Tagarchief: 6e klas meetkunde

VRIJESCHOOL – Rekenen in beweging – hoofdstuk 6

.

REKENEN IN BEWEGING
.

Hoofdstuk 6: Reken-wiskundewerk vanaf klas 4

6.1 Decimale breuken
6.2 De wereld in verhoudingen
6.3 Procenten
6.4 Geometrie
Terzijde: Van oefenuren naar zelfstandig werken

Hier en daar is sprake van geld, dus van de gulden en de bijbehorende munten. Ik heb daar zoveel mogelijk euro’s van gemaakt. Waar het het voorbeeld onduidelijker zou maken, heb ik de gulden laten staan.

6. 1 Decimale breuken

ORIËNTATIE OP HET NIEUWE TERREIN

Wat zijn decimale breuken?

Decimale breuken worden ook wel eens aangeduid met ‘kommagetallen’. Daarmee is feitelijk het essentiële ervan aangegeven, zij het dat de bijbehorende positionele schrijfwijze als vanzelfsprekend wordt aangenomen. De uitvinding van de decimale breuken dateert van 1585, toen Simon Stevin zijn vondst publiceerde in het boekje De thiende. In feite was dat boekje een pleidooi voor het invoeren van de tientallige (positionele) schrijfwijze van de getallen. Met die getallen zou het rekenwerk (lees cijferwerk) namelijk heel wat gemakkelijker gaan dan met de gebruikelijke Romeinse cijfers en gewone breuken.
Met decimale breuken kun je dus gemakkelijker rekenen. Wie kan cijferen met gehele getallen, kan het eigenlijk ook met (decimale) breuken. Die gedragen zich in feite bij het cijferen net als gehele getallen. Slechts de rekenregel die het aantal cijfers achter de komma bepaalt, dient erbij in acht genomen te worden.
Vergelijk de berekening 23¾ x 5 ~ maar eens met 23,75 x 5,5. (Komt bijvoorbeeld voor in het geval je van een stukje multiplex van 23,75 cm x 5,5 cm de prijs wilt weten.)
Hoewel de kommagetallen eerst veel weerstand opriepen bij de gebruikers (kooplieden bijvoorbeeld, die ineens allerlei mogelijkheden voor vervalsingen zagen), zijn ze al lang niet meer uit ons dagelijks leven weg te denken. In het bijzonder waar gemeten wordt of met geldbedragen wordt omgegaan, treden kommagetallen op. Dit betekent onder andere dat decimale breuken als meetgetallen naar voren komen. Wie weet dat meten altijd neerkomt op een benadering en tevens inzicht heeft in de schrijfwijze van kommagetallen, kan aan de genoteerde meetgetallen iets aflezen over de nauwkeurigheid van de meting. Zo zegt bijvoorbeeld een afstandsmeting van 60,25 meter, dat er tot op de centimeter nauwkeurig gemeten is.
Het onderwerp decimale breuken staat niet op zichzelf. Het verband met ‘gewone’ breuken is natuurlijk duidelijk. Eigenlijk geldt dit ook voor de verwantschap met ‘procenten’ en ