandig in de vijfde klas al te beginnen met een periode procenten. Het onderwerp procenten wordt eerst verkend, het gaat dan om een inventarisatie van hetgeen de kinderen al weten of denken te weten. Vervolgens wordt het onderwerp nader onderzocht met voorbeelden uit de eigen omgeving. Het gaat om de begripsvorming, het idee dat procenten bijzondere verhoudingen zijn (tegen de achtergrond van 100) of breuken, waarvan de eenheid niet 1 is maar 100 is geworden. Natuurlijk komen dan ook de visuele voorstellingen in beschouwing, ze zijn bij de breuken net aan de orde geweest.

256

En als bij de breuken de dubbele getallenlijn (zie blz. 218) in gebruik is genomen, kunnen de procenten ook op dat schematische niveau tot ontplooiing komen. De bemiddelende grootheid is nu 100.

Het werken met stroken kan hieraan voorafgaan, het breukenelastiek als procenten’meter’ voor ‘liefhebbers’, als toegift er achteraan.
Procenten worden gekoppeld aan het begrip verhouding, de begripsvorming bij de kinderen gaat vooraf aan het verwerven van rekentechniek; van de traditionele ‘1% didactiek’ is geen sprake.
Het verband met breuken kan als volgt duidelijk worden: ½ = 1/25       =0,25 is 25%

In de zesde klas kan een tweede periode aan (onder andere) de procenten gewijd worden. Nu kunnen de door Rudolf Steiner aangegeven ontwikkelingsdoelen verwezenlijkt worden. Ook kan de dubbele lege getallenlijn verder geëxploiteerd worden, de verhoudingstabel in gebruik worden genomen, veel toepassingen als uitgangspunt worden gekozen en, meer theoretisch van aard, het verband met de decimale breuken onderzocht worden.

Hoe maak je van   3/8   de decimale breuk 0,375? Bijvoorbeeld via 1/8         , waarvan je wist dat het 0,125 is. Misschien wist je dat indirect, omdat bij het hoofdrekenen het getal 1000 al meer dan een keer ontbonden was in 8 x 125, eventueel aanvankelijk door drie keer te halveren: 1000; 500, 250, 125. Of nog indirecter, omdat je de decimale breuk 12,5 goed kunt thuisbrengen, als het achtste deel van 100. Maar de herleiding hoeft natuurlijk niet te lopen langs 3 x 0,125; je kunt ook  3/8 ineens aanpakken, en de deling 8 / 3, 000 \… gaan maken
Wie bij deze opgave zijn zakrekenmachientje kan gebruiken, is er met vier welgekozen toetsen uit. Met de weg terug, om van 0,375 weer een gewone breuk te maken, kan een gewone zakrekenmachine geen hulp bieden. (Dat kan een bijzondere uitvoering van de zakrekenmachine wel. We denken hier aan de Galaxy 9x van Texas Instruments, waarop je met gewone breuken en decimale breuken kunt rekenen. Het is een zakrekenmachine die speciaal voor het onderwijs is ontworpen.)

Het rekenen met procenten moet na deze tweede rekenperiode natuurlijk niet in het vergeetboek raken. Welnu, het leven van alledag levert genoeg op om ze af en toe nog eens voor het voetlicht te halen. De fouten, die op dit gebied regelmatig gemaakt worden, vormen een rijke bron voor opgaven. Een voorbeeld:
‘Het ministerie van onderwijs heeft de oorspronkelijke vraagprijs van 1,2 miljoen gulden voor de lhno-school de Oesterschelp in Tholen met bijna 100% verlaagd tot 608.000 gulden. Voor die prijs kocht de gemeenteraad maandagmiddag het pand aan. De Eendrachtbode.’

257

Rekenen met procenten (I)

De opgave uit de Cijfferinge, waarmee deze paragraaf begon, werd destijds opgelost met de (Verkeerde) Regel van Drieën. Een ondoorzichtige rekenregel, die bij juist gebruik tot de goede uitkomst voert. Is men in staat goed in verhoudingen (evenredigheden) te denken, dan kan hetzelfde resultaat, via dezelfde berekening, bereikt worden.

Hoe was het ook weer? Het ging om 200 gulden, te betalen over één jaar. De vraag was wat er er nu contant betaald zou moeten worden (bij een rente van zeven procent per jaar), zodat dit bedrag over één jaar aangegroeid is tot de verschuldigde 200 gulden. Je denkt dan eerst aan een groei van 100 (procent) tot 107 (procent). Dit leidt tot de evenredigheid 107 : 100 = 200 : … Want de verschuldigde 200 gulden komt overeen met het aangegroeide bedrag van 107, en het gevraagde bedrag met 100. De hoofdeigenschap van evenredigheden levert 107 x … = 100 x 200, zodat je het gevraagde bedrag vindt via  100 x 200/107

In een bekende rekenmethode uit de jaren vijftig (Ik Reken, van P. Bosdijk) werden evenredigheden geschreven in de vorm van verhoudingsblokken. Een prachtige didactische vondst, die in één slag de bekende verhoudingssommen van die tijd tot een peulenschil maakten.

Ons instapprobleem zou met de verhoudingsblokken aldus opgelost zijn:

In die tijd, maar ook daarvoor en ver daarna, namelijk tot op de dag van vandaag, worden procentberekeningen veelal via ‘de 1%-methode’ gemaakt. Het verhoudingsidee is hier volledig verdwenen, men volgt in dat geval slaafs de regel: ‘neem eerst 1 procent’.

Ook in het geval dat bijvoorbeeld 10 procent van 15,45 moet worden berekend: 1% van 15,45 = 0,1545; 10% is 10 x 0,1545 = 1,545. Of, nog merkwaardiger, 75% van 64:1% van 64 = 0,64; 75% is 75 x 0,64 = … In plaats van| te nemen van 64, bijvoorbeeld als de helft (32) plus de helft van de helft (16) is 48.

Rudolf Steiner zegt in de dertiende werkbespreking, dat iemand die deze berekeningen beheerst (bedoeld worden renteberekening en rabatberekening), de werkwijze van het hele rekenen beheerst. Met deze uitspraak heeft Rudolf Steiner waarschijnlijk op het centrale belang van verhoudingen willen wijzen. Het hele rekenen is doortrokken van het verhoudingsbegrip. Dat geldt niet alleen de procenten, maar ook de gewone en decimale breuken, de meetkunde, het meten, begrippen als (bevolkings-, kijk-, massa-)dichtheid, kans, gehalte en ook de getallenlijn. Merkwaardig genoeg is ons slechts één plaats bekend waar Rudolf Steiner

258

de verhoudingen noemt. Dat is in het leerplan voor de gecombineerde klas 5/6, opgesteld op 25 mei 1919: “Verhoudingen zouden heel goed in samenhang met procenten behandeld kunnen worden.”
In het realistisch reken-wiskundeprogramma van nu wordt deze gedachte gerealiseerd, zij het dat het begrip verhouding het eerst onderwerp van studie is en het rekenen met procenten wordt gebaseerd op de notie van verhouding.

Rekenen met procenten (2)

Op dit gebied zijn niet zoveel opgaven te bedenken, die wezenlijk van elkaar verschillen.
Welke procentenopgaven kun je tegenkomen?
In de eerste plaats moet je een bepaald percentage van een gegeven bedrag kunnen berekenen. Al naar gelang de gegeven getallen kies je een geschikte rekenwijze. Soms is het voldoende een grove schatting te maken. In dat geval, maar niet alleen, is het bezitten van een visuele voorstelling een prettig hulpmiddel.
De omgekeerde opgave is lastiger, je moet bijvoorbeeld berekenen hoeveel procent 37,50 is van 245 (gulden). In het algemeen leerde men daar, op basis van de 1%-methode, een algoritme voor. Maar dat zouden we nu handiger kunnen doen met de zakrekenmachine, denkend aan verhoudingen en decimale breuken. Je toetst 37.5 : 245 = en leest af 0.1530612. Wetend dat een percentage de verhouding tot 100 aangeeft, neem je van het venstergetal alleen het deel wat je kunt gebruiken: 0,15. Dat is  15/100  , of wel 15 procent. Een goede rekenaar vraagt zich toch nog even af of hij geen (toets)fout gemaakt heeft, en maakt daarom nog een schatting. Hoeveel procent is 40 van de 250? O, dat is 160 van de 1000, dat is 16 van de 100, dat is 16 procent. Niet gek!

Een ander type opgaven gaat over groei of krimp, prijsstijging of prijsdaling, loonsverhoging of premieverlaging en dergelijke. In het algemeen werden dit soort opgaven in de vorige categorie geplaatst.
Bijvoorbeeld: op een bedrag van 65 euro wordt 15% korting gegeven. Hoeveel te betalen? Neem 1% van 65, … Momenteel, mede met het oog op komende wiskunde, pakken we de zaak anders aan: te betalen 0,85 x 65 = 55,25.
We zetten de rekenwijzen nog even op een rijtje aan de hand van het volgende sommetje

259

Rekenwijze 1: de visuele voorstelling
Hier is de situatie van het ‘bedrag + BTW’ op een strook afgebeeld. Het verdelen van de strook, in zes gelijke porties, vraagt inzicht in de betekenis van ‘20% erbij’. Is de voorstelling tot stand gekomen, dan is het rekenwerk uit het hoofd te doen: deel 204 door 6; dat is 102 : 3, dat is (bijvoorbeeld) 99 : 3 = 33 plus 3:3 = 1, samen 34. Nettoprijs, zie strook, 5 x 34 = 170.

Rekenwijze 2: de dubbele lege getallenlijn
Deze is eerst in het geval van de gewone breuken in de vijfde klas geïntroduceerd en wat daar geleerd is, kan nu zijn vruchten afwerpen. De bemiddelende grootheid is in het geval van de procenten altijd 100 (zo nodig 1000).
In dit geval is er sprake van een denkmodel. De lijn noodt uit om de gegeven getallen op een rijtje te zetten, hetgeen aanwijzingen geeft voor de uit te voeren berekening. Hoe kom ik van 204 naar …? Dat moet op dezelfde manier als van 120 naar 100. Een stap van 20 terug, dat is (‘verhoudingsdenken!) een zesde deel terug.
Hier wordt duidelijk dat bekendheid met het werken met verhoudingen op dit niveau heel noodzakelijk is.

Rekenwijze 3: verhoudingstabel
De verhoudingstabel is een bruikbaar notatieschema dat grote verwantschap vertoont met het eerder genoemde verhoudingsblok. Het schema is zo ingericht, dat de berekening er stap voor stap en meer in algoritmische zin gemaakt kan worden.
Hier staat de vraag in schemavorm geformuleerd: als 204 overeenkomt met 120 (procent), wat komt dan overeen met 100 (procent)? Rekentechnisch ligt het voor de hand om door 6 te delen:

260

Rekenwijze 4: de vermenigvuldigingsfactor
Deze aanpak is al eerder genoemd. Hij is meer verwant met het letterrekenen en de algebra. Nu kunnen we hem nader uitwerken. De vraag was hoe we 100 procent kunnen vinden als 204 euro gelijk is aan 120 procent.
Noem het gevraagde nettobedrag G. G staat dus voor een nog niet bekend getal, dat hier voor 100 procent doorgaat. Er komt 20 procent bij, dat is 0,20 x G. G groeit zo aan tot G + 0,20 G = 1,20 x G. Hier staat de essentie van deze rekenwijze: 120% van G is hetzelfde als 1,20 x G (of 1,2 x G). Anders gezegd:
Bij een groei van 20% is er een vermenigvuldigingsfactor van 1,20. En natuurlijk bij een krimp van 20% is er een vermenigvuldigingsfactor van 0,80. En bij een prijsverlaging van 12% worden de prijzen met 0,88 vermenigvuldigd.
De boormachine kostte dus netto 204 :1,2 euro, dat is 170 euro.

Een verrassend probleem:
De boormachine kostte netto € 170,00. Maar er moest f 204,00 betaald worden. Dat scheelt € 34,00.Hoeveel procent is de nettoprijs lager dat hetgeen ervoor betaald moest worden? Hoeveel procent is 34 van 204? Dat is (schatting) krap 17%. Hoe zit dat nu met die 20% BTW?
Zie ook het krantenbericht (probleem) over de lhno-school in Tholen (blz. 257).

Een nog verrassender probleem:
Bij een discount wordt op een artikel van € 375,00 12% korting gegeven. Bij de kassa moet je nog 18% BTW betalen. Zou het niet goedkoper zijn als je eerst de BTW betaalde, en dan van dat hogere bedrag de korting nam?
Nee hoor, de volgorde doet er niet toe. Reken maar mee. Geval 1 leidt tot 0,88 x 1,18 x 375 en geval 2 tot 1,18 x 0,88 x 375. Je hoeft niet eens te rekenen, je doorziet het met deze rekenwijze direct.

Ideeën voor rekenwerk met procenten

Na de tekenles werden alle citroengele kleurpotloden verzameld. Toen ze naast elkaar gelegd werden, bleek dat sommige potloden veel vaker gebruikt werden dan andere. Hoe kun je iets (getalsmatigs) zeggen van dat gebruik? Met procenten! Hoeveel procent is van een gegeven potlood gebruikt?
Al snel besloten we om de lengte van een ongebruikt potlood op 100 procent te stellen. Dat potlood bleek 17 cm lang. We dachten meteen aan een strook van 17 cm, die op 100% moest worden gesteld. Een dubbele getallenlijn mag ook.
Iedereen kon aan het werk om de verbruikspercentages van de potloden te bepalen. Het breukenelastiek werd ook nog even erbij gehaald. Dat was om de verdeling van 17, in tien gelijke delen snel af te handelen.

Na het kleurpotlodenvraagstuk heb ik de ‘procentenmeter’ geïntroduceerd. Met dat ‘instrument’ kun je de kinderen mooi de relativiteit van procenten laten zien.

261

De overeenkomst met het breukenelastiek is treffend en de kinderen moeten dat zelf kunnen ontdekken. De uitrekking van het elastiek, waarbij de onderlinge verhoudingen in takt blijven, komt overeen met de meetkundige vermenigvuldiging, die op de percentagemeter tot stand wordt gebracht.

De kleurpotlodendoos

Hoeveel procent is het potlood afgeslepen? Zie tekening hieronder. Schuif het hele potlood zover naar rechts, dat de punt precies tegen de schuine lijn, die naar 100% loopt, aan past. Trek dan een lijn door het startpunt links onder en de bovenkant van het afgesleten potlood. Die lijn snijdt de verticale ‘schaal’ rechts in een punt P. Als de schaal van 0 tot 100 netjes is aangegeven, kun je het percentage zo aflezen.

Het kledingstuk

Tijdens een gesprek over procenten kwam al snel naar voren dat in bijna ieder kledingstuk een etiket zit waarop de samenstelling van de vezels vermeld staat. Er waren kinderen die konden vertellen waarom de fabrikant dat deed. Voor de aardigheid hebben we een paar kledingstukken gewogen en vervolgens uitgerekend hoeveel gram wol (knotten van 50 en/of van 100 g) (katoen) ervoor gebruikt was.

Segment- en sectordiagrammen

We hebben eerst uit de vrije hand cirkels verdeeld in gegeven percentages. Ook hebben we grove schattingen gemaakt bij gegeven sectordiagrammen.

262

Het buurtcentrum

De wijk krijgt een nieuw buurtcentrum. Hoe zal de verdeling van de ruimten eruit komen te zien? In een enquête wordt naar de voorkeur van de buurtbewoners gevraagd. Men kan kiezen uit: Lezen/bibliotheek, (jazz)ballet, sport, koken, spel, techniek/hobby, muziek en toneel.
Nu wordt de klas in groepen verdeeld van zo’n acht à tien kinderen. Elke groep maakt zijn keuzen in een sectordiagram op een groot vel zichtbaar. Die vellen worden voor de klas gehangen.

Daarna zijn we in groepjes allerlei statistische gegevens van de klas gaan verwerken in segment- en sectordiagrammen. De groepen mochten zelf bepalen hoe en wat. Eerst dienden ze de gegevens te bepalen en vervolgens moesten ze de verwerkingsplannen even met mij bespreken. Als voorbeeld hebben we eerst samen een sectordiagram gemaakt van het aantal jongens en meisjes in de klas. Daarvan konden we percentages schatten en de schattingen hebben een paar kinderen toen met precieze berekeningen geverifieerd.
De volgende onderwerpen werden door de kinderen zelf gekozen: Bedtijden, met/zonder beugel, zakgeld, favoriete snoepgoed, sport.

Fouten opsporen

Er zijn inmiddels in de media al heel wat verhalen met fouten op het gebied van procenten, gepubliceerd. Hieraan is het heerlijk werken. De kinderen voelen zich uitgedaagd en willen zelf ook op zoek gaan. Hier een paar voorbeelden. Ze zijn niet allemaal even gemakkelijk, sommige horen pas in de zevende klas thuis.

Voorbeeld 1: Samen 27 procent

Uit onderzoek is gebleken dat 12% van de leerlingen die naar de mavo gaat, niet goed kan lezen en 15% niet goed kan schrijven. We kunnen er dus vanuit gaan dat meer dan een kwart van de aanstaande mavoleerlingen met onvoldoende taalvaardigheid beginnen •••!(?)

263

Voorbeeld 2: Zeventien procent van …
Een reclame campagne van Dirk van den Broek:

Moet dat eigenlijk niet ruim 14% zijn?

Voorbeeld 3: Verdubbeling

United verdubbelt de toegangsprijzen

MANCHESTER (Rtr) -Manchester United verhoogt volgend seizoen de prijs van de toegangsbewijzen met 50 procent …

Voorbeeld 4: Honderd procent per dag?

(…) Het inflatiespook, dat vrijwel heel Latijns Amerika tot zijn jachtgebied heeft gemaakt, is kind aan huis in Nicaragua. In 1988 gierde de geldontwaarding omhoog tot een percentage tussen de 32.500 en 36.000. “Ik zeg altijd maar: honderd procent per dag. Dat rekent lekker makkelijk”, grapt een westerse diplomaat in Midden-Amerika. (…)

Ten slotte

Hoe zou men de opgave van Willem Bartjens, waarmee deze paragraaf over procenten begint, nu – in de zevende klas – oplossen? Misschien wel met de vermenigvuldigingsfactor en een zakrekenmachine?

6.4 Geometrie

Voorbereidend periodeonderwijs meetkunde in de vijfde klas

De eersteklasser weet het al; als je later groot bent en bijna aan het eind van de gang zit (in de zesde klas) maak je van die mooie grote tekeningen met ‘rondjes door elkaar en allemaal kleuren!’ Een geliefd toekomstbeeld om naar uit te zien! De meetkunde, als wiskundig vak, vindt zijn aanvang in het onderwijs als het heldere denken begint te ontwaken. Het oordelend vermogen van de leerlingen wordt sterker en de zesdeklasser vindt zijn weg in het sociale leven en gaat op zoek naar ‘law and order’. De kinderen gaan, zogezegd in de voetsporen van Caesar, letterlijk en figuurlijk het dagelijks leven strijdlustig tegemoet. Dam- en schaakspel, door orde en wetmatigheid geleid, worden geliefde en zinvolle bezigheden in regenachtige pauzes.

We gaan ervan uit dat het denken van een kind zich in dezelfde fasen ontwikkelt (in één leven), als het denken van de gehele mensheid in de opeenvolgende
cultuurtijdperken.
In de vrijeschool zijn de meetkundelessen bedoeld als een bijzondere bijdrage aan de scholing van het denken. Het leerplan voor geometrie (en algebra) laat

264

zien, dat de kinderen de ontwikkeling van het denken in de geest der geschiedenis opnieuw kunnen meemaken. We doorlopen als het ware iedere fase uit de geschiedenis van de geometrie en geven de leerlingen de gelegenheid en ruimte om hun wiskundige talenten naar eigen vermogen te ontwikkelen. Door het herbeleven en zelfstandig beoefenen van de klassieke meetkunde ontstaat een vruchtbare bodem voor de leerstof in een volgende (ontwikkelings)fase. Meetkunde draagt zo bij aan de ontwikkeling van het denken en reflecteren (dat is denken over het eigen handelen, dus ook het mentale handelen, dus ook het denken zelf). De interactie van de mens met de hem omringende wereld stimuleert de ontwikkeling van vermogens die het abstracte denken mogelijk maken.

In de Oudindische en Perzische cultuur, de periode die onderdeel uitmaakt van het geschiedenisonderwijs in de vijfde klas, was de mens één geheel met het heelal. Omdat de mens nog niet beschikte over een eigen bewustzijn, werd hij geleid door de goden. In Egypte leidden de ingewijden (de priesters) het volk, als plaatsvervangers van de goden. Op oude Egyptische voorstellingen en inscripties zien we dat de priesters, die wiskundige handelingen voor het volk verrichtten, zoals bijvoorbeeld landmeten, als goden werden afgebeeld.

In de Griekse cultuur komt een verandering tot stand. De mens probeert bewust kennis te verkrijgen over de goddelijke wereld middels het beoefenen van de natuurwetenschappen en filosofie. De afstand tussen mens en goddelijke wereld wordt groter, de mens wordt zelfstandiger.
In de geschiedenislessen van de zevende klas zien we dat het tot ver in de Middeleeuwen duurt tot er verandering komt in het klassieke wereldbeeld. In de Nieuwe Tijd gaat Copernicus voorop. Hij ontdoet zijn waarnemingen van alle mythische elementen en maakt hemel en aarde tot een kwantitatief ruimtelijk geheel. Niet de aarde, maar de zon beschouwt hij als middelpunt van de wereld. De acceptatie van zo een afwijkend standpunt verloopt niet zonder strijd tegen de gevestigde orde. De kinderen maken in deze periode kennis met de levensloop van verschillende grote natuurwetenschappers, met Leonardo Da Vinei als centrale figuur. Het denken van deze geleerden staat model voor wat in de zevendeklasser ontwaakt.

In de vrijeschool staat, net als in de scholen van de Griekse wijsgeren, al het onderwijs en zeker de wiskunde in dienst van de vorming van de gehele mens. Kennisinhouden en denkvaardigheid, ingebed in het grote geheel, geven de mens de mogelijkheid het denkend handelen te toetsen aan Goedheid, Schoonheid en Waarheid. In het bijzonder in de meetkundelessen wordt dit zichtbaar.
Voor het leerplan wiskunde, dat in de laatste klassen van de onderbouw aanvangt, heeft de keuze van deze historische leerroute grote consequenties. De

265

meest recente ontwikkelingen in de wiskunde krijgen namelijk zo pas laat een plaats in het curriculum. Zeker met betrekking tot de nieuwe ontwikkelingen in deze eeuw is er nog veel te onderzoeken. De laatste ontwikkelingen, die onder meer voerden tot een algebraïsche meetkunde en/of een meetkundige algebra, hebben sinds de jaren ’50 hun weg in het Nederlandse onderwijs gevonden. Resultaten ervan zijn nu ook zichtbaar in de reken-wiskunde programma’s van de basisschool en de basisvorming.

Een gefundeerd onderzoek naar de kwalitatieve betekenis van de nieuwe wiskunde en de veranderende inzichten in het wezen van de wiskunde zal, voor het vrijeschoolonderwijs, nodig zijn om zicht (geesteswetenschappelijk inzicht) te krijgen op het waarom, hoe en wanneer van het invoeren van de grondprincipes uit deze nieuwe onderwijsinhouden.

In deze paragraaf beperken we ons tot het geven van ideeën voor periodelessen meetkunde, gegeven vanuit de visie dat het meetkundeonderwijs enerzijds een algemeen pedagogisch ontwikkelingsdoel dient, maar anderzijds ook een relatie heeft met de directe levenspraktijk van het kind.

Periode-opbouw in de vijfde, zesde en zevende klas

In aansluiting op de geschiedenis van de Egyptische, Babylonische en Griekse cultuur, waarvoor in de vijfde klas al een aanzet is gegeven, verkennen we de meetkunde uit die tijd. Dit neemt een korte periode van veel doe-werk in de vijfde klas in beslag en bereidt voor op het geometrie-onderwijs in de zesde klas. De werkzaamheden zullen vooral een ‘handvaardig’ karakter hebben.
In het woord ‘geometrie’ lezen we de herkomst: het opmeten van de aarde (bijvoorbeeld van stukken land). Het vak werd in aanzet ontwikkeld door de Egyptenaren, die daartoe door de omstandigheden werden genoodzaakt. Als de jaarlijkse overstroming van de Nijl de akkers met een dikke en vruchtbare
sliblaag had bedekt, deelden de priesters (wiskundigen), als bemiddelaar van de goden, het land opnieuw in. Ze gebruikten daarvoor twee stokken en een stuk touw met een vaste lengte.
Verschillende lengten werden vergeleken door de stokken in de grond te zetten, maar er werd ook met oppervlakte gewerkt. Eén stok vast in de grond en met de ander werd een cirkel in het zand getrokken. Door dit te herhalen met hetzelfde touw, en ondertussen de positie en rol van beide stokken te verwisselen, konden landstukken worden afgepast.
Er werden geen tekeningen gemaakt. Al het meetwerk werd ter plekke uitgevoerd (zie blz. 265).

Ook kenden zij het ‘twaalf-knopen touw’. Een touw met twaalf knopen op gelijke afstanden, waarbij de einden in een van de knopen aan elkaar zijn gebonden. Met behulp van zo’n touw kunnen rechte hoeken worden uitgezet.

266

De Egyptenaren gaven aan de bijbehorende driehoekszijden godennamen. Later in de zevende klas ontdekken de kinderen dat in dit ‘meetwonder’ de stelling van Pythagoras schuil gaat (32 + 42 = 52).

Gewapend met stukken touw en de zelfgemaakte knopentouwen (een van de kinderen wilde per se het tien-knopen-touw uitproberen) gaan we buiten ‘landverdelen’.
In de kleuterzandbak, of liever nog op een groter zanderig veldje in de buurt van de school, zetten we rechte stukken, cirkels en rechthoeken uit.

Wie weet gaan we op deze manier de schooltuinen nog eens indelen. Hoe zouden we dat aan moeten pakken?”

“Kun je ook andere driehoeken maken met het twaalf-knopentouw?” Of stel de vraag anders: “Hoe maak je driehoeken met het twaalf-knopentouw? Teken de knopen er in.”

Door de levendige handel van Italië met het Oosten is via overlevering bekend gebleven, dat ook de Babyloniërs de bijzondere eigenschappen van de rechthoekige driehoek kenden.
We weten bijvoorbeeld hoe een landmeter in die tijd de afstand van een schip tot de kust bepaalde.
De landmeter zag het schip vanaf de kust recht vooruit en markeerde de grond. Vervolgens zette hij een paal een eind verderop en markeerde dezelfde afstand langs de kust nog eens. Dan liep hij landinwaarts net zolang tot hij het schip precies ‘in-lijn’ had met de paal.
Hij ‘wist’ dat de laatste afstand die hij gelopen had gelijk was aan de afstand tot het schip.

267

Aan de klas wordt vervolgens de vraag gesteld hoe de landmeter er zeker van kon zijn dat zijn methode juist was. De verleiding is groot om ook eens te overdenken hoe ze in die tijd zouden kunnen uitrekenen, hoe laat het schip de haven zou bereiken. Misschien een leuk probleem voor de ‘rekenhardlopers’ in de klas. Het probleem ‘afstand schip-kust’ vraagt erom om in ‘werkelijkheid’ uitgevoerd te worden. Ga met de klas buiten op onderzoek. Kies een vast voorwerp in de verte (niet te ver!), een boom bijvoorbeeld, en probeer of je de afstand kunt bepalen, zoals de Babyloniërs dat deden. We moeten wel een ‘kustlijn’ afspreken, want we kunnen natuurlijk niet naar het schip, pardon de boom, toelopen.
De kinderen kunnen in groepjes aan de oplossing gaan werken. De leraar pendelt tussen de groepjes en houdt in de gaten of men op het goede spoor zit. Tevens moedigt hij de kinderen aan om de gang van zaken op papier te zetten. Dat maakt de verslaglegging, straks in de klas, gemakkelijker.

Als sluitstuk van de periode gaan we de ons bekende meetkundige figuren nog eens tekenen. Ze worden ook uitgeknipt, nadat ze op gekleurd karton zijn getekend. Dezelfde figuren wel even groot maken, tenminste een aantal van dezelfde grootte! Kinderen vinden het heerlijk om hiermee in groepjes mooie patronen te leggen of te plakken, ze ontdekken er van alles aan. Wat een verrassing als je zomaar eens drie ruiten aan elkaar legt op de volgende manier:

Voor wie het al ‘ziet’, is spelen met kleureffecten ook leuk. Er is altijd wel een kind dat ontdekt, dat “het lijkt of de zon erop schijnt!”
En misschien komt een van de kinderen de volgende dag met Tangram, het eeuwenoude Chinese spel, op school. Dat inspireert tot het zelf maken van Tangram en het verzinnen van vormopdrachten, die aan elkaar worden opgegeven. Een heerlijk spel (ook buiten op het gras) voor zo’n echte warme zomerdag aan het eind van het schooljaar, waardoor de kinderen al doende lekker aan het (meetkundewerk zijn.

268

Eindelijk de zesde klas 

Meetkunde, maandagmorgen: Op die ochtend geen druk besproken weekendbelevenissen, maar een serieuze klas ernstig in de weer om alle nieuwe bezittingen voor deze periode uit te stallen. Midden op tafel liggen een passer, liniaal, geodriehoek, zwart potlood (met schuurpapiertje voor het scherp houden), kleurdoos, gum (het zoveelste).

Na de spreuk zie ik alle ogen vol verwachting op mij gericht. Onmiddellijk laat ik mijn voornemen, om eerst de bekende meetkundige figuren te lopen en op allerlei manieren uit de hand te tekenen, vallen. “Jongens, behalve je periodeschrift krijgen jullie nu ook een tekenvel. Zoek heel precies het midden van je papier op!” “Mag je vouwen juf?” “leder mag het op zijn eigen manier doen”, antwoord ik diplomatiek. Maar ik laat duidelijk weten dat het papier glad moet blijven om goed op te kunnen ‘construeren’.
Nieuwe, voor hen ongebruikelijke, woorden doen wonderen en nadat we de passer eerst goed bestudeerd hebben, zetten we de passerpunt in het zo juist gevonden middelpunt, trekken de benen van de passer uit elkaar en maken onze eerste, echte cirkel.
“Mogen we er nog een maken?” “Natuurlijk. Ik weet nog iets leuks: probeer een vorm te vinden waarbij je gebruik maakt van allemaal cirkels met hetzelfde middelpunt.”

Het resultaat van het werk varieerde van bijna chaos tot zeer geordende regelmatige cirkels.

In de zesde klas is een aantal kinderen natuurlijk al bedreven in het gebruik van passer en liniaal, anderen hebben bij de start van de periode nog hulp nodig. Het vraagt enige motorische vaardigheid om de cirkel ook echt rond te laten worden en niet als de passer ‘er bijna is’ een zijspoor te laten ontstaan.
Het construeren zelf roept precisie op en is daarmee een extra oefening voor de fijne motoriek. De op motorisch gebied zwakke kinderen zwoegen hier met plezier en in de loop van de periode gaat ook hun werk er nauwkeuriger uitzien.
Na deze ‘opmaat’, al of niet voorafgegaan door het uit de hand tekenen van bekende figuren, gaan we meetkundige figuren construeren en proberen we deze figuren en hun karakteristieke eigenschappen te doorzien.

In de voetsporen van de Griekse wiskundigen, die de grondslag legden voor onze wiskunde, gaan we nu aan het werk.

269

Bij het voorbereiden van de lessen en het kiezen van de opdrachten moeten we ons van ‘meet’ af aan voornemen geen definities te geven. We gaan dus niet uit van een definitie, maar van beelden. We proberen de gegeven figuur vanuit zoveel mogelijk gezichtspunten te bekijken en trachten zo kenmerken en eigenschappen ervan te vinden.

Bij de opbouw van de lessen maken we gebruik van de aanwijzingen van Rudolf Steiner. Zo zegt hij bijvoorbeeld dat wat wij met de kinderen in de reken-wiskun-delessen doen, ’s nachts tijdens de slaap in het kind doorwerkt, (zie ook H 2.) We houden hier rekening mee door de ene dag de (nieuwe) eigenschappen alleen maar te karakteriseren. De volgende dag komen we er dan op terug, reflecteren vervolgens op het werk van de vorige dag en gaan van daaruit weer een stapje verder. Op deze manier kan er bij de kinderen inzicht ontstaan dat door henzelf tot stand is gebracht.
De door het ‘nachtproces’ versterkte beelden van de vorige dag voeren naar activiteiten die het wiskundig denken op gang brengen; een proces, dat niet alleen voor de meetkunde, maar voor alle reken-wiskundige activiteiten geldt.

Schematisch voorgesteld:
1e dag: • doen
              • karakteriseren
              • beschrijven

nacht (niet meer aan denken, bezinken)

2e dag: • actualiseren, reflecteren
              • beschouwen, oordelen, uitbreiden
              • inzicht

Bij het leren kennen van de regelmatige figuren, hadden op een dag de gelijkzijdige driehoek en de rechthoek de aandacht gehad. De volgende dag daarop terugkijkend, kregen de kinderen de opdracht: “Construeer een driehoek, waarvan de basis zes centimeter is en de opstaande zijden beide acht centimeter. Kun je van deze driehoek een rechthoek maken met dezelfde oppervlakte?”
Het was niet makkelijk. En we moesten nog even met elkaar in gesprek blijven tot een aantal kinderen durfde te beginnen.
De eerste, die een idee kreeg, vroeg: “Mag je de driehoek nog een keer maken en dan verknippen?” Dat mocht natuurlijk, maar als die vragen hardop en centraal in de klas gesteld worden, is het wel moeilijk de andere kinderen ervan te weerhouden om ook de schaar te pakken.
Een aantal probeerde eerst op een blaadje wat uit en durfde, vooral door mijn aanmoedigingen, verder te gaan. Zo kwamen de kinderen toch tot verschillende oplossingen.

270

Bij het voorbereiden van de lessen en het bedenken van opdrachten gaan we ook op een andere manier te rade bij de Griekse Klassieken. In navolging van Plato en Aristoteles uit de oude school der wijsbegeerte kunnen we in het meetkundeonderwijs twee wegen bewandelen.
De ene weg volgt de opvatting van Plato: de ontwikkeling van het verstand geschiedt via de voorstelling, los van de stoffelijk waarneembare werkelijkheid. De meetkunde wordt dan uit de figuren, de voorstelling, de idee ervan verder ontwikkeld.
De andere weg sluit aan op de opvatting van zijn leerling Aristoteles, die afstand
nam van zijn leermeester door te beweren dat de algemene principes juist gevormd worden door ervaringen in het dagelijks leven. Dat gebeurt dan via de zintuigen. Zo gezien leiden meetkundige activiteiten in ‘het dagelijks leven’ tot meetkundige begrippen en inzichten.

In de lespraktijk leiden de mooie constructietekeningen met cirkels tot versterking van het voorstellingsvermogen. Ook de volgende oefening zou je met de klas kunnen doen.

“Stellen jullie je eens voor: we hebben een cirkel. Nu laten we de cirkel steeds groter worden. Hoe groot kan de cirkel worden?
Stel je voor dat je een klein stukje uit de eerste cirkel hebt genomen. Dat is een klein gebogen lijntje. Wat is er nu met dat lijnstukje gebeurd?” Waarschijnlijk antwoorden sommige kinderen: “Het wordt steeds rechter en is uiteindelijk helemaal recht.” Er kan ook twijfel aan deze uitspraak ontstaan: “Misschien toch niet, want je kunt altijd een nog grotere cirkel denken!”
Maak er een tekening bij of laat de kinderen een tekening erbij maken.

We maken ook uitstapjes, op zoek naar rechte lijnen, naar horizontale en verticale lijnen en naar een loodrechte stand. “Hoe weet een timmerman eigenlijk hoe hij een plank horizontaal moet ophangen, hoe weet hij waar de haken aan de muur moeten komen? Waarom gebruikt hij wel waterpas, schietlood en zweihaak, maar geen duimstok om vanaf de vloer gelijke stukken af te passen?”
Door zo’n ‘onderzoekje’ naar het werk van de timmerman ervaren we recht en loodrecht, wat we weer in een tekening kunnen weergeven. Horizontaal langs de aarde en loodrecht daarop naar het middelpunt van de aarde.

We zien hier twee verschillende benaderingen van de ideeën recht, rechte en loodrecht. Ze kunnen een voorbereiding zijn op de lessen over de
grondconstructies.
Door meetkunde in de zesde klas ook dicht bij de praktijk en de toepassingen te verkennen, kunnen we proberen beide bovengenoemde wegen, die leiden tot wiskundig denken, te verbinden.

271

Meetkunde in de zesde klas is een ontmoeting met en een verkenning van:

• passer, liniaal en geodriehoek
• cirkels en bijzondere lijnstukken in de cirkel
• geometrische figuren in cirkelconstructies
• karakteristieke eigenschappen en het leren construeren van geometrische vormen zoals driehoeken, vierhoeken in verschillende gedaanten.
• cirkelverdelingen in graden en schattend meten van hoeken
• scherpe, stompe, rechte en gestrekt hoeken en hun constructie
• symmetrieën in figuren en het beschrijven ervan, zoals bekend uit het vormtekenen
• de vijf basisconstructies en het gebruik ervan in andere opdrachten
• ruimtelijk meetkundige figuren in de wereld van de kinderen

De opbouw van een periode

Na de eerste dag vervolgen we het construeren van figuren met behulp van de passer. Bij het inkleuren van de figuren laten we de kinderen zoeken naar ideeën om dit zo te doen, dat het karakter van de tekeningen nog sterker tot uiting komt.

We hadden al eerder een cirkel in zessen verdeeld. Vandaag volgde de constructie van de verdeling in twaalven. “Teken een cirkel en twaalf nieuwe cirkels, met de middelpunten op gelijke afstanden op de cirkelomtrek van de eerste cirkel”, was de opdracht. “Hoe groot mag de straal worden zodat het figuur de hele tekenbladzijde in je schrift vult?”
Nu gaan we op zoek naar (andere) regelmatige figuren in deze figuur. “Zien jullie een vierkant? Zoek de hoekpunten, ze liggen op de snijpunten van cirkels.”
Dat was geen gemakkelijke vraag. Eerst moesten we de uit de tekenlessen bekende figuren uit het geheugen opfrissen en toen vonden we met elkaar de eerste figuur (de ruit) op het bord. Vervolgens gingen de kinderen, vooral samen, het verder proberen. Het vinden, het zelf ‘zien’ van de andere figuren in de cirkels, was voor veel kinderen een moeilijke opgave. Met wat hulp kwamen ze er allemaal uit en dan was er grote vreugde over het prachtige resultaat.

272

Nu we ‘weten’ hoe een cirkelomtrek verdeeld kan worden, maken we ook regelmatige figuren in een cirkel zonder de hulpcirkels volledig te tekenen. Een klein hulplijntje is voldoende om een punt op de cirkelomtrek aan te geven.

De variaties zijn eindeloos en alle kinderen kunnen hierin hun eigen weg gaan, waarna ze de resultaten kunnen uitwisselen. Dat kan een sprankelende happening worden.

Vanuit de gelijkzijdige driehoek, die we leerden construeren op een zelf gekozen basis, gaan we nu ook figuren construeren. Hier geldt weer dat de kinderen enerzijds zelf mogen ontwerpen en dat er anderzijds ook een aantal verplichte vormen door iedereen gemaakt worden. Nu krijgen de kinderen de opdracht te beschrijven, hoe ze de constructie hebben uitgevoerd. Het blijkt niet makkelijk om dat zo kort en functioneel mogelijk te doen.

Het is de moeite waard om tekeningen van meetkundige figuren, bijvoorbeeld de ‘cirkel-bloemen’, nu ook in de schilderlessen te gebruiken. Laat de cirkels bijvoorbeeld inkleuren met een beetje verdunde verf op droog papier; daar waar de ‘sluiers’ over elkaar vallen ontstaan de mooiste ‘bloemen’. Dit kan weer op een andere manier bijdragen aan het ervaren van de schoonheid van regelmatige figuren.

De vijf basisconstructies

Vervolgens krijgen de vijf basisconstructies een plaats in de lessen. Deze periode is niet alleen een periode van ‘tekenen en inkleuren’, maar vooral een periode waarin we ook respect krijgen voor de exactheid van het vak.
Het leren kennen van de basisconstructies moet geen activiteit op zichzelf zijn. Zorg dat de kinderen de toepassing ervan ook echt ervaren.

273

Zoek samen met de kinderen naar een ‘taal’ waarmee de constructies beschreven kunnen worden en leer ze ook een aantal wiskundige benamingen en symbolen, zoals loodlijn en                                                                                                    enzovoort

Ter introductie gaf ik de opdracht een horizontaal lijnstuk AB te tekenen. De letters A en B komen bij de eindpunten van het lijnstuk te staan.
“Maak een cirkel met middelpunt A en met een straal gelijk aan de lengte van AB. Daarna doen we hetzelfde met B als middelpunt. Nu maken we de straal van de cirkels steeds kleiner, maar tekenen steeds vanuit A en B een cirkel met dezelfde straal.”
De kinderen ontdekken zelf het ontstaan van de verschillende driehoeken op dezelfde basis, die we ook ‘gelijkbenige’ driehoeken noemen.
De volgende dag roepen we de opdracht van gisteren nog even in herinnering en kiezen opnieuw een lijnstuk AB. “Vandaag construeren we uit ieder punt A en B maar twee keer twee cirkels met gelijke straal.”
We komen nu tot de duidelijke conclusie dat de twee cirkels met middelpunt A en middelpunt B twee snijpunten hebben. Als we deze snijpunten verbinden, ontstaat er een rechte lijn die het lijnstuk AB precies middendoor deelt.
In deze tekening kunnen de kinderen op zoek gaan naar gelijke driehoeken en die met een kleur aangeven.

274

Na een uitvoerige introductie van de eerste basisconstructie kunnen de andere gewoon door middel van een korte instructie gegeven worden.

275

De regelmatige figuren

Nu de kinderen lijnstukken en hoeken kunnen verdelen en loodlijnen kunnen oprichten en neerlaten, gaan we verder met het construeren van de regelmatige figuren. Belangrijk is daarbij, dat we ook de eigenschappen en de namen van de figuren leren kennen.
Na de regelmatigheden in verschillende driehoeken gevonden te hebben (weten we nog van het twaalf-knopentouw van de Egyptenaren?), gaan we verder met de vierhoeken. Uit het vierkant ontstaan steeds onregelmatigere figuren, die steeds minder gemeenschappelijk hebben en tenslotte enig in hun soort zijn; wiskundige ‘individuutjes’.

Dit overzicht kan ook op een later tijdstip gebruikt worden om met de kinderen terug te kijken naar het werk in de periode.

276

Omgekeerd kan uit dit bijzondere weer het algemene voortkomen; uit een willekeurige vierhoek ontstaat weer het vierkant. De constructietekening kan de kroon op het werk van deze dagen zijn!

Al doende leren de kinderen de eigenschappen kennen en hanteren, zodat bijvoorbeeld opgaven als hieronder, geen moeilijkheden meer op hoeven te leveren:

• Construeer een vierkant met een zijde van 7 cm.
• Construeer een gelijkbenige driehoek met een basis van 6 cm en benen (opstaande zijden) van 8 cm.
• Construeer een ruit met zijden van 6 cm.

Dergelijke opdrachten kunnen de kinderen ook aan elkaar geven. Ze hebben veel plezier bij het controleren van de opgave. Wie knipte het eerst een zelfgemaakte figuur uit, om die vervolgens op het werk van de buurman te leggen? Klopt het? Had de opdrachtgever dezelfde ruit in gedachten als de buurman heeft geconstrueerd? Dit levert een mooi moment om hoeken nader te bekijken!!

Hoeken

Nog even de breuken:
We gaan terug naar de cirkel! We proberen ons de breukenperiode te herinneren: allerlei verdelingen van de cirkel(schijf).

