VRIJESCHOOL – Rekenen – 4e klas (7)

IIn mijn verzameling artikelen trof ik onderstaande aan, een uit 1931.

Toen ik het doorlas, viel me op dat ‘1931’ niet te herkennen is uit de tekst, zij het dan dat de spelling niet die van nu is. En ook de ter sprake komende munten hebben we niet meer.

De ‘aanpak’ echter, is nog lang niet ‘achterhaald’. Je kunt je door deze manier van werken nog altijd laten inspireren.

IETS OVER HET REKENEN II.

In aansluiting aan mijn artikel in het vorige nummer van dit blad, zal ik nu wat vertellen over de gewone breuken en hare be­handeling.

Een nieuwe rekenperiode brengt den kinderen de gewone breu­ken. Ze kennen nu reeds de begrippen: 0,1, 0,01 enz. en ze weten dat ’t geheel 10 tienden is, 100 honderdsten, enz. Wanneer we dus zonder iets te becijferen op het bord, de kinderen uit het hoofd de bewerkingen laten uitvoeren met eenvoudige getallen, zooals bijv. 0,1 : 10 dat is 0,1 X 0,1 of 0,01, of 0,84 — 0,5 = 0,34, dan kunnen ze dit uit de vorige rekenperiode.

Hierin hebben ze alle vier bewerkingen geoefend, zoowel uit het hoofd als in ’t cijferen, en behoeven ze deze nu slechts uit het vergeten op te halen.

We hebben hierin dus een basis, waarop we verder kunnen op­bouwen.

Een tweede is: hoe zullen we dit opbouwen uitvoeren?

De weg, dien we kiezen, moet ons voeren naar een begrijpen met het ontwakend intellect en naar een zelf omgaan met de breuken in de 4 bewerkingen.

Deze weg zal weer moeten gaan door het doen over het kunst­zinnige. Door het willen, over het voelen, naar het denken.

Dit brengt ons vanzelf op de gedachte het nieuwe aan te brengen door 3 dagen heen. We beginnen bijv. den eersten dag het kind te brengen in het bewegen, zoodat het met zijn geheele wezen in de leerstof leeft. Den tweeden dag voeren we het in het kunstzinnige — bijv. door schilderen, teekenen, reciteeren, enz. —•; waarop het, den derden dag, de begrippen leert vormen, ze in cijfers weergeven en ermee werken.

Door deze 3 dagen en 2 nachten heen heeft het kind zich geheel met de nieuwe stof kunnen verbinden: den eersten dag werd zij opgenomen in het wilssysteem en in den nacht, als het lichaam in den slaap zich herstelt en verfrischt, met de groeikrachten ver­bonden. Den tweeden dag werd zij bovendien verbonden door den kunstzinnigen arbeid, met het rhythmisch-systeem.

Nu wordt zij nog eens door den nacht heen gedragen en vormt nu een goeden grond in het hoofd, dat zich den derden dag er van meester maakt. Dit beteekent dat we de leerstof verbonden hebben met den stroom van opbouwende groeikrachten, die in het kinderwezen, in den tijd tusschen het 7de en het 14de jaar, scheppend, vormend werkzaam zijn aan lichaam en ziel. Een voorbeeld hiervan zij gegeven:

De kinderen moeten nu ook de begrippen: 1/3   1/4    1/5  enz. en hun onderlinge verhoudingen leeren kennen.

We nemen de heele klas mee naar de Eurhythmie-zaal. Hier vinden we op den grond geteekend een grooten cirkel, in donker paars, die verdeeld is in 20 gelijke deelen in blauw kleurkrijt. Hier­van zijn er twee weer telkens onderling verbonden door een roode koorde-lijn, en 4 worden telkens samengebonden door een groene boog.

Het spel is nu als volgt: eerst de roode koorden tellen: dat zijn er 10, dus een roode streep geeft aan één tiende van het geheel. Nu loopen ze allen hard om den cirkel heen, dan wordt er geteld: één, twee, drie en bij drie mag er op elke roode streep één kind staan; die er het eerst is mag de anderen van zijn streep afhouden.

Er staan er dus 10 in den cirkel en de anderen er omheen. In koor zegt nu de klas: één geheel is 10 tienden, waarop de kinderen in den cirkel apart mogen zeggen: ,,ik sta op één tiende”.

Weer gaan we allen om den cirkel heen loopen en bij „drie” mogen er op elke koorde 2 kinderen staan. Ze zien allereerst, dat er 2 X zooveel kinderen een plaats in den cirkel vinden, verder dat, als ze de roode koorde „eerlijk” deelen, ze nu elk een eigen blauw vakje hebben, en ze komen er vanzelf op dat ze samen op één tiende, doch elk op één twintigste staan.

