VRIJESCHOOL – Rekenen – 3e, 4e, 5e klas

In mijn verzameling artikelen trof ik onderstaande aan, een artikel uit 1931.
Toen ik het doorlas, viel me op dat ‘1931’ niet te herkennen is uit de tekst, zij het dan dat de spelling niet die van nu is. En ook de ter sprake komende munten hebben we niet meer.

De ‘aanpak’ echter, is nog lang niet ‘achterhaald’. Je kunt je door deze manier van werken nog altijd laten inspireren.

(Opvalt dat de 10-delige breuken eerder aan bod komen dan de gewone)
.
H.Janssen van Raay, Ostara, vrijeschool Den Haag, 4/1. febr. 1931
.

OVER HET REKENEN IN DE 4DE EN 5DE KLAS
.
In het vorige nummer van Ostara beschreef en verklaarde ik hoe het leeren van een vreemde taal (hier het Engelsch), in de klassen der lagere school, zich voornamelijk aanpast aan het Wils- of Ledematensysteem (door middel van het bewegen, het doen) en het Rhythmisch systeem (d.w.z. het kunstzinnige: reciteeren, zingen, schilderen, enz.).

Het spreekt echter van zelf dat dit ook geldt voor het onderwijs in de vakken van het hoofdonderwijs, zooals rekenen, taal, enz..

Toch is het zeer begrijpelijk, dat bij velen de vraag opkomt: hoe is het mogelijk de kinderen het rekenen, het verdere rekenen, te leeren op een dergelijke wijze? Niet waar, juist bij het rekenen leeren, komt men zoo gauw in de verleiding te denken: dit moeten ze toch begrijpen en dat doen we met het intellect, het hoofd. Dus: allemaal rustig zitten, kijken naar het bord, en opletten! En nu wordt er uitgelegd.

Een dergelijke behandeling is juist voor kinderen van 10 en 11 jaar nog volkomen ernaast. Weten we niet allen veel te goed hoeveel moeite het de meeste kinderen kost de hun zoo „vóór-gedachte” gedachtengangen te volgen en dan later zelf weer na te denken, als ze de toepassingen moeten maken? Zelfs al zien ze de verschillende begrippen erbij op het bord ontstaan, dan is het gewoonlijk nog voor de kinderen te zwaar deze begrippen over te nemen en er zelf mee te werken. Alleen de begaafde kinderen kunnen het zoo aan­vaarden, maar ook voor hen is het een herseninspanning, die op hun leeftijd dikwijls zeer verkeerd en bovendien onnoodig is.

Even onnoodig als het voor een fietser is om te „begrijpen” welke spieren, en hoe hij die bij het fietsen gebruikt om vooruit te komen en zijn evenwicht te bewaren. Hij „begrijpt” immers uit het doen vanzelf hoe hij ze gebruiken moet, hij doet ‘t, éénvoudig!

Zoo kan het ook met het rekenen.

Het rekenen in de 4de klas brengt den kinderen een geheel nieuw onderwerp: de breuken.

Tot nu toe hebben ze met geheele getallen gewerkt, alle vier
hoofdbewerkingen zijn hun bekend en de tafels hebben de meesten
onder de knie.

Van oudere broertjes of zusjes hebben ze al gehoord over de breuken, maar niet zoo, dat ze er zich een goede voorstelling van kunnen maken. Nog heeft voor hen het woord een geheimzinnige klank: dit wekt bij hen op een verwachting van iets moois, dat hen dichter, nader zal brengen tot het begrijpen van de aarde. Die mooie, groote geheimzinnige aarde! En ook tot de „groote menschen”, die ze zoo bewonderen en daarom ook zoo graag willen begrijpen.

Is het niet te bewonderen, zooals moeder bij de kruidenier of in een andere winkel, snel de uitgaven berekent, vlugger of even vlug als de winkelier, om dan, als ze het bonnetje krijgt, met één blik te controleeren of het goed is: Ja, ƒ 1.75? Het kind wipt op zijn teenen om over moeders hand ook even het bonnetje in te zien en kijkt een beetje onthutst naar het getalletje 1.75, waarvan het de uitspraak nog niet zelf kent.

Op een goeden morgen komen de kinderen in school; ze weten: vandaag begint een nieuwe rekenperiode, ze gaan de breuken leeren! — en ziet, wel twee tafeltjes voor de klas en daarop uitgestald een weegschaal, een kom met noten en wilde kastanjes, die ze zelf gezocht hebben voor dit doel, maar dan nog het vreemdste van alles: een echt gouden tientje, 9 zilveren guldens, 9 dubbeltjes en 10 centen.

Voor dat ze het weten is de les begonnen. Alles wat los zit in de klas mag verkocht! Eén is winkelier, verschillende mogen inkoopen doen, telkens staat er één voor het bord om de uitgaven op te schrijven. Maar niets wordt opgeschreven zonder dat we ’t allen samen hebben gezegd. Bijv. 1 kilo noten kost ƒ 1.20. Al spoedig blijkt dat ook de schrijfwijze geen groot bezwaar is: de 2 staat op de plaats van de dubbeltjes, de o op die van de centen.

Nu hoeven we maar toe te tasten: overal liggen de
aanknoopingspunten voor het leeren van de munten, maten en gewichten en de tiendeelige breuken.

Dat er 10 centen in een dubbeltje gaan en honderd in een gulden weten ze nu allen en we doen dan ook ongemerkt de stap 1 cent = 0,1 dubbeltje en 0,01 gulden.

Wanneer we hun nu vertellen, dat cent en honderd hetzelfde woord is, spreekt ’t dus voor hen vanzelf dat 1 centigram = 0,01 gram en 1 centimeter = 0,01 meter.

We hoeven dus niet lang bij het geld te blijven stil staan. Spoedig genoeg zal dit toch wel een rol gaan spelen in hun leven! Het was hier slechts een bruggetje om uit de praktijk van ’t leven, waar hun interesse op deze leeftijd wakker genoeg voor is, te komen tot het rekenen. De gewichten, die ze gebruikt hebben, voeren ons tot het leeren van de namen deci, deca, hecto, enz..

Onder de hand schreven we, op het schoone bord, alle dingen die we zoo samen „gevonden” hebben, netjes onder elkaar:

1 goudtientje = 10 gulden; 1 gulden = 0,1 goudtientje;
1 gulden = 10 dubbeltjes; 1 dubbeltje = 0,1 gulden, enz.;

en een nieuwe rij:

1 kilogram = 10 hectogram; 1 hg = 0,1 kg;
1 hectogram = 10 decagram; 1 dg = 0,1 hg, enz..

Deze twee rijen worden nu klassikaal gereciteerd, liefst in een vast rhythme.

De schrijfwijze geeft ook niet veel moeite, we sluiten gewoon aan bij de plaatsen van de „éénen” en de tientallen, enz. in de geheele getallen; naast het kleinste geheele getal komt de komma en dan de tienden, de honderdtallen enz.. Het komma-spelletje helpt de kin­deren er bij: voor de klas plaatsen we een heele rij kinderen, die achteréén volgens een aantal kilogrammen, hectogrammen, enz. mogen voorstellen. Een kleine vluggerd mag de „komma” zijn, hij krijgt hiervoor een duidelijk teeken, bijv. een roode muts op, en zit eerst op den grond, tusschen grammen en decigrammen. Élk kind noemt nu op de beurt zijn aantal en één schrijft  het op: 8744,572 gram. Nu willen we er hectogram van maken, weg moet dan de komma en naar zijn nieuwe plaatsje, want nu zijn de hectogrammen de kleinste „geheelen”. Nu decigrammen, dan weer kilogrammen, vlug wipt de komma heen en weer, als we de gewenschte naam uit­spreken moet hij al weg zijn van zijn plaats om de nieuwe te zoeken. Vlug genoeg kunnen ze het nu ook in hun schrift.

Een andere draad nemen we op: er staan nog op het eerste bord de uitgaven van het winkeltje-spelen. Als we eens uitrekenden hoe­veel we samen uitgegeven hebben? We vinden dat, even goed als we voor 10 tientallen een honderdtal mogen opschrijven, we nu ook voor 10 honderdsten 1 tiende kunnen rekenen. En binnen enkele minuten rekenen ze er lustig op los.

Wat is er nu eigenlijk in den loop van den ochtend gebeurd? Wat hebben we met de kinderen gedaan?

Ja, we hebben veel met hen gedaan, maar het meeste hebben ze zelf gedaan: ze hebben rond geloopen door de klas, ze hebben even in de gang elkaars mutsen opgezet of een jas binnenste-buiten aan­getrokken, om er als een gefingeerde „klant” uit te zien; ze hebben zich ingespannen om den „winkelier” ‘van de wijs te brengen, door hun wenschen zoo te kiezen, dat het bedrag zoo groot mogelijk werd, of zóó dat ze maar een centje armer de gefantaseerde winkeldeur achter zich dichttrokken; ze hebben gelachen om den winkelier die zich vergiste, en hun verontwaardiging luidruchtig geuit om de heb­zuchtige klant, die de „heele klas” voor ƒ 20,— thuisgestuurd wilde hebben. Ze hebben ook gereciteerd en tot slot zelf met de nieuwe sommen gerekend. Hun geheele wezen heeft zich met dit rekenen kunnen verbinden: het willen in het doen, het voelen in het reciteeren en in het spelen, het voorstellen — want het denken is op dezen leeftijd nog voornamelijk voorstellen — in de fantasie, die zij bij alles ontwikkelden.

Van zelf spreekt het, dat dit alles nog maar een grondslag is, waarop in den verderen loop der periode het werken met de munten, maten en gewichten en de tiendeelige breuken moet worden opge­bouwd. Maar bij het leeren van elke nieuwe moeilijkheid gaan we weer op een zelfde wijze te werk.

Verder moeten de kinderen zelf het geleerde oefenen. Hieraan kan steeds meer tijd besteed worden. Ja, zelfs kunnen we dit oefe­nen, het gewone cijferen, door de andere perioden heen, elken dag even blijven doen, wanneer dit voor een klas gewenscht is. Doch ook bij dit gewone oefenen vergeten we niet steeds den kinderen een gelegenheid te geven hun eigen fantasie te gebruiken.

Ze mogen, moeten zelfs, zooveel mogelijk de opgaven zelf ver­zinnen. Dit laatste schept immers de mogelijkheid, dat alle kinderen eraan kunnen meedoen. Al zijn er in de klas kinderen die 4 of 5 opgaven als 87,94/78549,762/ uitrekenen, en anderen, die, in den­zelfden tijd, 2 opgaven als 1,25/62,5/; allen leeren en oefenen ze het werken met de tiendeelige breuken en ontwikkelen zich naar hun vermogen, zonder dat deze ontwikkeling door eenige pressie of rem zou worden geforceerd.

Alle kinderen uit de klas hebben aan een dusdanig onderwijs kunnen meedoen.

Over de gewone breuken, die op de tiendeelige volgen, een andere keer.

.

Rekenen 4e klas: alle artikelen

Rudolf Steiner over rekenen

Rekenen: alle artikelen

RekenwerkboekRekenen in beweging‘ -inhoudsopgave met doorverwijzing naar alle hoofdstukken

Vrijeschool in beeld: 4e klas

.

684-625

.

Advertentie

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit /  Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit /  Bijwerken )

Verbinden met %s

Deze site gebruikt Akismet om spam te bestrijden. Ontdek hoe de data van je reactie verwerkt wordt.