We vertellen dat de Babyloniërs hun jaar in 360 dagen verdeelden en dan vijf godendagen eraan toevoegden. We laten zien hoe die 360 dagen geleid hebben tot de verdeling van de cirkel in 360 graden. Nu weten ze ook waarom een rechte hoek 90 graden is, en niet 100 graden, wat meer voor de hand zou liggen als ‘rekenaars van nu’ het voor het zeggen hadden.
We construeren een cirkel en kiezen vanuit het middelpunt twee loodrecht op elkaar staande middellijnen. We onderzoeken de hoeken die zijn ontstaan en de grootte, die we nu in graden gaan aangeven.

We kiezen ook willekeurige middellijnen en vinden de scherpe hoek, de stompe hoek en de gestrekte hoek.

277

Ik sprak af dat de kinderen deze week iedere ochtend tenminste één keer op de klok moesten kijken. Achter in het schrift moest de klok schematisch met de wijzers worden weergegeven. “Hoe groot schat je de hoek tussen de wijzers in graden? Hoe heet de hoek?”
Een wilsoefening, want had ieder kind aan het eind van deze week wel iedere dag gekeken? En een goede oefening voor het schatten van hoeken.

We zien ook de halve gradenboog op de geodriehoek en leren daarmee hoeken in graden nauwkeurig aan te geven.
Met veel plezier voeren de kinderen opdrachten uit, zoals: “Construeer een ruit met een zijde van 6 cm en een hoek van 60 graden.”
“Heeft de buurman, die de opdracht ook uitvoert, nu weer een andere ruit?”
En is het een heel mooie dag, dan ‘doen’ we deze opdrachten ook weer eens in het groot met stoepkrijt op het plein. Juist bij dit samenwerken gaat menig kind, waarvoor het werk nog niet al zijn geheimen had prijsgegeven, een lichtje op!

Tot slot: veel bleef onbesproken. Hopelijk is duidelijk geworden dat meetkunde voor de kinderen een geweldige ervaring is, maar dat er stevig doorgewerkt moet worden. Want iedere leerkracht wil de kinderen juist deze laatste mooie constructies niet onthouden.

Er zijn tekeningen, die zich lenen om eens in het groot te worden uitgevoerd. En wat een verrassing, als er in de pauze op het grote speelplein zo’n mooie vorm in prachtige kleuren is ontstaan.
Een tentharing met een touw en een krijtje is een uitstekende passer! En je kunt er heel grote cirkels mee maken.

278

Van oefenuren naar zelfstandig werken

Over oefenen, bijhouden, inslijpen, toepassen, beoefenen en zelfstandig werken

De discussie over oefenuren

Spreken we in de vrijeschool over oefenuren voor rekenen, dan bedoelen we de tijd die tussen twee rekenperioden aan rekenen besteed wordt. Het woord oefenuren is ingeburgerd, maar de term werkuren (of zelfstandig werken) dekt de lading beter. Hoe het ook zij, oefenuren behoren eigenlijk niet bij onze visie op rekenonderwijs. In de rekenperioden zelf dient het karwei geklaard te worden; de introductie, de verkenning, de verdieping en de oefening. Deze fasen in het leerproces zouden elk op hun tijd voldoende aandacht moeten krijgen, wat een kwestie is van het economisch inrichten van de beschikbare tijd.
De erop volgende periode, waarin een ander vak in het hoofdonderwijs gegeven wordt, is van belang voor rekenen – hoewel er geen rekenlessen worden gegeven- omdat het geleerde dan kan bezinken. De kinderen moeten dan op het gebied van rekenen even tot rust komen; de zojuist verworven inzichten behoeven niet meteen parate kennis te zijn. Meestal lijkt het alsof veel van het geleerde vergeten wordt en dat het weer heel wat herhaling en onderwijs zal vergen om het belangrijkste ervan weer in het bewustzijn te brengen. Maar wie de ontwikkeling van kinderen observeert, ziet ook dat op onverwachte momenten van herinnering nieuwe inzichten -en daar gaat het nu net om- optreden. De stof is blijkbaar niet vergeten, heeft zelfs nog doorgewerkt en er is iets tot stand gekomen, dat er voordien nog niet was.
Zo is de filosofie van het periodeonderwijs in de vrijeschool. De praktijk van het onderwijs is evenwel weerbarstiger. Reeds in de tijd van Rudolf Steiner werden twee rekenwerkuren ingevoerd omdat het met het rekenen slecht gesteld was. Sindsdien zijn zulke wekelijkse uren op het lesrooster terechtgekomen.
Thor Keiler (zie Gedanken zu den Üb- und wiederholungsstunden uit Lehrerrundbrief nr.46, okt. ’92) heeft ze in zijn klas om principiële en praktische redenen weer afgeschaft. De praktijk wees uit dat de oefenuren niet goed voorbereid konden worden omdat het hoofdonderwijs alle voorbereidingstijd opeiste, dat de oefenuren voor rekenen (wiskunde) teveel van de tijd van het andere vak afsnoepten en dat het zelfs voorkwam dat de oefenuren (oneigenlijk) besteed werden aan bijvoorbeeld het schrijven in het periodeschrift. Het ergste was dat de zwakke leerlingen niet geholpen waren met de oefenstof en de andere leerlingen zich verschrikkelijk zaten te vervelen. In plaats van een krachtige impuls aan het reken-wiskundeonderwijs te geven, werkten de oefenuren verlammend.

De bovenstaande analyse van de situatie in de schoolklassen met betrekking tot het rekenonderwijs, is heel actueel. Het pedagogische principe is duidelijk, maar de praktijk vraagt om aanpassingen. Zwakke rekenaars hebben extra zorg nodig, een grote groep leerlingen moet leren zich te concentreren en zelfstandig te werken. Elke leerling en ook de leraar vindt het prettig als iedereen eens goed voor zichzelf bezig is. Automatiseren heeft oefentijd nodig. Leerlingen die ziek zijn geweest moeten weer bij kunnen komen zonder dat het om extra (t)huiswerk vraagt en zonder dat de anderen daar onder lijden. Het is daarnaast ook belangrijk dat kinderen leren in alle rust systematisch en ordelijk te werken.
Kijken we naar onze leerlingen dan constateren we dat ze het erg druk hebben met buitenschoolse activiteiten en media-verstrooiing. De concentratie neemt af en de conventionele leerstof beklijft moeilijker. Tegelijkertijd beschikken ze enerzijds over veel informele kennis en anderzijds over veel onverteerde informatie. Daarbij zijn ze meer dan wakker, rap en soms zeer vaardig met de tong.

279

Er komt bij, dat een toenemend aantal kinderen steeds meer moeite heeft de leerstof te onthouden. Ook al is er in de periode efficiënt geoefend, dan nog beklijft niet alles. Deze kinderen zullen veel hebben aan momenten dat er zelfstandig gewerkt wordt.
In de hogere klassen hebben we bovendien te maken met een veelheid aan onderwerpen, bijvoorbeeld in klas zes:

• Verder werken aan de breuken-bewerkingen
• Verhoudingen
• Schaal-begrip (kan ook eerder behandeld worden)
• Redactie vraagstukjes
• Procenten
• Renteberekening en rente-formule
• Bruto, netto, tarra
• De eerste algebra (zo men daar aan toekomt)
• Afronding van het cijferen, deelbaarheid.

Per periode moet er een keuze gemaakt worden uit de onderwerpen, globaal zullen er zo’n drie rekenperioden zijn. Het kan dus lang duren voor een onderwerp, in de periode althans, terugkomt.

Kortom, goed voorbereid, didactisch doordacht en creatief ontworpen materiaal voor rekenwerkuren voorziet in een behoefte.
Tegelijkertijd weten we dat de praktijk van de oefenuren er anders uitziet: geen voorbereidingstijd, weinig geschikt materiaal, kopieën uit rekenboekjes uit lang vervlogen tijden (Naar Zelfstandig Rekenen schijnt nog hoog te scoren …!?), instrumentele uitleg, met als resultaat het ontstaan van weerzin tegen het vak rekenen.

Conclusies:
• Richt in eerste instantie het hoofdonderwijs economisch in, dat wil zeggen verdeel de tijd evenwichtig over de genoemde fasen van het leerproces.
• Creëer, indien gewenst, tussen de rekenperioden een aantal uitgekiende rekenwerkuren met een duidelijke doelstelling en een creatieve invulling.
• Verzamel voortdurend materiaal dat gebruikt kan worden om dergelijke uren van een goede invulling te voorzien.

Economisch werken in het periode-onderwijs

Eigenlijk zou de ‘bekende stof in elke periode een vast onderdeel moeten zijn, bijvoorbeeld aan het begin. Hier zou een halfuur d drie kwartier voor uitgetrokken kunnen worden. Zo ontdekken de kinderen ook wat ze wel en niet beheersen. In de hogere klassen wordt dit steeds belangrijker, dit besef van wat ze wel en niet weten. Als we er niet toe komen de stof in de periode te oefenen, kan in de volgende rekenperiode het gevoel ontstaan dat we weer opnieuw kunnen beginnen. De leerstof is weggezakt en in de vergetelheid terecht gekomen. In het werken aan bekende stof kan vaak de nieuwe stof al voorbereid worden, zodat het nieuwe van meet af aan ingebed is in wat gekend wordt en niet ondersneeuwt in wat weggezakt is en daarom ‘even’ herhaald wordt. Dat vraagt om een programmatische en didactische doordenking vooraf. Is de nieuwe stof behandeld dan kan deze eveneens naar het begin van de dag ‘verhuizen’. Het is belangrijk dat gedurende een aantal dagen de stof geoefend wordt; dan pas kunnen we van inslijpen spreken. Dan ontstaat de vaardigheid om ook met die stof om te gaan.
Complete muzieklessen aan het begin van de dag moeten vermeden worden. Een kort dagbegin en vervolgens van start met rekenen, om de twee uur zo optimaal mogelijk te benutten. Aan het eind van de periode kunnen de kinderen zelf aangeven waar ze nog moeite mee hebben. Ze kiezen dan zelf uit waar ze nog aan zullen werken. Dit betreft dus de stof, die door de periode heen                                 steeds herhaald is.

280

Rekenwerkuren 

Tussen de rekenperioden zouden er wekelijks één of twee rekenwerkuren kunnen worden ingericht. Daarbij kunnen we denken aan werkbladen die eventueel ook thuis afgemaakt kunnen worden. Het voordeel hiervan is, dat het huiswerk gekoppeld is aan een vaste dag in de week.
De leerkracht zou tijdens de periode al werkbladen kunnen maken, die het behandelde herhalen. Hij zit dan goed in de stof en maakt zo ‘werk op maat’ voor zijn klas. Van ieder werkblad zijn er een paar exemplaren. Met sterretjes zou de moeilijkheidsgraad op het werkblad aan te geven zijn, zodat kinderen zelf hun niveau kunnen kiezen. De kinderen werken de vragen dan in hun schrift uit. Het voordeel is dat het niet voor iedereen gekopieerd hoeft te worden en dat niet iedereen aan hetzelfde werkt.
Het blijkt voor kinderen een stimulans te zijn om aan een opdracht te werken, die ook al door een ander gemaakt is.

De rekenwerkuren zijn bedoeld om:

• het vaardig rekenen van de hele klas op peil te houden
• parate kennis in te slijpen
• achterblijvers op maat te helpen
• vaardigheden en inzichten creatief toe te passen

Thematisch onderwijs

Een andere invulling voor de zelfstandig werkuren is het rekenen in het kader van een ander vak, dat op dat moment in het periode-onderwijs naar voren komt, zoals bijvoorbeeld in de geschiedenisperiode de indeling van een tijdbalk of de kalender. En in de aardrijkskundeperiode het uitwerken van de schaal of het verrichten van metingen rond het weer. Hierdoor worden de vakken geïntegreerd. Taal speelt in elke periode een grote rol.
Hoe zit het in dit verband met het rekenen? Rudolf Steiner heeft vaak gewezen op de samenhang tussen de verschillende vakken en de mogelijkheden om daar optimaal gebruik van te maken. Wat een plezier geeft het om bij Engels te ontdekken, dat men in het United Kingdom de getallen precies omgekeerd benoemt! De tafels opzeggen in het Duits is ook geen verspilde tijd!

Wanneer beginnen met de rekenwerkuren?

De praktijk wijst uit dat als men al in de derde of vierde klas begint met een uurtje rekenen, buiten het hoofdonderwijs, dit nog niet ‘werkt’. De kinderen zijn dan nog niet in staat zich te concentreren op een activiteit, die eigenlijk in het hoofdonderwijs thuishoort.
In de vijfde klas kan het wel werkzaam zijn.
Voor het individueel helpen van zwakke rekenaars kan en moet al eerder tijd worden vrijgemaakt.

Kort rekenen aan het begin van de dag

Een mogelijkheid om bepaalde onderdelen van het rekenen bij te houden is het dagelijks oefenen, buiten de rekenperiode. Dit hoeft zeker geen rekenles te worden en mag hooguit vijf d tien minuten duren. Hier kan gedacht worden aan hoofdrekenen of aan het oefenen van tafels. Hoofdrekenen kan zowel mondeling als (gedeeltelijk) schriftelijk gebeuren. We kunnen ook denken aan een staartdeling die ’s morgens al te wachten staat op het bord.
Ook kunnen kinderen die moeite hebben met bepaalde onderdelen van het rekenen, elke dag een eigen oefening krijgen. Deze kan ook liggen op het vlak van de lichaamsgeografie of de ruimtelijke oriëntatie.

281

Samenhang in de zelfstandig werkuren

Door de weken heen kunnen we wat lijn in de rekenwerkuren brengen door één thema bijvoorbeeld vier weken lang te herhalen. Achtereenvolgens kunnen zo verschillende aspecten aan bod komen. Het wordt ook pas echt oefenen als de stof die problemen oplevert, de week daarop in dezelfde of in een andere vorm terugkeert.

Rekenwerkuren ten tijde van de rekenperiode?

In eerste instantie gaat het om rekenwerkuren tussen de rekenperioden. Drie uur achter elkaar rekenen op één dag is teveel. Het rekenwerkuur kan dan beter een andere invulling krijgen.

Als het rekenwerkuur in de middaguren plaatsvindt en een heel ander onderwerp heeft dan in de rekenperiode behandeld wordt, kan het juist zinvol zijn dit niet te onderbreken. Het hangt er ook vanaf welke werkvormen daarbij gehanteerd worden. Als de invulling gericht is op zelfstandig werken aan een eigen opdracht, verdient het wellicht aanbeveling de leerlingen hier juist wel aan te laten werken.

Taakuren

Voor veel kinderen in de vijfde klas wordt het echt nodig om rekenwerkuren in te richten, omdat ze meer ervaring met het aangeboden onderwerp moeten opdoen dan er binnen de periode mogelijk is. In de zesde en zevende klas is het eveneens zinvol om een rekenwerkuur in het rooster te hebben, maar daarnaast zou er een taakuur kunnen worden ingericht om verschillende kinderen eens extra met het rekenwerk te helpen. De overige leerlingen krijgen dan andere opdrachten omdat voor hen het rekenwerk nooit problemen geeft en zij in het rekenuur al extra materiaal hebben verwerkt. In het taakuur zou de ‘kaartenbak’ heel goed gebruikt kunnen worden. Deze kaartenbak bevat allerlei opdrachten waarmee de leerlingen zelfstandig aan het werk kunnen. De kinderen kiezen zelf een kaart uit de bak en kijken het werk ook weer zelf na. De kaarten zouden ook betrekking kunnen hebben op het reilen en zeilen van de school. Kinderen kunnen zich zo ook nog eens bewust worden wat er zoal nodig is aan brandstof, elektriciteit, of welke consequenties een gebroken ruit heeft.

Uit de kaartenbak:

1 Het zand in de grote zandbak moet ververst worden.
a) Hoeveel kubieke meter oud zand moet er afgevoerd worden?
b) Hoeveel kubieke meter zand gaat in de bak wanneer ik hem tot aan de rand vul?
c) Het zand klinkt tien procent in, hoeveel centimeter staat het zand onder de rand van de zandbak?

2 Met één pot lakverf kun je tien vierkante meter schilderen. Hoeveel potten zijn nodig om alle binnendeuren van de gang twee keer te lakken?

3 De klas lager is nu bezig met het onderwerp … Maak een lijstje van punten die daar mee te maken ‘hadden’. Herinner je je nog hoe jij die dingen vorig jaar hebt geleerd en begrepen? Dat kun je dan goed gebruiken om iets voor die kinderen te maken. Kies er een leuk onderwerp uit en maak daarover zelf een werkblad. Vergeet niet er een antwoordenlijstje bij te maken.

Aan de keuzen die leerlingen maken, kan de leraar zien waartoe zijn leerlingen in staat zijn.

282

Herhaling van de leerstof

Het is een goede gewoonte de leerstof van een heel jaar in de laatste weken van het schooljaar te herhalen. Zo komt alles, de nieuwe leerstof inclusief de vaardigheden die hierin ontwikkeld zijn, nog weer eens terug in verkorte vorm.

Rekenen in praktijk situaties

Een zeer belangrijk onderdeel van het rekenen is het toepassen van de kennis en de verworven vaardigheden. De verhaalsommen, de vroegere redactiesommen, hebben hun plaats in het geheel. Het leren lezen van een vraagstuk en vervolgens zelf een oplossingsmethode zoeken, is een belangrijke oefening die juist in hogere klassen meer aandacht kan krijgen. Veel kinderen hebben moeite om de gegevens te verzamelen, die nodig zijn voor het beantwoorden van een vraag. Deze vraagstukjes, eigenlijk ook een vorm van begrijpend lezen, kunnen een vaste plaats hebben in het rekenwerkuur.
Daarnaast kunnen kinderen ook zelf opgaven maken, waarbij ze zelf gegevens, bijvoorbeeld uit de krant of een folder, verzamelen, gegevens schattenderwijs bedenken of berekeningen (uit de krant) controleren op hun werkelijkheidswaarde. Juist zulk rekenen is verwant aan het rekenen van alle dag, waarbij ook niet alle gegevens panklaar aanwezig zijn. Zulke opgaven kunnen weer een plaats krijgen in de kaartenbak.

.In dit hoofdstuk wordt gesproken over:

Vormtekenen: alle artikelen
Steiner: werkbesprekingen in GA 295, vertaald: Praktijk van het lesgeven, uitverkocht. (Scan via vspedagogie@gmail.com)
Meetkunde: alle artikelen
Periodeonderwijs: alle artikelen

Over het boek
Inhoudsopgave
Voorwoord en inleiding
Hoofdstuk    [
1] [2] [3[4] [5] [7] [8[9]
Slot (1-1) Reflectieve notitie
Slot (1-2) Korte toelichting bij enkele gebruikte begrippen
Slot (1-3) Citaten van Rudolf Steiner met betrekking tot                                    aanvankelijk rekenen
Slot (1-4) Literatuuropgave

.

Rekenen klas 4: alle artikelen

Rekenen klas 5alle artikelen

Rekenen klas 6: alle artikelen

Meetkunde klas 6: begin van een periode

Rekenenalle artikelen op deze blog

 

2455

 

.

VRIJESCHOOL – Rekenen (9)

.

methodiek bij de opbouw van het rekenonderwijs

Getallen gaan voor ons boven de directe uiterlijke waarneming uit, doen een beroep op onze innerlijke activiteit. Getallen nemen we nergens meteen waar, zoals rood of groen of een toon of een klank. Alleen door waarnemingen worden ze ons bewust.
Niet alle waarnemingen roepen in ons de behoefte aan getallen en rekenen op.
Wanneer ik een tak van een boom met de bladeren voor me heb, voel ik me niet geroepen, daarom de blaadjes te gaan tellen; en al zou ik het aantal weten, dan is dat toch nog geen kennis die ik per se moet hebben. Als ik een bloem zie, zal ik eerder het aantal bloemblaadjes zien; dat is voor die bloem wel karakteristiek en dat blijft me wel bij. De regelmatig gevormde bouw en het herhaaldelijk de bloeiwijze bekijken, stimuleert het tellen. Iets wat als een geheel alles omvat, is vaak de niet waarneembare impuls die verbonden is met tellen. Zo’n soort band die bij het tellen meedoet, is ook steeds weer bij her rekenen als een wezenlijk element aanwezig.
Aan iedere vergelijking van twee getallen ligt weer een ontstaan van een denkverbinding ten grondslag en bij het zoeken naar de verhoudingsgetallen vindt de exacte bewerking van deze vergelijking plaats.

Het leggen van een verbinding als een noodzakelijk element bij het rekenen, wordt ook duidelijk als je ziet dat je pas dan twee appels en drie peren kan optellen, wanneer je van te voren de verbinding onder het gemeenschappelijke gezichtspunt ‘vruchten’ hebt gelegd. Met het wekken van dit mentale bij elkaar brengen, hangt ook het eerste rekenen samen en dit kan nu of ruimtelijk overzichtelijk worden of in de tijd, door het als volgorde te nemen.

Bij het ruimtelijk vormgeven hoort een groep van inleidende oefeningen die eruit bestaan om een aanvankelijk onoverzichtelijke hoeveelheid dingen door een zinvolle ordening overzichtelijk te maken en daardoor ook makkelijker te tellen.

Als ik bijv. 9 appels heb die zomaar wat bij elkaar liggen en ik leg ze dan zo op deze 9 punten:

                                                          .         .         .
                                                          .         .         .
                                                          .         .         .

dan doen ze zich voor als  3  +  3  +  3 , meteen te overzien. Dergelijke oefeningen die direct de zin voor getallen aanspreken, brengen ons midden in de getallenwereld.
Uit de orde vind je niet alleen het getal 9, bestaand uit    3  +  3  +  3   kennen, maar ook een andere opbouw: als je het vierkant op een punt zet en dan de verschillende plaatsing van de punten volgt

dan krijg je de rij: 9 = 1  + 2  + 3  +  2  +  1
Daarmee ben je al bij een samenhang van getallen aangekomen die verder gaat dan dat ene voorbeeld en op een soortgelijke manier geldt dit ook voor de getallen 16, 25, enz, die ontstaan door het betreffende getal met zichzelf te vermenigvuldigen

Het noteren in de driehoeksvorm ondersteunt het overzicht en de wetmatige opbouw springt meteen in het oog. De verticale rijen zijn natuurlijke getalvolgorden die verschillende beginnen. Volg je de horizontale rijen en kijk je naar de ene en de volgende komt, dan zie je dat iedere volgende rij 2 cijfers meer heeft. In iedere rij komt er een cijfer bij, de rij wordt een cijfer langer; het getal dat in het midden staat, staat in de volgende rij symmetrisch naast het cijfer dat erbij is gekomen.
Daaruit volgt weer dat de optelsom van de rijen opvolgend per rij:

groter wordt, dus de rijen groeien met de oneven getallen; die zijn dan ook weer 

het verschil tussen de kwadraatgetallen.

De andere manier om een verbinding te leggen en een indeling te maken is het accent te leggen op de volgorde in de tijd, zowel bij het tellen, als ook bij de overgang naar het rekenen. Alleen al het feit dat het kind bij het tellen een woordvolgorde spreekt die vastligt, maakt diepe indruk.
In het tellen kan dan een ritmische indeling worden gebracht, wanneer je iedere tweede of derde de nadruk geeft, waarbij de rijen van de tafels van vermenigvuldiging opduiken. Het eruit laten springen van de getallen kan ook door deze luider te spreken en de andere heel zacht, tot fluisteren toe of helemaal niet te zeggen, maar ze in gedachten te volgen of door bepaalde getallen heel langzaam en duidelijk te spreken, de andere weer vlugger.
Met deze tafelrijen heb je een rijke stof om het geheugen te oefenen.

Rudolf Steiner noemde ‘beeldend’ en ‘ritmisch’ wezenlijke factoren voor het onderwijswerk in de hele basisschool. Daaraan voldoet op een natuurlijke manier ook voor rekenen in het prille begin met het principe van het ordenen en het ritmische tellen.

Vanuit het tellen ontstaat dan langzaamaan het rekenen.
Vanuit een fundamentele kentheorie neemt Rudolf Steiner bij het optellen de optelsom als vertrekpunt om vanuit het geheel naar de delen te gaan. Het is een tegenwicht voor het atomiserende denken waarmee het rekenonderwijs vol zit.
Te denken valt aan hoe dikwijls bij de behandeling van bepaalde rekenopgaven een manier van denken ontwikkeld wordt, die iedere lengte als de optelsom van zoveel losse kilometers neemt, ieder gewicht als een samennemen van zoveel kilo, enz. Dit hangt samen met het toenemen van een manier van voorstellen dat deel voor deel aan elkaar knoopt; het gezonde rekenonderwijs moet daar tegenoverstellen een manier van denken die uitgaat van ‘hoe vaak het erin zit’.

Een voorbeeld:

De vraag is om 10º Réaumur om te zetten in graden Celsius.

Dat wordt meestal zo gedaan:

80º Réaumur is 100º Celsius
dan is 1º Réaumur  100/80 º  Celsius
en  18º Réaumur is dan  100  x  18/80 º

Dan heb je de weg van 1 graad Réaumur genomen en van daaruit ga je dan van de ene schaal naar de andere.
Vergelijk nu de andere weg: neem je de beide schalen bij hun kookpunt, dan heb je de getallen 80 en 100 tegenover elkaar; hun verhouding is dan 100/80   4/5         en deze verhouding geeft voor 18º Réaumur   18 x 5/4=  22½º Celsius.
Hoewel ook de tweede gedachtegang naar de analoge getaloperatie leidt, werkt deze toch met een heel andere manier van denken. Hier wordt niet 1º Réaumur genomen, maar direct de overgang door het verhoudingsgetal. Wanneer je bij een thermometer denkt aan de kleine deelstreepjes van één graad, dan is daar juist de overgang het minst overzichtelijk; hier hoef ik niet te kijken, maar wel naar duidelijk overzichtelijke getalsverhoudingen die bij de tweede manier op de voorgrond staan, en die ernaar streeft een zo intensief mogelijke bewustzijnsverbinding met de voorwerpen te krijgen.
De belangrijke zin voor getalverhoudingen die in de praktijk zo belangrijk is, kan je op ieder niveau verzorgen.
Een belangrijke veld is dat van de breuken. Intensief oefenen in het vergelijken van breuken, bijv. dat een half 1½ derde is of een kwart 1½ zesde, levert pas bij breuken het juiste begrip op en wekt er de zin voor waarom je bij het optellen van breuken in vergelijking met het optellen van getallen zo’n gecompliceerde werkwijze moet gebruiken als die van het zoeken naar de noemers. Het optellen van verschillende breuken kun je wel vergelijken met bijv. het optellen van verschillende maten, zoals bijv. de decimeter, meter, centimeter, kilometer enz. Door geschikte oefeningen zal je het begrip voor de rekenregels onderbouwen.

I.p.v. de breukenrij  1/6  +  1/12 + 1/3  + 1/4

uit te werken door alles in twaalfden te denken 2 + 1 + 4 +3
                                                                                               12

10/12  5/6

kan je ook met zesden rekenen: een twaalfde is ½ keer zo groot als een zesde; een derde is tweemaal zo groot als een zesde;
een derde is ½ keer zo groot als een zesde, waarmee in zesden gerekend de som is:   1  +  ½  +  2  +3½  = 5.

Op dezelfde manier kan je ook met derden en vierden enz. rekenen. Als je dat hebt gedaan en je komt dan weer bij de twaalfden terug, dan zien de leerlingen zonder veel uitleg de voordelen van het gebruik van de hoofdnoemers. De regel wordt dan niet alleen maar mechanisch van buiten geleerd, maar er is meer begrip voor ontstaan.

Het grootst is de verleiding puur mechanisch te gaan rekenen bij de tiendelige breuken. Dat je een opgave met de getallen goed uitvoert, maar dan twijfelt waar de komma moet staan, dus of de waarde 10, 100 of zelfs 1000 keer zo groot is, is daarvan een duidelijk symptoom. Dat geeft wel aanleiding om van te voren te schatten wat het resultaat moet zijn en dat geeft een gezond tegenwicht waardoor het oordeel gevormd wordt of de uitkomst wel kan of niet. Een dergelijk proberen t.o.v. van alleen maar automatisch uitrekenen moet ook bij de toepassing van formules meegenomen worden. Hoe makkelijk gaan leerlingen ertoe over de formules automatisch te gebruiken en oefenen eigenlijk alleen maar het inzetten van formules.

Een formule is een gecomprimeerde manier van schrijven, waarin de hele gang van het berekenen zit. Als een laatste samenvatting hoort ze meer aan het eind thuis dan aan het begin. Als je regelmatig op de gang van het rekenproces terugkomt, dan zal dit ook nog paraat zijn wanneer de leerling de formule gebruikt.

Herhaaldelijk komt het er in het rekenonderwijs op aan, op de details te letten die al gauw een bijzaak lijken, maar die voor het vermogen om te kunnen denken de grootste betekenis hebben.

Wanneer je bijv. bepaalde wiskundige kennis toepast en dan over uitzonderingen spreekt, wordt er iets wat je voor het denken van de leerling eerder hebt opgebouwd, doorbroken. Wat als uitzondering beschouwd wordt, is vaak een verdiepte bevestiging van de wet.

Heb je bijv. het feit doorgenomen dat je bij het oplossen van lineaire vergelijkingen twee onbekenden alleen maar uit twee vergelijkingen vindt, drie onbekenden uit drie vergelijkingen, vier onbekenden uit vier kan uitrekenen en je zegt dan dat een uitzondering daarop  een systeem van vergelijkingen maakt die niet van elkaar afhankelijk zijn, dan wordt zoiets anders opgenomen, dan wanneer je laat zien hoe je in geen geval om de genoemde mathematische voorwaarden heen kan, wat toch gebeurt wanneer er bijv. voor 4 onbekende drie vergelijkingen genoeg zouden zijn en de vierde zou kunnen afleiden door het samennemen van twee andere vergelijkingen. Wanneer je aan concrete voorbeelden laat zien hoe in zulke gevallen het proces van oplossen het af laat weten, dan vind je geen aanleiding om van een uitzondering, maar om van een bevestiging en aanvulling van de wet te spreken.

Bij het lesgeven op de vrijescholen is het belangrijk dat het in het periodeonderwijs gebeurt. Dat vraagt voor de methode een danige verandering. Niet een samenklontering van aparte korte lesuren die na elkaar komen is periodeonderwijs, maar in het schoolleven ook met een herkenbare andere opbouw. Het vereist een veel sterker samengaan en samennemen van gezichtspunten m.b.t. de vele lesuren. Een uitbreiding van hetzelfde principe is dan ook nog mogelijk doordat het werken aan een vak verschillende jaren lang in handen ligt van een en dezelfde leerkracht. Daardoor is het mogelijk dat wat later komt, van tevoren met het oog daarop voor te bereiden en hiervan zullen nog een paar voorbeelden worden gegeven.

Juist wat het rekenonderwijs betreft, is het zo dat bepaalde getalwetmatigheden die bij de stof van de hogere leerjaren horen, dikwijls in een andere samenhang, op een veel eenvoudigere manier in de onderbouw aangestipt kunnen worden.

De voor de gehele algebra en de combinatieleer zo belangrijke getalvolgorde van de zgn. driehoek van Pascal:

bevat bijv. dezelfde getallen die bij het herhalende vermenigvuldigen met 11 voorkomen.

Bij het oefenen van vermenigvuldigingen kan al, zonder de driehoek van Pascal te noemen, op deze symmetrische getalopbouw worden gewezen, ja wellicht ook getoond worden, hoe dit ook bij het verder gaan ermee bewaard blijft, zo gauw je tussen de verschillende plaatsen niet verder telt: 14641 x 11 = 1 eenheid, 5 tientallen,  10 honderdtallen, 10 duizendtallen, 5 tienduizendtallen en 1 honderdduizendtal, enz.

Ook raakvlakken bij de opbouw van regels die later in het onderwijs een grote rol spelen, zitten al in eenvoudigere processen. Vergelijk eens de rol van de even en oneven getallen bij het optellen van twee getallen en van de positieve en negatieve getallen bij het vermenigvuldigen van twee getallen:

E(ven) G(etal)      +   E(ven) G(etal)   =  E(ven) G(etal)
E G   +  O(oneven) G(etal)  =  O(oneven) G(etal)
O G + E G = O G
O G + O G = E G

P(ositief) G(etal)  x P(ositief) G(etal)  = P(ositief) G(etal)
P G  x   N(egatief) G(etal  =  N(egatief) G(etal
N G x P G  = N G
N G x N G = P G

Tussen beide wetmatigheden bestaat niet zomaar een toevallige overeenkomst, maar een innerlijke relatie, wanneer je bedenkt dat de even macht van negatieve getallen positief, van oneven getallen oneven is, dat verder een vermenigvuldiging van machten van gelijke basis overeenkomt met een optelling van de exponenten.

Ook begrippen die later aan de orde komen, kun je adequaat voorbereiden door geschikte rekenopdrachten.

Wanneer je bijv. het vermenigvuldigen van decimalen oefent en je geeft de som 3,1623  x  3,1623, waarbij je tien helen en ook in de decimalen nog drie nullen krijgt, dan heb je het begrip kwadraatwortel voorbereid.
Net zo komt er uit de nogal lange vermenigvuldiging 2,15444 x 2,15444 x
2,15444 opnieuw 10 met nog vier nullen uit en daarmee heb je ook de eigenschap van de derdemachtswortel. Op dezelfde manier kun je een groot aantal opgaven met verschillende wortels maken: √2 = 1,41421;  √3 = 1,73206,  √5 = 2,23607, waarbij je er alleen maar op hoeft te letten dat de laatste decimaal de meest precieze waarde aangeeft boven de wortel. Liet je simpelweg de decimalen vanaf een bepaalde plaats weg, dan wordt de wortelwaarde te klein en je krijgt dan uit een vermenigvuldiging niet bijv. 2, maar 1,999999…….

Zelfs feiten die je meestal pas bij het differentiaalrekenen bespreekt, vertonen zich aan de hand van eenvoudige berekeningen als getalwetmatigheden.
Het feit dat het   n-de  differentiaalquotiënt van xn  is gelijk n! volgt uit het verloop van differentiaalrijen van de machten.
Neem je bijv. de rij van de derde macht van de getallen en je schrijft ze onder elkaar, daarna het verschil zoekt van twee van hen, hiervan weer het verschil enz. Als laatste differentiaalrij krijg je dan 6 (6 = 3! = 3  x  2  x  1)

Op dezelfde manier krijg je uit de 4e macht in de laatste differentiaalrij 24 (24 = 4! = 4 x  3  x  2  x  1), bij de 5e macht 120 enz.
Door dergelijke oefeningen die niet meer tijd kosten dan willekeurig welke andere opdrachten, kan een innerlijke verbinding tussen het werk in de verschillende leeftijdsfasen worden bereikt en in de zin van een samenhangend samenwerken van de verschillende mathematische gebieden werkzaam zijn. De bijzondere indeling in de leerstofgebieden voor de leeftijd en de klassen zal dan later uitvoerig worden behandeld. [niet op deze blog].
.

Herman von Baravalle,  Erziehungskunst, 8e jrg. nr.2/3 juli/aug. 1934

.

Rekenen: alle artikelen

.

1659

 

 

 

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – 4e klas -rekenen – breuken

Tobi en de meesterbakker

Een kennismaking met de breuken

Ik* zou graag een rekenverhaal vertellen; het kwam tot stand in de loop van 3 klassenrondes** en is een beeldende kennismaking met  de breuken in klas 4.
Voor de 4 klas plande ik 3 rekenperioden***. In de eerste werden de schriftelijke rekenprocessen die we in de 3e klas hadden geleerd nog eens geoefend en  geautomatiseerd. Aan het eind van deze periode is er een korte kennismaking met de schrijfwijze van de breuken. Met veel plezier hebben de kinderen mijn zelfgebakken, platte meetkundige figuren uit brooddeeg gesneden en opgegeten, waarbij de maag (stofwisseling!) kon ‘meedenken’ en kon leren dat de schrijfwijze 1 = 1/3  + 1/3  +  1/3   of  1 = 1/6  +  1/6  + 1/6   +  1/6 +  1/6 +   1/6  zinvol is.
Van de gebakken cirkels, driehoeken, rechthoeken, vierkanten werden in het schrift tekeningen gemaakt en de bovengenoemde vergelijkingen onder het desbetreffende ‘snijpatroon’ geschreven.
Belangrijk is in dit verband dat de leerlingen door het waarnemen een gevoel krijgen dat een 1/6 deel kleiner is dan 1/3  terwijl in het getalbegrip tot nog toe 6 groter is dan 3. De maag kent, zonder ooit met breuken te hebben leren rekenen, deze verhoudingen in grootte wel.

De meesterbakker
Aan het begin van de tweede periode volgt dan het verhaal:
In een stad woonden merkwaardige meesterbakkers die ieder voor zich  maar 1 taartensnijder wilden kopen (verschillende taartensnijders, voor 10, 12 of 16 stukken die de bakker voorzichtig in de taartbedekking drukt om daarna precies even grote stukken te kunnen snijden, hingen in de klas).
Opdat de kinderen meteen zouden weten welke stukken je bij de ene bakker kon kopen, schreven ze groot op hun etalageruit hoe ze heetten – hoe ze zich noemen – dat leidt later tot de naam NOEMER: Vierdebakker; Vijfdebakker; Achtstebakker enz. Wie dus voor 12 personen een taart wil bestellen of stukken van die grootte wil hebben, kan alleen bij Twaalfdebakker terecht. En door de associatie noemer = naam begrijpen de leerlingen meteen dat   3/5 +  3/5  niet 6/10 maar  6/5  moet zijn, 6 stukken van Vijfdebakker.
In het verhaal komt ook een slimme leerjongen voor die de bestelde lekkernijen te voet bij de klanten moet brengen in een grote mand die hij op zijn rug draagt. In mijn laatste rondje** heette deze jongen Tobi.
Tobi brengt, hij werkt nu bij Vierdebakker, de bestelde etenswaar weg. Bij grote feesten blijft hij tot het einde om daarna de overgebleven stukken weer op te halen. De meesterbakker is streng en wil de overgebleven stukken aan de varkens voeren. Maar de leerjongens hebben met de bazin afgesproken dat ze de goede kwartstukken aan de achterdeur goedkoper mogen verkopen en het geld zelf houden. De oude crèmelaag werd eraf gehaald en vervangen door een nieuwe en de versneden bodem kon je alleen zien als je de taart omhoog hield. Wanneer Tobi dus bijvoorbeeld 17 stukken mee terugneemt naar Vierdebakker en ze in de bakkerij legt, maken de bakkersknechten daar tot aan de morgen vier hele taarten uit; 1 stuk blijft over. 17/4 = 4 1/4
Op dit ogenblik in de periode heet 17/4  het Tobigetal ,
1/4 is het knechtengetal.
Later in het werkschrift, wanneer we talloze oefenvoorbeelden nog eens nader bekijken, worden het begrip ‘stambreuk’ gebruikt, wanneer de teller 1 is 1/7,
en ‘echte breuk’, wanneer de teller kleiner is dan de noemer 3/7, ‘onechte’breuk , wanneer de teller groter is dan de noemer (Tobigetallen, 9/7 en ‘gemengde’ breuk, wanneer hele en breukengetallen gemengd zijn (knechtengetallen 1/4).
Nu kun je veel manieren bedenken hoe je met andere noemers dezelfde rekenhandeling kunt oefenen, bv. dat
Tobi aan een ander bakkerskind het trucje uitlegt die vervolgens uit de hele stad ‘tweedehands’ taarten ophaalt of Tobi wordt door de knechten van een andere bakkerij uitgenodigd enz.

Op deze plaats moet wel gezegd worden, dat de uitgebreide schildering van dit verhaal alleen de eigen fantasie mag stimuleren en niet tot nadoen mag leiden. (In een uitwisseling met collega’s hebben we bv. aan activiteit in de containerhaven aan de Oostzee of aan de kaasmakerijen in Nederland gedacht.)

Het zijn de verrassende gebeurtenissen en de spannende voorvallen van een dergelijk verhaal die de fantasiekracht van de kinderen stimuleren.
De rekenkundige inhoud treedt wat meer op de achtergrond bij het plezier en de angst om Tobi, de spanning en de ontspanning.
Citaat uit het meer dan honderd jaar geleden verschenen boekje van Rudolf Steiner: ‘De opvoeding van het kind in het licht van de antroposofie:[1] ‘Wat het verstand over iets te zeggen heeft, behoort pas gezegd te worden, nadat alle andere zielenkrachten gesproken hebben. Voor die tijd mag het verstand alleen een bemiddelende rol spelen. ‘

Maar bij al dat fantasieplezier mag de inhoud van het vertellen in het begin, maar ook later niet, in tegenspraak zijn met de wiskundige wetten.

Opdrachten voor thuis worden graag gemaakt, wanneer Tobi, met wie de leerlingen zich op hun niveau met zijn slimheid identificeren, voor een op te lossen probleem geplaatst wordt.
Wanneer de leerlingen door deze oefeningen vertrouwd zijn geraakt met hoe je breuken schrijft en de onechte breuken in gemengde en omgekeerd, kunnen omrekenen, kan naar de volgende rekenhandeling worden overgestapt: vereenvoudigen en gelijknamig maken.

Deegschraper en zakmes
Tobi wordt op een van zijn boodschappentochten op een boerderij door een ongevaarlijke, maar wilde St.Bernhardhond omvergesprongen, zodat het mandje met de taartstukken valt en ze stuk gaan. De jongen zit bedroefd aan de kant van de weg als er een bakkerskind voorbijkomt met veel restjes. Ze vraagt aan de huilende jongen of ze hem kan helpen. ‘Helaas niet, jouw bakker heeft andere stukken dan de mijne’, maar Tobi heeft, wanneer de ander zegt dat die van Achtstebakker komt, een idee! Net zoals de knechten anders ook doen, neemt hij telkens 2 van de aangeboden achtste stukken en verwerkt ze tot kwarten. Het wordt nog heel spannend wanneer de boer wantrouwig naar de stukken kijkt, maar ze uiteindelijk toch accepteert.

Om op zulke situaties voorbereid te zijn, neemt Tobi voortaan een deegschraper mee om de crème te kunnen uitsmeren. Deze vondst wordt door de leerlingen opgepakt en al gauw heeft iedereen de deegschraper erbij en je moet slim zijn om meteen te herkennen, welke bakkerijen in aanmerking komen om met elkaar stukken te ruilen. Zo ontstaan er bijzondere vriendschappen tussen de leerlingen van bepaalde bakkerijen. Uit de mond van een leerling: ‘Die in dezelfde getallenrij zitten’. De deegschraper staat symbool voor het vereenvoudigen:
12/8  =  6/4; de stukken uit de ene bakkerij krijgen een nieuwe naam = noemer.

Wanneer Tobi op een dag zijn vriendinnetje Martha treurig op een bankje ziet zitten en waneer hij de gebroken draagriem van haar mandje ziet, vermoedt hij de bekende toestand en hij wil meteen met de deegschraper helpen. Maar Martha werkt bij Twaalfdebakker en ze merken al gauw dat de uitruil niet zomaar kan. Maar nu krijgt Martha een idee! Met een zakmes worden de kwartstukken van Tobi precies in 3 delen gesneden en Martha kan nu haar twaalfden ruilen. Het zakmes wordt het symbool van gelijknamig maken: 7/4 = 21/12.
Nu zou je kunnen tegenwerpen dat bij het vereenvoudigen toch de aparte getallen kleiner en bij gelijknamig maken teller en noemer groter worden en dat daarom mes en schraper juist andersom gebruikt zouden moeten worden. Op het abstracte niveau is dat juist, maar voor de realiteit van het beeld klopt de toepassing, omdat bij vereenvoudigen de stukken groter worden en bij het gelijknamig maken kleiner! Hierbij moet door de juiste opmerkingen of vragen duidelijk gemaakt worden dat door de gebruikte mes- of schrapermethode de hoeveelheid taart gelijk blijft en dat alleen de vorm ervan anders wordt.