Dan de derde keer rondhollen; nu moeten ze met elken voet op een andere roode koorde staan en op 2 strepen mag maar één kind. De strijd wordt heviger, maar 5 kinderen krijgen een plaats in den cirkel, alle anderen blijven er buiten gesloten. De vijf uitverkorenen kunnen nu constateeren, dat ze elk in één groen vak (segment) staan, op twee roode koorden en vier blauwe punten. De klas
reci­teert: één geheel is tien tienden, 20 twintigsten, 5 vijfden. Waarop het antwoord van de vijf in den cirkel komt: 1/10  is  2/20; 1/5  is  2/10  is  4/20. En terug: 4/20  is 2/10  is 1/5

Daarop krijgen ze een serie korte, vragende bevelen, waarop ze in koor of apart moeten antwoorden.

  • Ga eens vlug met je allen op 2/s deel van den cirkel staan! Op hoeveel tienden sta je nu? En op hoeveel tienden sta je nu? En op hoeveel twintigsten?

Vul samen 5 tiende deel, kun je dit ook anders zeggen? Ja ’t is de helft. Hoeveel twintigsten. — Tien
Hoeveel vijfden? — Dat gaat niet. —

Vele variaties van dergelijke spelletjes zijn natuurlijk te vinden. Zoo leggen we in ’t spelen en hollen en schuiven den grondslag voor het vereenvoudigen en herleiden van de breuken.

Na een half uurtje gaan we naar de klas terug en brengen de rest van het hoofdonderwijs door met het herhalen van ’t vroeger geleerde.

Doch den volgenden dag grijpen we op het spel in de Eurhythmie-zaal terug: allen krijgen een velletje wit teekenpapier en, in mooie kleuren, teekenen we een cirkel en verdeelen dien in 20 gelijke deelen. Nu mogen ze uitknippen de breuk 2/5 en daarin aangeven dat dit hetzelfde is als hoeveel tienden? hoeveel twintigsten?

Eén schrijft er op het bord:

2/5 = 4/1o = 8/2o- wat daarna weer in koor gereciteerd wordt.

Het spreekt van zelf, dat we op deze basis ook een andere com­binatie kunnen vinden zooals derden en zesden en twaalfden. Dit laten we ook al gauw aan de kinderen zelf over; ze bedenken zelf wat ze willen uitknippen, zoodat ze ook zelf ontdekken welke her­leidingen opgaan en welke niet.

Maar alles wat er ontstaat moet op het bord geschreven. En na het teekenen en knippen, bergt de klas alle instrumenten weg, en worden de rijtjes zelf gevonden waarheden op verschllende wijze gereciteerd. Heen en weer, luid en zacht, vlug of langzaam, staccato of verbonden, al naar de onderwijzer op dat oogenblik voor de klas geschikt acht.

Den derden dag maken we nu gewoon op het bord alle mogelijke herleidingen en geen kind heeft er moeite mee. Het is volkomen begrepen.

Alleen blijft ons nog over de grondwet voor de breukbewerkin­gen eruit te lichten voor het bewustzijn der kinderen: teller en noemer van een breuk mogen altijd door hetzelfde getal gedeeld of met hetzelfde getal vermenigvuldigd worden.

Nu kunnen de kinderen zelf aan ’t werk tijgen, zooveel herlei­dingen en vereenvoudigingen maken als ze zelf willen en hun eigen moeilijkheden kiezen.

Op een dergelijke wijze, door drie dagen heen, kunnen ook de verschillende bewerkingen geleerd worden.

Het neemt wel is waar wat meer tijd in het begin, dan een vlotte methodische behandeling op het bord, maar het overtuigend belang­rijke ervan is dat alle kinderen, tenzij ze werkelijk abnormaal zijn, de leerstof machtig worden en vreugde voor het werken kunnen voelen, want ze hebben een nieuw gebied voor hun fantasie en zelfwerkzaamheid veroverd.

Dit is een goed en bovendien een geheel nieuw resultaat: dat alle kinderen met vreugde rekenen, niet alleen de meer intellectueel be­gaafden. Want natuurlijk moeten de kinderen leeren werken, maar productief voor de toekomst wordt de arbeid pas als zij met liefde volbracht is.

(H.JANSSEN VAN RAAY, Ostara, vrijeschool Den  Haag 4/2-1931)

 

Rekenen 4e klas: alle artikelen

 

 

 

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit /  Bijwerken )

Google photo

Je reageert onder je Google account. Log uit /  Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit /  Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit /  Bijwerken )

Verbinden met %s

Deze site gebruikt Akismet om spam te bestrijden. Ontdek hoe de data van je reactie verwerkt wordt.