(Notitiepunt: de waarde van een breuk blijft gelijk bij het vereenvoudigen of gelijknamig maken).

Zodra de techniek van het vereenvoudigen en gelijknamig maken door opnieuw talloze oefeningen, begint te zitten, kun je overgaan tot het toepassen ervan – tot de vorming van een gemeenschappelijke noemer kan worden overgegaan: Tobi komt op weg naar huis zijn vriend Arnulf (Derdebakker) tegen, die ook al van een groot feest de reststukken meebrengt. Ze raken aan de praat en ze merken door het kletsen te laat dat ze Derde- en Vierdebakker al voorbij gelopen zijn. Ze willen echter niet teruggaan, maar elkaar liever nog een paar goede moppen vertellen en belanden zo aan de rand van de stad voor het huis van Twaalfdebakker. Opnieuw leiden slimheid en schalksheid tot een idee! Met het zakmes krijgen ze door precies te snijden, uit de vierden, twaalfden en uit de derden eveneens. Hoeveel twaalfden moet de klas vinden en de leerkracht moet het verhaal paraat hebben hoe de bakkersvrouw afgeleid wordt (bij ons was het een stukje knalvuurwerk uit de carnavalstijd dat in de keuken gegooid werd en dat de bakkersvrouw – onder luid gelach van de kinderen – zowat naar buiten deed tuimelen), om ongemerkt de twaalfde stukkern op de toonbank te leggen en -met de groeten van Max en Moritz – stiekem te kijken hoe de bakkersvrouw als ze weer terug is, zich niet kan herinneren dat er zoveel reststukken lagen.
Met dit geslaagde verhaal, in de hele stad met fijntjes lachen aangehoord, bieden zich voor de bakkerskinderen ongekende mogelijkheden. Ook voor de leerlingen in de klas is het leuk uit te vinden wie onder deze voorwaarden vanaf nu met wie kan uitwisselen, bij elkaar leggen enz.
In het aantekenboek komt later te staan dat je breuken pas bij elkaar kunt optellen of van elkaar kunt aftrekken, wanneer ze een gemeenschappelijke noemer hebben.

Drie, vier of meer leerlingen kunnen hun taart bij elkaar leggen en (waar?) afleveren.

3/4  +   2/3  =  9/12  +  8/12  =  17/12  (Tobigetal)  = 1  5/12 (Knechtengetal)

2/3  +  1/4  +  5/8  =  16/24  +  6/24  +  15/24  =  37/24 (Tobigetal)  =  1 13/24 (Knechtengetal)

Geleide fantasie
Bij het doorlezen van dit artikel valt het me* op, hoe weinig getallen en hoeveel woorden er staan! Dat mag een voorbeeld zijn van een verhaal dat de fantasie stimuleert bij de erin voorkomende mathematische samenhangen.
Overigens spreekt Steiner in het aangehaalde boekje van ‘geleide fantasie’, zodat het niet om willekeurige, grappige verhaaltjes kan gaan, maar om verhalen die de gewenste rekenkundige samenhang ‘exact’ tot inhoud hebben.

Ik heb de ervaring opgedaan dat de verhaaltjes niet alleen een inleiding vormen in het gebied van de wiskunde, als een ‘schoentrekker’ voor de ziel, maar dat ze tot in de bovenbouw, wanneer de leerlingen zich de uit die verhaaltjes komende beelden herinneren, elkaar kunnen helpen  over en weer dingen uit te leggen. Ik zou ook voorbeelden van verhalen kunnen geven die ik niet tot het einde toe helemaal goed doordacht heb en die tijdens het lesgeven met moeite veranderd moesten worden en zo aan inhoud en kracht inboetten.
Het Tobiverhaal is door vele uitgesproken vragen (ook onuitgesproken) van de kinderen in proporties gebracht en met succes verteld.
Wat betekent ‘succes”? Wanneer je merkt dat alle leerlingen met en binnen de geschetste beelden kunnen rekenen met wat anders droge en weinig motiverende opgaven zouden zijn en dit graag doen!
Jaren geleden zaten tijdens een menskundeperiode 2 hospitanten van de universiteit van Stuttgart in mijn les, omdat ze zich interesseerden voor de vrijeschoolpedagogiek. Op de laatste dag van de periode kondigde ik de kinderen de volgende periode aan: rekenen.
Sprakeloos staarden de beide jonge collega’s naar de opspringende, onstuimig dansende kinderen en ‘To-bi!  To-bi!  To-bi’ scanderende vierdeklassers. Ze konden nauwelijks geloven dat dit een reactie was op de aankondiging van rekenen.
Dat was het ook niet; het was de vreugde over het vervolg van het verhaal!

*Norbert Dolderer, Erziehungskunst jrg.71, 12-2007

**het meegaan met de groep kinderen van klas 1 t/m 6 , (7 of 8 in Duitsland)
***periodenonderwijs: gedurende 3 à 4 weken de lessen in de 1e 2 uren van de dag, gewijd aan 1 vak.

[1] Rudolf Steiner: ‘Die Erziehungs des Kindes im Lichte der Geisteswissenschaft’ GA 34/309
Citaat: blz. 343

Vertaald: ‘De opvoeding van het kind in het licht van de antroposofie’

4e klas rekenen: alle artikelen

868

VRIJESCHOOL – Rekenen (7-1)

 

IETS OVER GETALLEN EN GROOTTE

(Ge)tal komt van tellen en betekent het resultaat van het tellen. Deze zin verklaart eigenlijk veel over rekenvraagstukken.

Tellen is het bezig zijn met dingen, waarbij je je niet bezighoudt met de aard van die dingen. Wat ik tel, beschouw ik als gelijk aan elkaar; en omdat ik dat doe, kan ik tellen. Appels en peren die voor mij liggen, kan ik niet in één getal samennemen, zo lang ik ze als verschillend aanmerk. Wanneer ik daarvan afzie, kan ik ze wel als vruchten tellen. Dan kan ik ook de meest verschillende dingen tellen, omdat ik ze op de een of andere manier rangschik onder een begrip dat boven de afzonderlijke begrippen uitgaat. Wanneer ik niet meer kijk naar de afzonderlijke voorwerpen en gewoon tel wat er ligt, ben ik bezig te abstraheren – ik verlaat het specifieke. Dan kom je tot het aan-tal: het genoemde getal.

Abstraheren gaat bij het tellen nog verder. We kunnen afzien van het laatste restje concreetheid dat wij bij het vaststellen van het aantal binnen een bepaalde groep van dingen nog voor ogen hadden en dat loslaten. Bv. wanneer we de 7 kleuren van de regenboog tellen, maar ook de 7 dagen van de week en dan gewoon tot ‘7’ komen. Het getal is het tweede niveau van abstractie, het aantal het eerste.

De abstractie is dus het reine getal, het middel van ons rekenen en de rekenkunde.

Je kan ook een andere gedachteweg volgen om bij het getal te komen. Deze leidt – wanneer u mij toestaat deze manier van uitdrukken te gebruiken – juist in tegenovergestelde richting tot het gelijke doel, maar laat daarom ook een andere kant van het doel – het getal – zien.

Je kunt ook zo redeneren: tellen kun je alleen wanneer en omdat je al een begrip van het getal hebt. Wanneer ik van een groep mensen zeg : ‘Dat zijn er drie’, dan beschik ik over het begrip  ‘drie’ en voeg dit vanuit mijn denken vrij bij mijn beleving  ‘een groepje mensen’.

Ik zou met de woorden ‘drie mensen’ nooit enige zin kunnen verbinden, wanneer ik niet in mijn denkvermogen het begrip ‘drie’ zou hebben.

Dr.Rudolf Steiner heeft in de voordrachten die hij afgelopen zomer [1] in Engeland heeft gehouden bij het oprichten van een vrijeschool, op voorbeeldige manier laten zien, hoe je aan kinderen die je als leerkracht het rekenen bij wil brengen, een elementair begrijpen van het wezen van de eerste getallen kan overbrengen.

Bij kinderen kun je nog niet appelleren aan een ontwikkeld begripsvermogen, maar je kunt wel zeggen: ‘Kijk eens naar dit stuk hout, dat kun je versnijden, dan heb je twee kleinere stukken hout, maar wanneer je naar de mens kijkt, dan kun je die niet versnijden, want anders was het geen mens meer. Kijk, dat is een eenheid (ein Eins). Jij bent ook een mens, jij bent een eenheid. Wanneer je nu in de kamer binnengaat aan de ene kant en van de andere kant komt vader binnen en jullie komen elkaar midden in de kamer tegen, dan ben je met z’n tweeën – dat zijn er 2. Voor een ontmoeting zijn er altijd twee nodig. En wanneer nu juist op dat ogenblik waar jij van de ene kant in de kamer komt en van de andere kant vader, ook moeder erbij komt, dan is dat wel een bijzondere ontmoeting, want dan ben je met zijn drieën.’

Dit werd mij mondeling meegedeeld uit de genoemde voordracht van Steiner en ik weet niet wat daar letterlijk is gezegd.(Dat weten dus nu wel)
Het is wel een manier om kinderen de eerste drie getallen te laten ervaren, zodat het daarbij iets beleeft wat hem dan later wanneer het verstand ontwaakt en de vorming van begrippen begint, de mogelijkheid geeft de getallen als oorspronkelijk, als niet uit andere begrippen af te leiden, op te vatten.

Twee wegen dus die bewandeld kunnen worden, ze leiden beide tot het getal; de weg van de abstractie die in zekere zin van het levendige beleven van concrete dingen door verdergaande abstractie tot het telresultaat leidt en de andere weg die van een levendig beleven van concrete dingen als het ware teruggaat naar het intuïtieve begrip van het oorspronkelijke getal. De wegen zijn verschillend, lopen in zekere zin in tegengestelde richting, de ene door abstractie voorwaarts, de andere door een terugblik op het denkproces, maar ze leiden hier tot hetzelfde doel, het begrip van het getal, waarvan ze echter twee verschillende kanten tonen.

Door deze beschouwing kun je begrip krijgen voor wat een getal is. Allereerst kun je zien dat het geen zin heeft om iets anders dan de
‘hele, positieve getallen’ als getal op te vatten.

Het inzicht van dit feit leidt tot de meest belangrijke conclusies voor het rekenen met getallen en het rekenen met letters, zelfs voor een onweerlegbaar bewijs van de rekenkunde.
Dat zou ik aan de hand van een paar voorbeelden  willen laten zien. Daarbij zie ik af van allerlei verwijzingen van het onderwerp in de vakliteratuur.

Ik begin met de vermenigvuldiging. De vermenigvuldiger is altijd een rein getal. Je hebt steeds het ‘hoeveel keer’. Het vermenigvuldigtal is daarentegen heel willekeurig. Dit kan van alles zijn wat meerdere keren gedacht kan worden. Je vindt hier weer terug wat over het tellen van dingen is gezegd: de enige beperking waaraan het vermenigvuldigtal onderworpen is, is dat dit niet slechts als 1 x voorkomend of maar 1 x te denken is. Deze beperking geldt natuurlijk eveneens voor de voorwerpen die geteld worden.

Daarom onderscheidt het vermenigvuldigen zich pas van het gewone tellen wanneer je geen concrete dingen, maar resultaten van het tellen, aantallen en reine getallen ‘telt’. Juist daarbij ontstaat het product. Het product is dus een veelvoud van een gelijk aantal of een gelijk getal. En dat betekent dat in elk product een rein getal als vermenigvuldiger en een aantal (benoemd getal) of rein getal als vermenigvuldigtal voorkomt.

Dit moet je vasthouden wanneer je je in de rekenkunde buiten dit oorspronkelijk werkgebied begeeft. De ‘negatieve getallen’ of ‘negatieve grootten’ beter gezegd, kun je zo lang  volgens bovengenoemd principe vermenigvuldigen als je dat doet met een positieve vermenigvuldiger.

Getal zoals hierboven gedefinieerd is slechts het  ‘positieve’ en ‘hele’ getal. Het ‘negatieve’ getal of het ‘gebroken’ getal kunnen nooit het resultaat van het tellen zijn, ze zijn door het abstraherende denken niet te vinden waar je de reine getallen in de hier bedoelde zin vindt.

Maar je kunt ze ook niet vinden door het intuïtieve denken, als een soort basis van een gelijksoortige activiteit als de activiteit van het tellen. Je kunt ze alleen vinden met behulp van de unieke, de hele en positieve als tweede component. Dat wordt hieronder getoond.

Zolang je met een positieve vermenigvuldiger rekent, hoef je je om de andere factor helemaal niet druk meer te maken; hij wordt geteld en blijft daarbij gewoon wat hij is. Het product is steeds van gelijke kwaliteit als het vermenigvuldigtal. Wanneer dit een ‘negatief’ getal is, dan zal ook het product ‘negatief’ zijn.

Zo ontstaat concreet de formule:

. (-b) = – ab

Voordat het wezen van het negatieve niet verklaard is, kun je van hieruit niet verder komen.

Het negatieve wordt alleen dan goed begrepen, wanneer je dit in zijn oorspronkelijke optreden in het rekenende bewustzijn bekijkt. Het doet zich voor bij aftrekken, wanneer het niet mogelijk is om de gevraagde aftrekking uit te voeren, wanneer je dus 5 moet aftrekken, terwijl je maar 3 hebt.  Hier voegt zich iets in het rekenen wat je bij tellen en vermenigvuldigen niet hebt: de eis iets af te trekken van iets, maar er meer vanaf te trekken dan er is; dan kan alleen waar mensen met elkaar in contact komen, waarbij er sprake is van ‘geven en nemen’.  Tellen en vermenigvuldigen kan iemand op zich alleen, maar aftrekken en dan juist  ‘niet kunnen aftrekken wat je eigenlijk zou moeten’, daartoe moet er een ander aanwezig zijn.

Het negatieve dat tenslotte niet afgetrokken kan worden, wat dus zo bekeken niet reëel is, moet eerst gemaakt worden; het kan natuurlijk ook met getallen uitgedrukt worden, geteld worden. Je ziet echter dat het min-teken eigenlijk niet bij het getal – 3 hoort, maar de plaats inneemt van ‘wat benoemd wordt’. Het negatieve getal is eigenlijk een benoemd getal.

Min 3 betekent eigenlijk: er ontbreken drie dingen van wat dan ook. Ik heb er alleen vanaf afgezien wat dat voor dingen zijn en bekijk alleen maar dat drievoudige ontbreken.

Zolang je aan het oorspronkelijke getal vasthoudt, kan het minteken, wanneer het geen bewerkingsteken is, dus slechts de opdracht tot aftrekken geeft, niets anders zijn dan een bijzondere vorm van benoemen: ‘ -3  ‘  betekent ‘er ontbreken er 3’.

Op grond van deze conclusie kun je wat hier boven beschreven is, ook zo schrijven:

Wanneer  b   a-keer ontbreekt, dan ontbreekt a .  b.

Dat is de echte zin van de formule: a . (-b) = – ab.

Echter, ook nu vind je geen gangbare weg om twee ‘negatieve getallen’ met elkaar te vermenigvuldigen. Die vind je pas, wanneer je van het getal naar de ‘grootte’ overstapt en een ‘grootte’ is heel wat anders.

De grootte is ook een abstractie en je vindt deze wanneer je van dingen die je als gelijkwaardige opvat, een maat wil hebben. Dus eerst heb je een ding dat ik als een hoeveelheid van een homogene stof beschouw. Daar zit al een abstractie in. Maar ik zie af van wat er aan zo’n ding nog allemaal voor interessants is op te merken en beschouw het als volkomen hetzelfde en vraag naar ‘de hoeveelheid’ (die Menge). Bij tellen bekijk je iets ‘dis-continuerends’, bij meten om iets ‘continuerends’: de grootte.

Om een hoeveelheid te meten heb je een willekeurige meeteenheid nodig en kom je tot een ‘meetgetal’, wanneer je tellend bepaalt hoeveel keer die willekeurige meeteenheid die steeds van dezelfde aard moet zijn als wat je wilt meten, daar in zit.

Op eenzelfde hoeveelheid kun je op verschillende manieren het (af)tellen toepassen. Een pak meel kan opgevat worden als 1 (kilo) of als 10 (ons).

Hier kun je wel tegenwerpen dat er toch dingen zijn die je kan opvatten als de door mij bedoelde substantie, maar die in een heel bepaalde relatie staan tot hun meeteenheden, namelijk bij hoeken. Hun grootte wordt bepaald door de verhouding van hun boog tot de straal van die boog. Dat is juist, maar bij een hoek is het begrip hoeveelheid niet echt op zijn plaats.

Iedere hoeveelheid kan ik willekeurig in verschillende grootten denken; een hoek alleen tot hij de hele cirkel omvat; dan kom ik tot de natuurlijke eenheid van een cirkel en die kan niet vérder gedacht worden. Dat is de reden dat je de hoek niet zo kan behandelen als een echte hoeveelheid.

Getal en hoeveelheid staan aanvankelijk vreemd tegenover elkaar en vinden elkaar pas in de maat  die ons de grootte van de hoeveelheid aangeeft: bv. 7 ons.

Maar dan kan ook de breuk gevormd worden, bv. ½ meter. Die ontstaat simpelweg door de deling van een als eenheid genomen hoeveelheid. Je hebt dus als basis een willekeurig genomen hoeveelheid en die noem je 1. Dat is de eenheid, als onderscheid tot het getal 1.

De eenheid kun je meerdere keren hebben, maar kan ook onderverdeeld worden en iedere breuk moet als een deel van die eenheid, niet als deel van 1 opgevat worden.

En de veelvouden van de eenheid en de delen zijn ook grootten, geen getallen.

De grootte ontstaat dus als een resultaat van het meten en wordt ook zo benoemd. Abstraheer je van die benoeming, dan krijg je de grootte zondermeer, de reine grootte en deze kan heel of gebroken zijn.

Hier moet je de oorsprong van de breuk zoeken. En daaruit valt te concluderen dat een breuk nooit als getallen zoals bovenbedoeld opgevat kunnen worden, maar altijd als grootten beschouwd moeten worden. Eén als getal, dat betekent als resultaat van het tellen, is niet deelbaar, wel echter is de eenheid als grootte deelbaar en ½ betekent simpelweg de helft van de als maat toegepaste hoeveelheid, wanneer je afgezien hebt van hoe groot en waarvan de eenheidsmaat is, 2/3 betekent 2 hoeveelheden waarvan er 1 uit de eenheidshoeveelheid door driedeling ontstaat, enz.

Bij het rekenen met grootten komt er natuurlijk veel aan op welke grootte je gebruikt. Want de rekenwetten zijn anders al naar gelang de aard van de grootte waarmee je rekent: onze rekenkunde heeft haar karakter gekregen door het kiezen van een typische grootte: de lengte en wel de naar de ene kant gaande en dienovereenkomstig naar de tegenovergestelde kant. Dat zou weleens in de menselijke natuur kunnen liggen;  de rekenkunde zou er beslist anders uitzien als niet stilzwijgend deze vergelijking werd aangenomen:

Rekenkundige grootte = geometrische lengte.

Met deze vaststelling krijg je de mogelijkheid voor het ‘negatieve getal’ een symbool te vinden zo dat het zeer abstracte  ‘ontbreken van wat je af moet trekken’ wordt vervangen door iets concreets. Het ‘negatieve’ getal is nu eenvoudigweg de lijn in de negatieve richting. Je vormt een ‘getallenlijn’ en je zet vanaf een ‘nulpunt’ uit naar beide kanten een lijn waarvan de eindpunten de positieve de negatieve getallen vormen.

getallen en grootte 1

Deze manier van verbeelden van het getal op een rechte lijn werkt ongelooflijk overtuigend en vormt nu het uitgangspunt voor een grootse ontwikkeling, want het is nu nog maar een kleine stap van de ‘getallenlijn naar de theorie van Gauss

Maar je moet wel goed weten dat je bij dit alles niet meer met getallen, maar met grootten en juist grootten van een speciale soort te maken hebt.

Getallen zijn van elkaar losstaande dingen die niet doorlopend in elkaar overgebrachrt kunnen worden; op de getallenlijn worden dingen neergezet die weliswaar door getallen gesymboliseerd worden maar die zich wel van getallen onderscheiden doordat zij wel voortdurend in elkaar overgaan: het zijn grootten.

Op deze grootten van de getallenlijn kun je de regels van het vermenigvuldigen goed toepassen, wanneer je aan de regel ten grondslag legt:

Het product ontstaat uit de ene factor, zoals de andere uit de eenheid. Daarbij treedt het onderscheid van de beide factoren in de vermenigvuldiger en het vermenigvuldigtal helemaal niet meer op,  je kunt ze verwisselen.

Hoe deze regel bedoeld wordt, zal met een paar voorbeelden verklaard worden: 2 . 3 = 6

Hier ontstaat 6 uit 3 net zoals 2 uit de eenheid. 2 ontstaat namelijk uit de eenheid door verdubbeling in dezelfde richting. Net zo moet je nu de 3 in dezelfde richting die de 3 al heeft, verdubbelen en dan komt 6.

zoals 2 uit 1

getallen en grootte 2

zo 6 uit 3

Een 2e voorbeeld laat het vermenigvuldigen van negatieve grootten zien.     2 . (-3) = – 6

zoals 2 uit 1

getallen en grootte 3

zo – 6 uit – 2

Ook hier ontstaat – 6  uit – 3 door verdubbeling in dezelfde richting, net zoals 2 uit 1 door verdubbeling in dezelfde richting.

Het volgende voorbeeld laat zien dat deze regel ook geschikt is om het vermenigvuldigen van 2 negatieve factoren te laten zien.

(-2) . (-3) = + 6

zoals – 2 uit 1

getallen en grootte 4

 

zo + 6 uit – 3

Hier ontstaat -2 uit + 1 door verdubbeling in de omgekeerde richting en net zo ontstaat + 6 uit – 3 door verdubbeling in de omgekeerde richting.

 

Hier werden slechts een paar voorbeelden gegeven van een werkelijkheidsgetrouwe en begripsmatig streng omschreven behandeling van rekenen.
Het kan hier niet uitgewerkt worden tot een rekenleer. Het allerbelangrijkste bij het opnieuw formuleren van mathematische wetenschap hebben wij te danken aan Herman von Baravalle’s boek: ‘Zur Pädagogik der Physik und Mathematik, dat niet genoeg aanbevolen kan worden. Door levendige begripsvorming in de wiskundige wetenschappen zou het niet vermoede kwaliteiten kunnen hebben om een werkelijke, d.w.z. vanuit de geest geformuleerde wereldbeschouwing te ontwikkelen.

*de zomer van 1924. Steiner was toen in Engeland, in Torquay.
GA 311/78

Hermann von Baravalle

rekenen met negatieve getallen

rekenen: alle artikelen

(E.A. Karl Stockmeyer, Mitteilungen 6 1924)

 

728

 

 

VRIJESCHOOL – Rekenen – 4e klas (7)

.

In mijn verzameling artikelen trof ik onderstaande aan, een uit 1931.

Toen ik het doorlas, viel me op dat ‘1931’ niet te herkennen is uit de tekst, zij het dan dat de spelling niet die van nu is. En ook de ter sprake komende munten hebben we niet meer.

De ‘aanpak’ echter, is nog lang niet ‘achterhaald’. Je kunt je door deze manier van werken nog altijd laten inspireren.

H.L.Janssen van Raay, Ostara, vrijeschool Den  Haag 4/2-1931
.

IETS OVER HET REKENEN II
.

In aansluiting aan mijn artikel in het vorige nummer van dit blad, zal ik nu wat vertellen over de gewone breuken en hare be­handeling.

Een nieuwe rekenperiode brengt den kinderen de gewone breu­ken. Ze kennen nu reeds de begrippen: 0,1, 0,01 enz. en ze weten dat ’t geheel 10 tienden is, 100 honderdsten, enz. Wanneer we dus zonder iets te becijferen op het bord, de kinderen uit het hoofd de bewerkingen laten uitvoeren met eenvoudige getallen, zooals bijv. 0,1 : 10 dat is 0,1 X 0,1 of 0,01, of 0,84 — 0,5 = 0,34, dan kunnen ze dit uit de vorige rekenperiode.

Hierin hebben ze alle vier bewerkingen geoefend, zoowel uit het hoofd als in ’t cijferen, en behoeven ze deze nu slechts uit het vergeten op te halen.

We hebben hierin dus een basis, waarop we verder kunnen op­bouwen.

Een tweede is: hoe zullen we dit opbouwen uitvoeren?

De weg, dien we kiezen, moet ons voeren naar een begrijpen met het ontwakend intellect en naar een zelf omgaan met de breuken in de 4 bewerkingen.

Deze weg zal weer moeten gaan door het doen over het
kunst­zinnige. Door het willen, over het voelen, naar het denken.

Dit brengt ons vanzelf op de gedachte het nieuwe aan te brengen door 3 dagen heen. We beginnen bijv. den eersten dag het kind te brengen in het bewegen, zoodat het met zijn geheele wezen in de leerstof leeft. Den tweeden dag voeren we het in het kunstzinnige — bijv. door schilderen, teekenen, reciteeren, enz. —•; waarop het, den derden dag, de begrippen leert vormen, ze in cijfers weergeven en ermee werken.

Door deze 3 dagen en 2 nachten heen heeft het kind zich geheel met de nieuwe stof kunnen verbinden: den eersten dag werd zij opgenomen in het wilssysteem en in den nacht, als het lichaam in den slaap zich herstelt en verfrischt, met de groeikrachten
ver­bonden. Den tweeden dag werd zij bovendien verbonden door den kunstzinnigen arbeid, met het rhythmisch-systeem.

Nu wordt zij nog eens door den nacht heen gedragen en vormt nu een goeden grond in het hoofd, dat zich den derden dag er van meester maakt. Dit beteekent dat we de leerstof verbonden hebben met den stroom van opbouwende groeikrachten, die in het kinderwezen, in den tijd tusschen het 7de en het 14de jaar, scheppend, vormend werkzaam zijn aan lichaam en ziel. Een voorbeeld hiervan zij gegeven:

De kinderen moeten nu ook de begrippen: 1/3   1/4    1/5  enz. en hun onderlinge verhoudingen leeren kennen.

We nemen de heele klas mee naar de Eurhythmie-zaal. Hier vinden we op den grond geteekend een grooten cirkel, in donker paars, die verdeeld is in 20 gelijke deelen in blauw kleurkrijt. Hier­van zijn er twee weer telkens onderling verbonden door een roode koorde-lijn, en 4 worden telkens samengebonden door een groene boog.

Het spel is nu als volgt: eerst de roode koorden tellen: dat zijn er 10, dus een roode streep geeft aan één tiende van het geheel. Nu loopen ze allen hard om den cirkel heen, dan wordt er geteld: één, twee, drie en bij drie mag er op elke roode streep één kind staan; die er het eerst is mag de anderen van zijn streep afhouden.

Er staan er dus 10 in den cirkel en de anderen er omheen. In koor zegt nu de klas: één geheel is 10 tienden, waarop de kinderen in den cirkel apart mogen zeggen: ,,ik sta op één tiende”.

Weer gaan we allen om den cirkel heen loopen en bij „drie” mogen er op elke koorde 2 kinderen staan. Ze zien allereerst, dat er 2 X zooveel kinderen een plaats in den cirkel vinden, verder dat, als ze de roode koorde „eerlijk” deelen, ze nu elk een eigen blauw vakje hebben, en ze komen er vanzelf op dat ze samen op één tiende, doch elk op één twintigste staan.

Dan de derde keer rondhollen; nu moeten ze met elken voet op een andere roode koorde staan en op 2 strepen mag maar één kind. De strijd wordt heviger, maar 5 kinderen krijgen een plaats in den cirkel, alle anderen blijven er buiten gesloten. De vijf uitverkorenen kunnen nu constateeren, dat ze elk in één groen vak (segment) staan, op twee roode koorden en vier blauwe punten. De klas
reci­teert: één geheel is tien tienden, 20 twintigsten, 5 vijfden. Waarop het antwoord van de vijf in den cirkel komt: 1/10  is  2/20; 1/5  is  2/10  is  4/20. En terug: 4/20  is 2/10  is 1/5

Daarop krijgen ze een serie korte, vragende bevelen, waarop ze in koor of apart moeten antwoorden.

  • Ga eens vlug met je allen op 2/s deel van den cirkel staan! Op hoeveel tienden sta je nu? En op hoeveel tienden sta je nu? En op hoeveel twintigsten?

Vul samen 5 tiende deel, kun je dit ook anders zeggen? Ja ’t is de helft. Hoeveel twintigsten. — Tien
Hoeveel vijfden? — Dat gaat niet. —

Vele variaties van dergelijke spelletjes zijn natuurlijk te vinden. Zoo leggen we in ’t spelen en hollen en schuiven den grondslag voor het vereenvoudigen en herleiden van de breuken.

Na een half uurtje gaan we naar de klas terug en brengen de rest van het hoofdonderwijs door met het herhalen van ’t vroeger geleerde.

Doch den volgenden dag grijpen we op het spel in de Eurhythmie-zaal terug: allen krijgen een velletje wit teekenpapier en, in mooie kleuren, teekenen we een cirkel en verdeelen dien in 20 gelijke deelen. Nu mogen ze uitknippen de breuk 2/5 en daarin aangeven dat dit hetzelfde is als hoeveel tienden? hoeveel twintigsten?

Eén schrijft er op het bord:

2/5 = 4/1o = 8/2o- wat daarna weer in koor gereciteerd wordt.

Het spreekt van zelf, dat we op deze basis ook een andere com­binatie kunnen vinden zooals derden en zesden en twaalfden. Dit laten we ook al gauw aan de kinderen zelf over; ze bedenken zelf wat ze willen uitknippen, zoodat ze ook zelf ontdekken welke her­leidingen opgaan en welke niet.

Maar alles wat er ontstaat moet op het bord geschreven. En na het teekenen en knippen, bergt de klas alle instrumenten weg, en worden de rijtjes zelf gevonden waarheden op verschillende wijze gereciteerd. Heen en weer, luid en zacht, vlug of langzaam, staccato of verbonden, al naar de onderwijzer op dat oogenblik voor de klas geschikt acht.

Den derden dag maken we nu gewoon op het bord alle mogelijke herleidingen en geen kind heeft er moeite mee. Het is volkomen begrepen.

Alleen blijft ons nog over de grondwet voor de breukbewerkin­gen eruit te lichten voor het bewustzijn der kinderen: teller en noemer van een breuk mogen altijd door hetzelfde getal gedeeld of met hetzelfde getal vermenigvuldigd worden.

Nu kunnen de kinderen zelf aan ’t werk tijgen, zooveel herlei­dingen en vereenvoudigingen maken als ze zelf willen en hun eigen moeilijkheden kiezen.

Op een dergelijke wijze, door drie dagen heen, kunnen ook de verschillende bewerkingen geleerd worden.

Het neemt wel is waar wat meer tijd in het begin, dan een vlotte methodische behandeling op het bord, maar het overtuigend belang­rijke ervan is dat alle kinderen, tenzij ze werkelijk abnormaal zijn, de leerstof machtig worden en vreugde voor het werken kunnen voelen, want ze hebben een nieuw gebied voor hun fantasie en zelfwerkzaamheid veroverd.

Dit is een goed en bovendien een geheel nieuw resultaat: dat alle kinderen met vreugde rekenen, niet alleen de meer intellectueel be­gaafden. Want natuurlijk moeten de kinderen leeren werken, maar productief voor de toekomst wordt de arbeid pas als zij met liefde volbracht is.
.

Rekenen 4e klas: alle artikelen

Rudolf Steiner over rekenen

Rekenenalle artikelen

RekenwerkboekRekenen in beweging‘ -inhoudsopgave met doorverwijzing naar alle hoofdstukken

Vrijeschool in beeld: 4e klas

.

685-626

VRIJESCHOOL – Rekenen – 3e, 4e, 5e klas

In mijn verzameling artikelen trof ik onderstaande aan, een artikel uit 1931.
Toen ik het doorlas, viel me op dat ‘1931’ niet te herkennen is uit de tekst, zij het dan dat de spelling niet die van nu is. En ook de ter sprake komende munten hebben we niet meer.

De ‘aanpak’ echter, is nog lang niet ‘achterhaald’. Je kunt je door deze manier van werken nog altijd laten inspireren.

(Opvalt dat de 10-delige breuken eerder aan bod komen dan de gewone)
.
H.Janssen van Raay, Ostara, vrijeschool Den Haag, 4/1. febr. 1931
.

OVER HET REKENEN IN DE 4DE EN 5DE KLAS
.
In het vorige nummer van Ostara beschreef en verklaarde ik hoe het leeren van een vreemde taal (hier het Engelsch), in de klassen der lagere school, zich voornamelijk aanpast aan het Wils- of Ledematensysteem (door middel van het bewegen, het doen) en het Rhythmisch systeem (d.w.z. het kunstzinnige: reciteeren, zingen, schilderen, enz.).

Het spreekt echter van zelf dat dit ook geldt voor het onderwijs in de vakken van het hoofdonderwijs, zooals rekenen, taal, enz..

Toch is het zeer begrijpelijk, dat bij velen de vraag opkomt: hoe is het mogelijk de kinderen het rekenen, het verdere rekenen, te leeren op een dergelijke wijze? Niet waar, juist bij het rekenen leeren, komt men zoo gauw in de verleiding te denken: dit moeten ze toch begrijpen en dat doen we met het intellect, het hoofd. Dus: allemaal rustig zitten, kijken naar het bord, en opletten! En nu wordt er uitgelegd.

Een dergelijke behandeling is juist voor kinderen van 10 en 11 jaar nog volkomen ernaast. Weten we niet allen veel te goed hoeveel moeite het de meeste kinderen kost de hun zoo „vóór-gedachte” gedachtengangen te volgen en dan later zelf weer na te denken, als ze de toepassingen moeten maken? Zelfs al zien ze de verschillende begrippen erbij op het bord ontstaan, dan is het gewoonlijk nog voor de kinderen te zwaar deze begrippen over te nemen en er zelf mee te werken. Alleen de begaafde kinderen kunnen het zoo aan­vaarden, maar ook voor hen is het een herseninspanning, die op hun leeftijd dikwijls zeer verkeerd en bovendien onnoodig is.

Even onnoodig als het voor een fietser is om te „begrijpen” welke spieren, en hoe hij die bij het fietsen gebruikt om vooruit te komen en zijn evenwicht te bewaren. Hij „begrijpt” immers uit het doen vanzelf hoe hij ze gebruiken moet, hij doet ‘t, éénvoudig!

Zoo kan het ook met het rekenen.

Het rekenen in de 4de klas brengt den kinderen een geheel nieuw onderwerp: de breuken.

Tot nu toe hebben ze met geheele getallen gewerkt, alle vier
hoofdbewerkingen zijn hun bekend en de tafels hebben de meesten
onder de knie.

Van oudere broertjes of zusjes hebben ze al gehoord over de breuken, maar niet zoo, dat ze er zich een goede voorstelling van kunnen maken. Nog heeft voor hen het woord een geheimzinnige klank: dit wekt bij hen op een verwachting van iets moois, dat hen dichter, nader zal brengen tot het begrijpen van de aarde. Die mooie, groote geheimzinnige aarde! En ook tot de „groote menschen”, die ze zoo bewonderen en daarom ook zoo graag willen begrijpen.

Is het niet te bewonderen, zooals moeder bij de kruidenier of in een andere winkel, snel de uitgaven berekent, vlugger of even vlug als de winkelier, om dan, als ze het bonnetje krijgt, met één blik te controleeren of het goed is: Ja, ƒ 1.75? Het kind wipt op zijn teenen om over moeders hand ook even het bonnetje in te zien en kijkt een beetje onthutst naar het getalletje 1.75, waarvan het de uitspraak nog niet zelf kent.

Op een goeden morgen komen de kinderen in school; ze weten: vandaag begint een nieuwe rekenperiode, ze gaan de breuken leeren! — en ziet, wel twee tafeltjes voor de klas en daarop uitgestald een weegschaal, een kom met noten en wilde kastanjes, die ze zelf gezocht hebben voor dit doel, maar dan nog het vreemdste van alles: een echt gouden tientje, 9 zilveren guldens, 9 dubbeltjes en 10 centen.

Voor dat ze het weten is de les begonnen. Alles wat los zit in de klas mag verkocht! Eén is winkelier, verschillende mogen inkoopen doen, telkens staat er één voor het bord om de uitgaven op te schrijven. Maar niets wordt opgeschreven zonder dat we ’t allen samen hebben gezegd. Bijv. 1 kilo noten kost ƒ 1.20. Al spoedig blijkt dat ook de schrijfwijze geen groot bezwaar is: de 2 staat op de plaats van de dubbeltjes, de o op die van de centen.

Nu hoeven we maar toe te tasten: overal liggen de
aanknoopingspunten voor het leeren van de munten, maten en gewichten en de tiendeelige breuken.

Dat er 10 centen in een dubbeltje gaan en honderd in een gulden weten ze nu allen en we doen dan ook ongemerkt de stap 1 cent = 0,1 dubbeltje en 0,01 gulden.

Wanneer we hun nu vertellen, dat cent en honderd hetzelfde woord is, spreekt ’t dus voor hen vanzelf dat 1 centigram = 0,01 gram en 1 centimeter = 0,01 meter.

We hoeven dus niet lang bij het geld te blijven stil staan. Spoedig genoeg zal dit toch wel een rol gaan spelen in hun leven! Het was hier slechts een bruggetje om uit de praktijk van ’t leven, waar hun interesse op deze leeftijd wakker genoeg voor is, te komen tot het rekenen. De gewichten, die ze gebruikt hebben, voeren ons tot het leeren van de namen deci, deca, hecto, enz..

Onder de hand schreven we, op het schoone bord, alle dingen die we zoo samen „gevonden” hebben, netjes onder elkaar:

1 goudtientje = 10 gulden; 1 gulden = 0,1 goudtientje;
1 gulden = 10 dubbeltjes; 1 dubbeltje = 0,1 gulden, enz.;

en een nieuwe rij:

1 kilogram = 10 hectogram; 1 hg = 0,1 kg;
1 hectogram = 10 decagram; 1 dg = 0,1 hg, enz..

Deze twee rijen worden nu klassikaal gereciteerd, liefst in een vast rhythme.

De schrijfwijze geeft ook niet veel moeite, we sluiten gewoon aan bij de plaatsen van de „éénen” en de tientallen, enz. in de geheele getallen; naast het kleinste geheele getal komt de komma en dan de tienden, de honderdtallen enz.. Het komma-spelletje helpt de kin­deren er bij: voor de klas plaatsen we een heele rij kinderen, die achteréén volgens een aantal kilogrammen, hectogrammen, enz. mogen voorstellen. Een kleine vluggerd mag de „komma” zijn, hij krijgt hiervoor een duidelijk teeken, bijv. een roode muts op, en zit eerst op den grond, tusschen grammen en decigrammen. Élk kind noemt nu op de beurt zijn aantal en één schrijft  het op: 8744,572 gram. Nu willen we er hectogram van maken, weg moet dan de komma en naar zijn nieuwe plaatsje, want nu zijn de hectogrammen de kleinste „geheelen”. Nu decigrammen, dan weer kilogrammen, vlug wipt de komma heen en weer, als we de gewenschte naam uit­spreken moet hij al weg zijn van zijn plaats om de nieuwe te zoeken. Vlug genoeg kunnen ze het nu ook in hun schrift.

Een andere draad nemen we op: er staan nog op het eerste bord de uitgaven van het winkeltje-spelen. Als we eens uitrekenden hoe­veel we samen uitgegeven hebben? We vinden dat, even goed als we voor 10 tientallen een honderdtal mogen opschrijven, we nu ook voor 10 honderdsten 1 tiende kunnen rekenen. En binnen enkele minuten rekenen ze er lustig op los.

Wat is er nu eigenlijk in den loop van den ochtend gebeurd? Wat hebben we met de kinderen gedaan?

Ja, we hebben veel met hen gedaan, maar het meeste hebben ze zelf gedaan: ze hebben rond geloopen door de klas, ze hebben even in de gang elkaars mutsen opgezet of een jas binnenste-buiten aan­getrokken, om er als een gefingeerde „klant” uit te zien; ze hebben zich ingespannen om den „winkelier” ‘van de wijs te brengen, door hun wenschen zoo te kiezen, dat het bedrag zoo groot mogelijk werd, of zóó dat ze maar een centje armer de gefantaseerde winkeldeur achter zich dichttrokken; ze hebben gelachen om den winkelier die zich vergiste, en hun verontwaardiging luidruchtig geuit om de heb­zuchtige klant, die de „heele klas” voor ƒ 20,— thuisgestuurd wilde hebben. Ze hebben ook gereciteerd en tot slot zelf met de nieuwe sommen gerekend. Hun geheele wezen heeft zich met dit rekenen kunnen verbinden: het willen in het doen, het voelen in het reciteeren en in het spelen, het voorstellen — want het denken is op dezen leeftijd nog voornamelijk voorstellen — in de fantasie, die zij bij alles ontwikkelden.

Van zelf spreekt het, dat dit alles nog maar een grondslag is, waarop in den verderen loop der periode het werken met de munten, maten en gewichten en de tiendeelige breuken moet worden opge­bouwd. Maar bij het leeren van elke nieuwe moeilijkheid gaan we weer op een zelfde wijze te werk.

Verder moeten de kinderen zelf het geleerde oefenen. Hieraan kan steeds meer tijd besteed worden. Ja, zelfs kunnen we dit oefe­nen, het gewone cijferen, door de andere perioden heen, elken dag even blijven doen, wanneer dit voor een klas gewenscht is. Doch ook bij dit gewone oefenen vergeten we niet steeds den kinderen een gelegenheid te geven hun eigen fantasie te gebruiken.

Ze mogen, moeten zelfs, zooveel mogelijk de opgaven zelf ver­zinnen. Dit laatste schept immers de mogelijkheid, dat alle kinderen eraan kunnen meedoen. Al zijn er in de klas kinderen die 4 of 5 opgaven als 87,94/78549,762/ uitrekenen, en anderen, die, in den­zelfden tijd, 2 opgaven als 1,25/62,5/; allen leeren en oefenen ze het werken met de tiendeelige breuken en ontwikkelen zich naar hun vermogen, zonder dat deze ontwikkeling door eenige pressie of rem zou worden geforceerd.

Alle kinderen uit de klas hebben aan een dusdanig onderwijs kunnen meedoen.

Over de gewone breuken, die op de tiendeelige volgen, een andere keer.

.

Rekenen 4e klas: alle artikelen

Rudolf Steiner over rekenen

Rekenen: alle artikelen

RekenwerkboekRekenen in beweging‘ -inhoudsopgave met doorverwijzing naar alle hoofdstukken

Vrijeschool in beeld: 4e klas

.

684-625

.

VRIJESCHOOL – Rekenen – 4e klas (5)

.

(F.H. van den Hoek, nadere gegevens ontbreken)
.

BREUKEN IN DE 4E KLAS

Wie kent ze niet, die rode “koppies” boven dat schrift met al die moeilijke breuksommen. De wanhopige blik van ‘wat betekenen die getalletjes nou eigenlijk? Ik begrijp er NIETS meer van’. Het is natuurlijk een illusie te denken dat dit bekende tafereel op de vrijeschool niet plaats kan vinden, te meer daar ‘de breuk’ tot het moeilijkste rekenonderdeel van de lagere school gerekend kan worden.

Van vroeger herinneren we ons nog vaak genoeg, dat we iets pas veel later “door kregen”, nadat we al heel lang het “trucje” hadden toegepast. Op de
vrijeschool proberen we dan ook dit rekenonderdeel niet alleen op een intellectuele manier te benaderen, maar eveneens te zoeken naar kunstzinnige, sociale en wilsversterkende aspectenImmers, het betreft hier niet slechts lesstof, maar het is tevens ontwikkelingsstof voor het kind in de vierde klas.
De breuken vinden een geheel eigen plaats in het leven van het tienjarig kind. De gouden periode van de 1e  t/m de 3e klas loopt geleidelijk aan ten einde, de – éénheid – van het ouderlijk gezag en dat van zijn opvoeders op school kan zo hier en daar een aardige knauw krijgen.
Een grote steun voor het kind in deze fase is de vertelstof, de Noors-Germaanse mythologie. De onzekerheid van het kind, dat zich veel meer dan voorheen als een “IK” beleeft, wordt in hoge mate gesteund door deze verhalen, die steeds weer over moed gaan. De Noorse held overwint zelden, hij gaat zelfs ten onder, maar zijn moed blijft in prachtige verzen bewaard als lichtend voorbeeld. Na die ondergang ontstaat er toch een nieuwe wereld. Mede gezien in dit licht vormt de “breuk” een typisch heilzaam vierdeklasonderwerp, omdat de tot dusver vertrouwde – éénheid -door’broken’ wordt. Ook daarom zingen we vanaf de vierde klas met vreugde vele canons (“gebroken” liederen), terwijl de kruising van lijnen bij het vormtekenen, het z.gvlechtwerk, heel bewust, beleefd wordt, evenals de kruissteek bij het handwerken.

De eerste breukenperiode in de vierde klas, met name de eerste tijd, staat voornamelijk in het teken van het DOEN. Nadat de leerkracht op de eerste dag onder doodse stilte een appel doormidden sneed, de beide helften aan zijn publiek toonde en ze plechtig benoemde “Dit is een halve appel en dit is een halve appel”, betekende dit het begin van een hele serie handelingen, waarbij behalve hijzelf ook de kinderen heel wat te snijden en te verdelen kregen.

Heel wat opdrachten in de trant van “Hoeveel partjes van een kwart zitten er in die halve appel?”

Aanschouwelijke grapjes: “Als je die appel lekker vindt, wat heb je dan het liefst:  3/4  appel of  3/8  appel?”

Zo werd er in deze eerste periode heel wat getekend, geknipt en geplakt om tot het begrip ‘breuk’ te komen. Via dit werk kwamen we tot de ontdekking dat ‘één hele’, 2/2 ,  3/3,   4/4  maar ook 20/20 kan zijn en een oneindig aantal voorbeelden meer.

Naast dit begrijpen komt ook het kunstzinnig element ter sprake.”Hoe kunnen we dit mooi opschrijven?”
In kleur en netjes naast elkaar ontstaat een prachtige rij:

breuken 1

Geleidelijk aan komen we meer tot de abstractie. Toch blijft het visuele, het speelse de kinderen steeds weer boeien, vooral als iets na een tijdje weer dreigt weg te zakken.
Tijdens de laatste breukenperiode, toen we al heel wat sommetjes hadden opgeschreven en gemaakt, was het toch weer heerlijk om “tekensommetjes” te maken, zoals   2 – 3/4= ?

Wij tekenden heel kleurig:

breuken 2

Het antwoord werd duidelijk zichtbaar: 1 1/4      

In een korte samenvatting als deze is het natuurlijk ondoenlijk om heel uitgebreid op alles in te gaan. Het blijft “aanstippen” van enkele hoogtepunten. Een van die hoogtepunten is het slim verwerken van de tafels van vermenigvuldiging. Het wordt in de vierde klas allengs duidelijker, dat je niets met breuken begint zonder een goede kennis van de tafels.
Om nu niet niet steeds weer op dezelfde wijze de tafels te herhalen, is er in de breukenperiode een fijne manier om zowel de “snelle” als “langzame” kinderen te activeren, natuurlijk ieder op hun eigen niveau:

bijv. een half is  ………..2/4       
een half is  ……….. 3/
een half is  ………..4/8  enz., maar ook dit kan natuurlijk:

5/8   =……….10/16
5/8   =……….15/24
5/8   =……….20/32 enz. 

waarbij we zelfs twee tafels combineren, een uitermate sterke wilsoefening.

Naarmate de tijd verstrijkt, zal de wonderwereld van de breuken zijn glans van het nieuwe, de nieuw te ontdekken wereld, onherroepelijk gaan verliezen. Dan zal het een verworven iets, een kunnen moeten zijn, waarbij echter de herinnering aan een fijne periode hen verder helpt om nieuwe gebieden in het rekenen te ontdekken. Dan is de tijd echt afgesloten, dat er drie kinderen in een kringetje staan, elkaars hand vasthouden en uitroepen: “Wij zijn één hele!”, gevolgd door de komst van de “breukenmaker”, mét het grote zwaard, die de handen (voorzichtig) vaneen doet gaan, waarna het drietal in koor laat horen: “Wij zijn drie derden”, gevolgd door drie soli van “Ik ben één derde.”

Ja, wat kan een breukenperiode ook leuk zijn!
.

Rekenen 4e klas: alle artikelen

4e klas: alle artikelen

Rekenen: alle artikelen

VRIJESCHOOL in beeld4e klas

.

547-501

 

 

 

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Rekenen – 4e klas – alle artikelen

.

Let op: ‘mijnheer Van Dale wacht iets anders op antwoord’:
.

[1Rekenen en wiskunde
Het binnenste buiten’ over: kind tussen 9e en 12e jaar; klas 4 en 5: leerstof: m.n breuken en tiendelige breuken; praktijkvoorbeelden; stambreuk belangrijk; breuken bij de Egyptenaren;

(2)  De 4 bewerkingen door de jaren heen

(3)  Schriftelijk rekenen met breuken met ‘mooie’, ‘bijzondere’, ‘verrassende ‘ uitkomsten
(4)  Schriftelijk rekenen vanaf klas 1 met ‘mooie’, ‘bijzondere’, ‘verrassende’ uitkomsten

[5Breuken in de vierde klas
F.H. van den Hoek over: de verandering die de 4e-klasser ondergaat; de leerstof als steun, als ontwikkelingsstof; de typische 4e klasvakken; hoe gaat het toe in de klas;

(6) Over het rekenen in de 4e en 5e klas
H.L. Janssen van Raay over: winkeltje; geld; metriek stelsel.

(7) Iets over het rekenen 2
H.L. Janssen van Raay over: breuken [hier komen de tiendelige voor de stambreuken]; van willen, via voelen, naar denken; voorbeeld van breukbeleving met een grote cirkel(kring); 

(7) breuken
(8) breuken

[9] metriek stelsel
Pieter HA Witlviet over: hoe je met het metriek stelsel zou kunnen beginnen; hoe de mens vroeger van maten uitging die met zijn eigen beleving te maken hadden: duim, voet, vadem en veel meer.
Als uitbreiding voor de leerkracht een serie artikelen over ‘eenhedenstelsels’:
rekenen: alle artikelen onder nr. 8

Het boek: Rekenen in beweging

.

4e klas: alle artikelen

VRIJESCHOOL in beeld: 4e klas

.

532-489

.

.

VRIJESCHOOL – Rekenen – 5e klas (1)

.

REKENEN EN WISKUNDE

.

Rekenen tussen het negende en twaalfde jaar
In de gevoelsmatige periode van de gevoelsfase, die ongeveer samenvalt met de vierde en vijfde klas, zijn de fantasie en de persoonlijke inzet van de kinderen bij het rekenonderwijs van essentieel belang. Bij het thema breuken kunnen deze elementen bijzonder goed tot hun recht komen.

5e klas

Leerstof:
Voortzetting van het geleerde in klas IV. Meten, berekeningen met maten. Wegen, berekeningen met gewichten. Tiendelige breuken. Cijferen in de vier hoofdbewerkingen, ook met getallen achter de komma. Schatten.

Hoe gaat het toe

Menselijke maten
Een van de leukste perioden van deze klas is de periode ‘menselijke maten‘, als overgang tot het normale metrieke stelsel. De leerkracht vertelt de kinderen hoe er vroeger werd gemeten.

Hij introduceert de voet, de duim, de el, de vadem en vertelt waar ze (bij) gebruikt werden. Uiteraard is de inleiding kort, want het gaat erom dat de kinderen zélf gaan meten.

Ze waaieren uit naar de gangen van de school, om daar gedeelten met voeten af te passen. Terug in de klas wordt het resultaat snel genoteerd. Dan gaan ze opnieuw op pad. Als allen weer zitten, mogen de kinderen om de beurt voorlezen hoeveel voet volgens hen de gangen naast de klas lang en breed zijn. Met welk een interesse luisteren ze naar elkaar! Gejuich gaat op als iemand ontdekt dat een ander net zo veel voet heeft gemeten als hij!

Daarna vertelt de leerkracht dat men vroeger al die verschillende voetmaten lastig vond worden en daarom van één soort voet ging spreken: In Amsterdam van de Amsterdamse voet (28,5 cm); in Engeland van de Engelse voet (30,5 cm) en in het Rijnland van de Rijnlandse voet (31,5 cm).

Elk kind mag thuis de voeten van zijn ouders meten. Gelach de volgende dag als iemand een vader heeft met een voet nog groter dan de Rijnlandse! Maar sympathiek gelach en vol interesse. In een nieuw schrift wordt eerst de mens getekend met zijn maten. Daarna mag elk kind zich zelf tekenen met zijn eigen maten. Dan wordt in het schrift het resultaat neergelegd van het meten van de gangen en van al het andere dat intussen is gemeten. Wanneer er een dag of tien met de menselijke maat is gewerkt, gaan we over op de meter. Deze kan nu geen kwaad meer doen. Door het werken met de menselijke maat is de betrokkenheid van de kinderen op hun naaste omgeving en op elkaar zo toegenomen, dat het gevaar van kille ‘afgemetenheid’ geweken is. Op deze basis kunnen wij met een gerust geweten het metrieke stelsel introduceren.

Oppervlaktematen
De eerste dag van deze periode begint de leerkracht met een schoon en droog bord. Hij neemt een natte spons en laat een leerling keurige rijtjes afdrukken maken. Naast elkaar, netjes aaneengesloten.

Zo ziet men dat het hele bord door sponsafdrukjes bedekt kan worden. Deze afdrukjes worden geteld. Hetzelfde doet de leerkracht met de tafel.

De bedoeling is duidelijk. Het begrip oppervlakte wordt zichtbaar gemaakt. Vervolgens gaan de kinderen aan de slag. De bank bedekken met blaadjes van de blocnote. De stoel. De vensterbank. De bank bedekken met natte afdrukjes van de palm van de hand, zonder de vingers, dan krijgt men praktisch een vierkantje. Dit met verf op een vel papier. Hetzelfde met duimafdrukken, enz.

De leerkracht geeft opdracht om alle mogelijke oppervlaktes te meten met iets van hun lichaam, de voet mag dus ook. De mens is de maat van alle dingen. Er wordt een ‘opmeter’ aangewezen en iemand die het opschrijft. De volgende dag worden alle resultaten gerubriceerd, met vermelding van de persoonlijke maat.

De boekentafel is:

58 handpalmen van Boris en
62 handpalmen van Freek en
60 handpalmen van Marielle enz.

Zo komen we gezamenlijk tot het kiezen van een
standaard-eenheidsmaat. Bijvoorbeeld schriften.
‘Bedek de tafel met schriften.’ Ze ontdekken dat je stukjes overhoudt, er is behoefte aan halve schriftjes, aan een kleinere eenheid.

De volgende dag enkele aantekeningen en conclusies van ‘gisteren’ en dan naar de grote oppervlakken.

De gang.
De speelplaats.
De eenheden zijn hier de tegels.
Groepjes krijgen de opdracht om oppervlaktes te meten. Een leerling begint tegeltjes in de gang te tellen.

‘Nee, joh, dat moet je zo doen,’ zegt een ander en telt de tegels in de lengte en breedte. Zo groeit de klas vanzelf naar het begrip, dat nog in het verschiet ligt, namelijk lengte maal breedte.

Terug in de klas wordt alles getekend.
Het moet er weer netjes uitzien, er ontstaan mooie tegelveldjes.

bb 85

 

6 tegels
1e rij van 6 tegels
2e rij van 6 tegels
3e rij van 6 tegels
4e rij van 6 tegels
5e rij van 6 tegels

er zitten 6 tegels op een rij
er zijn 5 rijen van 6 tegels
dat is dus 5 x 6 = 30 tegels

Nu voert de leerkracht de algemeen bekende standaardmaten in. De wens naar een standaardmaat, die ze allen gehad hebben, wordt zo vervuld.

‘Deze maat geldt voor iedereen, voor alle mensen in Europa’

Veel voorbeelden, veel tekeningen, die later wel losgelaten kunnen worden, maar in het begin moeten ze er zeker bij.

Tenslotte moeten ze dezelfde soort sommen maken, maar nu met vierkanten van

1     cm
10   cm
100 cm
1     dm
10   dm
1     m

Eerst tekenen, tenslotte komt daaruit:
1 dm2 = 100 cm2 en…

En?
1 m2 = 10.000 cm2!

Dat laatste wekt enige verbazing. Zoveel? Laten we het dan maar natekenen als je het niet gelooft. Vrij snel zijn ze er dan achter dat het echt klopt.

Het is zaak de voorbeelden en sommetjes leuk en tamelijk eenvoudig te houden.

Naast het perioderekenen is er vanaf de vierde klas een rekenoefenuurtje. Hier kan men dan, als een en ander de tijd heeft gekregen om te bezinken, te zijner tijd de zaak uitbreiden, tot alle oppervlaktematen gekend zijn. Dan kan ermee gerekend worden.

Breuken
Bij het rekenen met breuken in de vier hoofdbewerkingen komen ons de temperamenten te hulp.

Ter illustratie vier eenvoudige voorbeelden waarbij we onze vrienden, de breuken, terugvinden in de gewone orde der getallenrij

Optellen
3 ¼ + 21/5

+, dat zijn de sommen van het ordenen, netjes alles naast elkaar. Liefst nog alles van hetzelfde soort naast elkaar. Zoals Poeh zijn potjes honing neerzette. Als hij de kans kreeg zette hij lindehoning naast lindehoning en heidehoning naast heidehoning.

Helen kunnen rustig bij elkaar geteld worden. Dat weten we al. Maar ¼ plus 1/5, dat bestaat niet! We moeten er echt dezelfde stukjes van maken. Door het reciteren van

1/42/3=  5/20… en van

1/52/10 = 4/20

is gelijknamig maken geen probleem.

Alleen dat je gelijknamig moet maken is de moeilijke ‘leerstap’. Deze kan echter in de flegmatische sfeer worden genomen. Het is eigenlijk zo: Bij een bepaald gezicht dat de leerkracht zet bij een bepaalde, een bijna verdacht rustige presentatie moet er gelijknamig worden gemaakt, maar mogen de helen blijven staan.
De som is niet moeilijk, maar moet nog rustig worden afgewerkt.

Aftrekkenn
3 1/4 – 2 1/5

_ De som is methodisch hetzelfde, alleen mét de kans op narigheid. Dit is didactisch een geluk want nu past de som in de melancholische sfeer!
Wanneer er meer stukken moeten worden afgetroken dan er zijn, dan moet er een hele worden aangesneden! Zonde van die mooie hele, maar ja, wat doe je eraan?
De afwerking van de som is niet moeilijk, als het principe maar begrepen is.
Wederom begrijpen de kinderen dit uit de mimiek en het gebaar van de leerkracht.

Vermenigvuldigen
9/14  x  2/3

Hoera! Nu geen ellende.
X Het maalteken is een blij teken. Geen gezeur. De cijfers onder en boven de breukstreep kijken elkaar vrolijk aan. Hebben ze misschien gemeenschappelijke familie?

Ja? Wie dan? Horen ze beide tot de familie van 3? Even uitzoeken…. ja? Dat is toevallig! Nu dan kan men daar kort over zijn, als men beide die drie kent — Laten we die drie eruit strepen. Etc.

Natuurlijk, dit zijn moeilijke leerstappen, maar in een bepaalde sfeer is het toch snel aangewend. Echt begrepen wordt het later. (Uiteraard legt men het principe wél van te voren goed uit — het plechtige begin — dit wordt echter maar door weinigen individueel werkelijk begrepen.) Het enige wat een x-som kan bederven is als er helen staan. Die moeten dus snel worden weggewerkt.

Delen
3/17 : 9/34

:  Dat delen vermenigvuldigen is met het omgekeerde wordt een paar maal uitgelegd.* De volgende dagen klassikaal gereciteerd. Verder wordt het delen veel gedaan. Wordt er domweg veel gedeeld. Het radicaal op zijn kop zetten heeft iets cholerisch. Aan de houding van de leerkracht is te zien wat er met de som moet gebeuren.

Waarom dit alles? Waarom deze ‘trucs’?

De kinderen moeten in hun gevoelsverhouding tot de getallen niet geremd worden. Zij moeten integendeel zorgeloos met de getallen durven jongleren. Vooral uit ervaring weten ze dat het goed is wat ze doen.

Dit kunnen is de basis voor het verdere rekenen en ook voor de serieuze begripsvorming later.

Cijferen
Er zijn leerkrachten die het ‘onder elkaar’ al in de 4e introduceren. Dat kan, als het maar niet ten koste van het hoofdrekenen gaat.

Cijferen, dat is wel het summum van routinerekenen:

3,00861 x 97,725

Vooruit, onder elkaar

97,725
3,00861 x je begint met 1 x 5.

Wacht eens even, er staat

één honderd duizendste maal vijf duizendsten. Nou ja, dat zien we straks wel, dan tellen we de komma’s af, 3 + 5 = 8 plaatsen. Dat wordt dus 1 x 5, 1 x 2, 1 x 7, 1 x 7, we springen gewoon over die komma heen… Bij de tweede regel één inspringen

6 x 5 = 30, de 0 op de goede plaats.
Het is allemaal wel uit te leggen, dat als je het zó doet, alles op zijn pootjes terecht komt, maar het is levensvreemd, abstract.

Een normaal mens zegt

3,00861 x 97,725,
dat is ongeveer 3 x 100 – 3 x 2 dus geschat 294.

Normaal is, dat men bij de grote brokken begint en dan de kleine stukjes zoveel mogelijk bij elkaar veegt. Vermenigvuldigen in cijfervorm begint bij de pietepeutertjes. Dat is zo iets als: ‘Wat eten wij vandaag?’ ‘Nou, peper en zout – – enne – –

Bij het hoofdrekenen blijf je half rekenend, half schattend sterk verbonden met het betreffende vraagstuk, je bent verbonden met de orde van grootte waarin zich iets afspeelt. Cijferen trekt zich nergens iets van aan. In de 4e hoeft men nog niet te beginnen** met het cijferen, de machinale rekenvorm, maar in de 5e moet het wel. En wel zo, dat wij naast deze automatismen het hoofdrekenen blijven beoefenen, met name het schatten.

Begrijp me goed, dat in elkaar passen van al die deelproducten, dat ordelijk afwerken, zodat er niets vergeten wordt, dat is slim bedacht. Natuurlijk moeten de kinderen onze bewondering voor zo veel scherpzinnigheid delen. Men kan echter ook te slim zijn en dan loop je behoorlijk tegen de lamp. Eén klein kommaatje fout — en je zit er totaal naast. Men zou de leerlingen ertoe kunnen brengen al hun werk eerst zelf na te kijken, alvorens het in te leveren. Maar meestal valt een kind zijn zelfgemaakte fout niet op. Beter werkt de remedie om de uitkomst van te voren te schatten. Gewoon opschrijven: geschat 294, en dat aan het eind vergelijken met het resultaat van het cijferen.

Voor een deling als

610628 : 89 schatten: 7 x, nee toch maar 6 x, is een zekere mobiliteit nodig. Daar spelen door elkaar de (geschatte) 7 x 8 en de 7 x 9. Als de leerlingen eerst de 7 x gaan proberen en ze merken, dat dat te veel is, dat het 6 x moet zijn, dan leidt dat meestentijds tot veel geknoei — en natuurlijk ook tot tijdverlies.

Als afsluiting.
Wellicht vindt u de 3,00861 x 97,725

een wat extreem voorbeeld voor een vijfde klas. Het ging mij hier echter niet om de getallen maar om de wijze van omgaan met het cijferen. Daarom werd hier als tegenwicht het schatten ingevoerd. In tegenstelling tot het cijferen is schatten een zeer persoonlijke activiteit waarbij ook het gevoel ingeschakeld is. In het schatten ligt op subtiele wijze een zeker spelelement besloten. Heeft men iets goed geschat, dan geeft dat een veel prettiger gevoel dan wanneer met iets goed heeft uitgerekend. Cijferen is een zuiver intellectuele bezigheid waar men in de 5e wat voorzichtig mee moet omgaan.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985).

*Dit soort sommen zijn voor kinderen te abstract. Wat gebeurt er eigenlijk. Om een antwoord te vinden, kun je natuurlijk het ‘omgekeerd vemenigvuldigen’ toepassen, maar het begrip voor wat er gebeurt, ontstaat daardoor niet.

Wanneer je vraagt: hoe vaak zit de 2 in de 10, weten de kinderen: 5.
Wanneer dit overbekende wordt opgeschreven, is dit de vorm:10 : 2 = 5.
Hoe vaak zit er een halve in 2. Ook dat lukt wel: 4. Hoe schrijf je dat op: hoe vaak zit enz. Wel, bij 10: 2 = …Zo!|
Dus nu: 2 : 1/= 4 En later: hoe vaak zit er 1/in 1/:
1/1/= 2
Wanneer de kinderen goed begrijpen dat “hoe vaak zit erin”  synoniem is voor “hoeveel KEER’ en dat weer synoniem voor “gedeeld door”, is het begrip voor ‘delen met of door een breuk’ veel reëler.
Wanneer er een redelijke zekerheid is ontstaan voor dit proces, kun je eens vragen of ze in bv. 2 : 1/2 het antwoord 4, zien – ligt dat ergens ‘verborgen’ voor het oprapen. Een aantal kinderen ziet wel dat 2 x 2    4 is. Hoe zou je die som dan moeten opschrijven om tot het antwoord 4 te komen. Ja, omkeren: 2 x 2/14/= 4. Daaruit volgt dat 2 : 1/2 ook kan worden geschreven als 2 x 2!

**Ik ben van mening dat je in klas 3 al kan/moet beginnen, met bv. veel eenheden bij elkaar optellen die in een lange rij eerst naast elkaar, maar dan ook onder elkaar staan: 3 + 5 + 9 + 7 + 1 enz. Dit is ook hoofdrekenen. Tevens ontstaat zo de mogelijkheid om het ‘handig’ rekenen te ontwikkelen: 7 + 3 = 10; 9 +1 = 10 enz.

.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985).

.

5e klas rekenenalle artikelen

5e klasalle artikelen

VRIJESCHOOL in beeld: 5e klas

.

527-486

 

 

 

 

 

 

 

 

 

 

 

 

.

 

VRIJESCHOOL – Rekenen – 4e klas (1)

.

REKENEN EN WISKUNDE

Rekenen tussen het negende en twaalfde jaar

In de gevoelsmatige periode van de gevoelsfase, die ongeveer samenvalt met de vierde en vijfde klas, zijn de fantasie en de persoonlijke inzet van de kinderen bij het rekenonderwijs van essentieel belang. Bij het thema breuken kunnen deze elementen bijzonder goed tot hun recht komen.

De vierde klasser is in het midden van de tweede levensfase. De tijd dat hij zich vanzelfsprekend één kon voelen met de wereld rondom, is voorbij. Het gevoel van zelfstandigheid is tevens een gevoel van ‘apartheid’. Het blijkt de vierde klasser diep te kunnen bevredigen wanneer hij de kans krijgt zich in te leven in de wereld van de breuken. Het kind krijgt daartoe alle gelegenheid. Pas als de breuken ten volle doorleefd zijn, beginnen wij te werken met abstracte formuleringen van breuken.

Leer- en ontwikkelingsdoelen voor de klassen IV en V

Kwalitatief en kwantitatief inzicht in de wereld van de gehele getallen, de gewone en tiendelige breuken. De vier hoofdbewerkingen binnen dat gebied.
De vaardigheid zich binnen deze getallen rekenend vrij te bewegen.

4e klas

Leerstof
Hoofdrekenen, ook met getallen boven de duizend.
Cijferen wordt aangeleerd (eventueel).*
De breuken met hun vier hoofdbewerkingen.
Schatten.

Werkvormen
Na een ceremoniële start oefent de klas het rekenen in breuken door beweging en doen.

De klas vormt een kring die in tweeën of drieën wordt gesplitst. De kring valt telkens uiteen in een stambreuk en het overblijvende deel, om zich daarna weer te sluiten.

De kinderen maken ook ronde schijven en knippen er een stuk uit. De delen zijn gemakkelijk weer samen te voegen. Altijd gaat de leerkracht met de leerlingen van het geheel naar de breuk en van de breuk terug naar het geheel. 

Het schriftelijk werk is zodanig dat het voor de kinderen binnen dezelfde opgave mogelijk is op veilig terrein te blijven of door te dringen tot een moeilijker gebied.

Hoe gaat het toe?

Op de vrijeschool gaan we bij het rekenen met breuken uit van de stambreuk. We proberen ook in dit vak de mensheidsgeschiedenis te volgen. De Egyptenaren gebruikten vele eeuwen om het rekenen met breuken te ontwikkelen. In de tijdspanne van 3400 v. Chr. tot 1800 v. Chr. gebruikten de Egyptenaren uitsluitend stambreuken en het overblijvende deel:

één derde                                   en de ‘twee delen’ (2/3)
één vierde                                  en de ‘drie delen’ (3/4)
één vijfde                                   en de ‘vier delen’ (4/5)

Voor de Egyptenaar had elke breuk op zichzelf zo sterk een eigen kwaliteitskarakter, dat het voor hem een horreur was om over 2/5 of 3/5 te spreken. Bij hun berekeningen stuitten de rekenkundigen wel op zulke grootheden, maar deze werden onmiddellijk geëlimineerd door ze te herleiden tot stambreuken. Zo bevat de papyrysrol Rhind, 19e eeuw vóór Chr. uitvoerige tabellen voor het herleiden van 2/5, 2/7, 2/9 tot stambreuken. Voorbeelden:

2/5———- ► 1/3 + 1/15

2/7———- ►     1/4 + 1/28

2/9———- ► 1/8 + 1/52 + 1/104

Voor ons is dat vreemd. Wij moderne mensen fronsen onze wenkbrauwen bij die 1/8, 1/52, 1/104 en het verschaft ons een bevredigend gevoel als wij met behulp van gelijknamig maken deze som kunnen herleiden tot de voor ons zo veel gemakkelijker grijpbare breuk 2/13. Dus we gaan precies de andere kant op.

Maar voor een Egyptenaar heeft ééndertiende een kwaliteit, voor hem spreekt zich in die 13 een wezenlijk iets uit. De getallen worden grootheden waar men het diepste respect voor had.

Het kan nooit de bedoeling zijn de papyrusrol Rhind als uitgangspunt voor een rekenmethode te nemen. Wij willen niet terug. Maar het maakt wel verschil of de onderwijzer en de onderwijzeres met eerbied tegenover de breuken staan. De breuk is een culturele verworvenheid van de mensheid. Een lange weg van wijsheid naar uiterlijke kennis. Al onze kinderen zijn in de wieg gelegd om deel te hebben aan onze abstract-intellectuele wereld. De vraag is echter, hoe leidt men een kind op weg naar het begripsmatige omgaan met getallen en bewerkingen zonder dat zij van hun werkelijkheid vervreemden.

De eerste breukenperiode
Het is januari, de school is net begonnen na de kerstvakantie.
Als iedereen binnen is, is de spanning al aanwezig. Ze weten: nu krijgen we breuken!

(N.B. Een rekenperiode gaat het best in de koude tijd van het jaar, als alle krachten wat verinnerlijkt zijn. Daarnaast vormt de ‘breuk’ een typisch heilzaam vierdeklasonderwerp, samen met o.a. de canon, het ‘gebroken’ lied, en de kruising van lijnen bij het vormtekenen, het zgn. vlechtwerk.)

Met een plechtstatige ernst haalt de leerkracht uit zijn tas een zijden shawl — een mes — een appel. Met omstandig ritueel wordt de appel gepoetst tot hij glimt. Dan neemt de leerkracht het mes en voor de ogen van de kinderen snijdt hij de appel langzaam middendoor.

Dit zonder één woord te zeggen.

Het mes wordt neergelegd en in iedere hand neemt de meester een helft. Dan de twee helften in één hand, goed laten zien, de shawl eroverheen en onder de shawl de helften tegen elkaar gedrukt. Als het goed lukt, plakken de helften weer samen en de appel is weer heel. Onthul de appel dan weer.

Hetzelfde ritueel nu nog eens.
Nu krijgen we vier partjes. Ook deze worden te zamen geplakt. Nog steeds wordt er geen woord gesproken. Men moet dit mooi uitspelen, en tevoren thuis oefenen, want vier partjes in één hand vereist enige vaardigheid.

En ten slotte het moeilijkst. Acht partjes!
Dit lukt niet met één hand maar met twee handen laat men, als een geopende bloem de partjes zien en plakt ze weer te zamen.

Dit ritueel maakt een diepe indruk op alle leerlingen.

Vervolgens wordt er gesproken over een helft, een halve, een hele, over kwarten, enz. Men tekent op het bord; twee halve appels = één hele.

In het nieuwe schrift worden mooie tekeningen gemaakt. Die eerste week staat voornamelijk in het teken van het doen.

Men laat de kinderen zelf appels meenemen en een mes. Zelf snijden, ‘sommetjes’ opgeven, die ze moeten doen. ‘Pak eens een halve appel, hoeveel kwarten zijn dit, hoeveel achtsten zijn dit,

neem een kwart, hoeveel moet eraf om een achtste te krijgen, enz. (de opgaven weer volgens de temperamenten).’

Men vraagt een paar moeders om pannenkoeken te bakken en die om negen uur te brengen. Dan wordt er gesneden en verdeeld, weer bij elkaar gelegd enz. Samen rekenen: ‘Geef je buurman 3/8 pannenkoek. Je krijgt 3/4 terug.’

(Geroep dat dit oneerlijk is; heel goed, want iedereen weet nu dat 3/8 minder is dan 3/4.) En aan het eind:

‘Stop 2/8 pannenkoek in je mond;
stop 2/4 pannenkoek in je mond;
stop nu 4/4 pannenkoek in je mond!’
Rekenen kan erg leuk zijn.

In de kersttijd hebben veel groentewinkels wel een zak met walnoten staan. De meeste walnoten zijn in tweeën verdeeld door een ribbel. Na enig zoeken vindt men echter ook walnoten die in drieën gedeeld zijn. Dat krijgen ze als huiswerk op; ga naar de groenteman en zoek zo’n walnoot. Spannend, en tegelijk een goede wilsoefening.

bb 82  1

(Enkele leerlingen uit mijn klas, nu de zevende, hebben hem nog steeds.)

Als iedereen zo’n noot heeft, kunnen we de derden in gaan voeren. Eerst noten tekenen, en tenslotte wordt het wat schematischer.

bb 82 2
Ook zijn er in deze tijd van het jaar veel mandarijnen te koop. Mee laten nemen en op school openen. Vaak zitten er negen partjes in.

Leuk huiswerk: Vraag thuis of jullie soep eten. Hoeveel happen soep moet je nemen voor je bord leeg is?

In de tweede week de schrijfwijze. Nu wordt ingevoerd: ½ 1/3 enz.

Kleine sommetjes, steeds verwijzen naar het concrete, dat ze zo vaak, en met zoveel plezier geoefend hebben. Altijd eerst tekenen, zodat ze het zien. De kinderen geven zelf wel aan, wanneer ze het tekenen los willen laten.

Tenslotte toewerken naar het abstracte. Een hele sprong voor sommigen, voor anderen minder. Ook zijn er leerlingen, waarvan je het gevoel hebt, dat ze er nog niet helemaal aan toe zijn. Toch hebben ze bij het concrete werk goed meegedaan. Men kan dan met dat abstraheren nog best even wachten, tot een en ander bezonken is. Ook het feit, dat men als leerkracht met de klas meegaat werkt hier zeer in het voordeel van deze leerlingen, want men kan eventueel in de vijfde klas deze stof in deze overgang nog eens aanbieden.

De stambreuk
bb 82 3

Bedenk zoveel sommen als je wilt.

Deze opgave is bijzonder geschikt om het kwalitatieve beleven van de breuken te versterken. De oefening zoals hierboven aangegeven staat in de melancholische vorm.

bb 83

De laatste dag van de rekenperiode was het ‘breukenfeest’. We hadden ons er steeds op verheugd. Moeders hadden pannenkoeken gebakken en zelfs enkele taarten. We zaten aan lange tafels. Het ging er vrolijk toe. Maar het snijden — er was zoveel dat ieder minstens eenmaal een hele pannenkoek kon verdelen— ging uiterst nauwkeurig. Na een uurtje waren er nog een paar losse stukken pannenkoek over op één schaal.

‘Wat wil jij nog, Piet?’
‘Wat heb je daar?’
‘Een kwart en een twaalfde’
‘Geef me dan die twaalfde maar. Hij is niet gróter maar wel mooier dan de kwart!’

Reciteren
Ook in de vierde klas is rekenen nog het vak van spanning en ontspanning, van doen, van ritmen klappen en lopen, het akoestisch vak met spreekkoren, vraag- en antwoordgroepen, het rekenland dat wij nu eens met verbazing betreden, dan weer samen stormenderhand veroveren. Vooruit:

1/2 x 1/5 = 1/10
1/3 x 1/5 = 1/15
1/4 x 1/5 = 1/20

En terug:
1/12 x 1/5 = 1/60
1/11 x 1/5 = 1/55

etc, alles in koor

Het is zaak terug te komen op de elementaire vaardigheden. Breuken rekenen en de tafels niet kennen, dat moet spaak lopen. Maar wel de vorm variëren, anders laten de leerlingen, die ze wél kennen, het al gauw afweten. Schakel een bolleboos in, zet hem voor de klas en hij zegt:

1/45 is:                      de klas: 1/9   x   1/5
1/25 is:                      de klas: 1/5   x   1/5

Om goed ritmisch te vragen en te laten antwoorden, leuk af te wisselen, dat is ook voor de beste rekenaar een hele kunst. Wij leraren kunnen ons uitstapjes permitteren:

1/60 is:               de klas: 1/12   x   1/5

1/65 iiss:            de klas: 1/13   x   1/5

1/500 iiisss:      bedenktijd voor de langzamen en spanning voor de vluggen om het precies op tijd te mogen uit kraaien. Klas: één-hon-derd-ste-maal-één – vi jf-de!

Gelach, gepraat. De leraar schrijft op het bord: 1/2 x 1/3 x 1/4 x 1/5 — neen, daar wordt nu niet over gesproken — dus mond dicht. Dat bedenkt ieder voor zichzelf. Morgen zullen we het daar samen over hebben.

Dan het vereenvoudigen van breuken. Dat kan men uitleggen, nog eens uitleggen, weer een voorbeeld geven. En als de laatsten het gesnapt hebben is het al lang een moeizame zaak geworden. Maar als wij vele kleine deeltjes samenvoegen tot een groot geheel, dan is dat niet een ontdekkingsreis naar onbekende verten. Het begrip van dat aaneengesmede stuk is er al, het moet alleen nader gespecificeerd worden. Wij gaan dus van de eenvoudigste breuk uit:

1/2 is:                    de klas: 2/4
1/2 is:                    de klas: 3/6
1/2 is:                    de klas: 4/8,             goed gescandeerd.

Zo wordt het herleiden ook een akoestische waarheid. De lezer moge zelf proberen in een vlot tempo:

‘ 8/9 is 16/18 is 24/27 is 96/108 Als de rij goed in het gehoor ligt, kan men het tempo opvoeren, een accellerando. Daarin vermijdt men een opjagen tot spanningen, die in de lucht blijven hangen, zich niet kunnen ontladen. Tegen het einde houdt men in naar een rustig, krachtig slot.

Schriftelijk werk

De gereciteerde breukentafels lenen zich bijzonder goed tot opschrijven.

Zij behoeven weinig instructie om goed uitgevoerd te worden. Door de herhaling verbinden de kinderen zich met de stof.

1/2   x   1/5   =
1/3   x   1/5   =
1/4   x   1/5   =
1/2   x   1/6   =
1/3   x   1/6   =
1/2   x   1/7   =

1/2   =   2/4   =   3/6   =
4/9   =   8/18   =   12/27   =

Het is een heel werkstuk zoiets mooi op papier te krijgen. De breukstreep öp het lijntje, de streepjes van het is-gelijk-teken net even boven en er net even onder. We laten met kleur werken. Lukt de notatie, dan hebben zulke tafels en reeksen een feestelijk aanzien!

Berekeningen met breuken binnen de één

Telkens komen we terug op sommen binnen de één, vanwege de schoonheid van de stam!- breuk.
Thuis zelf als voorbereiding tot de les zulke sommen maken, geeft dat plezier dat de volgende dag onder het rekenen de kinderen gaat bezielen. Men komt dan tot kleine en grote ontdekkingen. Ritmische opgaven zijn een weg om in de geheimen der getallenwereld door te dringen.

Von Baravalle geeft de raad de kinderen opgaven te geven met een ritmisch verloop in teller en noemer. Zie bovenstaande opgaven.

bb 84

Men komt dan tot kleine en grote ontdekkingen. Ritmische opgaven zijn een weg om in de geheimen der getallenwereld door te dringen.

Thuis zelf als voorbereiding tot de les zulke sommen maken geeft dat plezier dat de volgende dag onder het rekenen de kinderen gaat bezielen.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985).

*Met cijferen kun je m.i. beginnen, wanneer een opgave met hoofdrekenen niet meer gevonden kan worden. Als je bijv. 5 getallen – 346 + 789 enz moet optellen, lukt het alleen een rekenwonder zonder cijferen, d.i. onder elkaar zetten en optellen.  Het cijferen is voor een deel ook weer hoofdrekenen.
.

4e klas rekenen: alle artikelen

4e klas: alle artikelen

VRIJESCHOOL in beeld: 4e klas

.

524-483

 

 

 

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Menskunde en pedagogie – lichaamsoriëntatie

.

LICHAAMSORIËNTATIE

 

MENSKUNDIGE ACHTERGRONDEN

 

ONTWIKKELING BABY-SCHOOLKIND
De ontwikkeling van een baby naar een schoolkind omvat vele aspecten. Opvallend is wel dat alles in het teken van groei lijkt te staan.
Het kind verdubbelt in 7! à 8 jaar drie maal zijn lichaamsgewicht.
Met die groei gaat ook in de meeste gevallen een steeds grotere behoefte aan beweging gepaard. Als we beide onder één noemer willen brengen, past daar vooral het woord: leven.
DOEN!

Steeds meer en vaker wil het kind “het zelluf” doen.
Het wil klimmen en klauteren en …..wordt steeds behendiger
.
En daar duikt het woord “hand” weer op.

Het kind wordt steeds handiger, ook in de voeten. Die ontwikkeling zet eigenlijk al in als het kind zijn hoofd begint op te tillen.
Déze ontwikkling lijkt vooral een weg te gaan van boven naar beneden.

In Steiners optiek “IS” de mens zijn lichaam niet; hij “HEEFT” een lichaam.

De baby
Wie naar het allerkleinste kind kijkt en de beentjes met de voetjes een totaal eigen bewegingsleven ziet leiden, kan tot de gedachte komen dat het lijkt of die voetjes en beentjes er nog helemaal niet bij horen; er zit nog geen enkele beheersing in.

Langzaam maar zeker echter, wordt het kind zijn ledematen meester; het raakt “thuis” in zijn lichaam, het incarneert.

Die uitdrukking “thuis in het lichaam” is in deze tijd zo vreemd niet meer, nu we weten dat er mensen zijn die zich ongelukkig in/met hun lichaam voelen.

De kleuter
Het proces van “in het lichaam groeien” voltrekt zich voor een groot deel in de kleutertijd, maar ook daarna gaat dit door; ook in de puberteit moet het uit verhouding gegroeide lichaam opnieuw in harmonie komen met degene die het bewoont.

De vrijeschoolpedagogie wil kinderen daar waar het kan, helpen bij het proces van thuisraken op de wereld; ook in het eigen lichaam.

Kleuterklas
De kleuterklas is daartoe ingericht en is een zichtbaar geworden plaats waar het kind de mogelijkheid wordt geboden om het proces van aardser en aardser worden dat het als natuurlijk vermogen heeft meegekregen toen het op aarde kwam, te oefenen: IN HET SPELEN!

Spel is de opvoeder van het lichaam
Want juist het spel is de eigenlijke “opvoeder” van het lichaam. En als je ziet met wat een graagte en met hoeveel overgave een kind speelt, ben je geneigd te zeggen: het spel is de “voeder”, het “voedsel” voor het jonge kind.

1e klas
Ook in de eerste klas wordt de behendigheid met het lichaam geoefend; eveneens in spel, maar met nog een bijzonder soort oefening: de lichaamsoriëntatie, ook wel lichaamsgeografie genoemd.

Bij de lichaamsoriëntatie moet het kind direct uit het begrip handelen:
“pak met je rechterhand je linker schouder;
wijs met je linker wijsvinger je linkerknie aan.” Enz, enz.
“Beschrijf een cirkel met je rechterhand om je linkerhand; beschrijf 2 cirkels, met de ene hand naar de ene kant en met de andere hand naar de andere kant.” Enz.

Waarbij het tempo steeds verder wordt opgevoerd.

En passant leert het kind veel lichaamsdelen kennen: wreef, scheen, dij enz.

4e klas
Ook in de 4e klas gebruikte ik deze oefening om het kind te leren zich te oriënteren o.a. in de windrichtingen:

In de aardrijkskundeperiode hadden we een levensgroot “kompas” gemaakt van touw, boven ons hoofd, van muur tot muur. Aan de 8 touwen hingen kaarten met de namen: noordoost, zuidwest, noord enz.
Door eerst vast te stellen waar ’s morgens de zon te zien was, bepaalden we het oosten.
De kinderen wisten op den duur waar het noorden enz. was.

“Ga met je linkerschouder naar het zuidwesten staan; met je rug naar het noord-noordoosten”. Enz.

voor meer: aardrijkskunde klas 4

Tijdens de rekenperiode breuken kon het ook:
de kinderen staan in een cirkel of vierkant. In het midden daarvan ligt een doek, o.i.d. De opdracht aan een kind: “loop zo (vanaf je plaats op de cirkelrand naar het middelpunt) dat je aan je linkerhand 5/8 hebt.” Enz.

6e klas
Zelfs in klas 6 waren er nog mogelijkheden:
Tijdens de meetkundeperiode, ook staand in cirkel of vierkant: “loop zo, dat je aan je rechterhand een stompe hoek hebt”. Enz.

vormtekenen
Voordat deze vormtekeningen op papier komen, is de vorm door de leerkracht “in de lucht” aan de kinderen voorgedaan. Zij hebben in het begin dus geen concrete vorm voor zich, want het “spoor door de lucht” blijft niet. De kinderen moeten dus heel intensief waarnemen. Het wordt nog een paar maal voorgedaan; wie niet zeker is, mag even meedoen met de leerkracht, maar moet het dan toch weer zonder voorbeeld stellen. Uiteindelijk is het beeld verinnerlijkt: het is een voorstelling geworden.
Deze voorstelling wordt nu op papier getekend-grote vellen; sommige kinderen die motorisch meer hulp nodig hebben, maken de tekening bijv. met een nat sponsje op het bord; of als het weer het toelaat: in de zandbak kun je ook goed tekenen.
Maar uiteindelijk moet de tekening “van grof naar fijn” ook in een schriftje terecht (kunnen) komen.

Hier staat beschreven hoe sommige hersenonderzoekers al dit soort oefeningen zien.

In de bovenbeschreven oefeningen gaat het om:
het harmoniseren van “de bovenmens” (het geest/zielewezen) met de “benedenmens” (lichamelijk wezen).

Dit alles is maar een kleine greep uit het arsenaal dat de vrijeschoolleerkracht ten dienste staat om ‘boven met onder’ te verbinden.

.

Bewegen     pittenzakjes   handschaduwbeelden    hinkelen

Spel: alle artikelen

Zintuigen: alle artikelen

Heb je ook voorbeelden die hier bijpassen, mail ze naar
pieterhawitvliet(voeg toe)gmail(punt)com

 

125-120

 

 

 

 

 

 

 

 

 

.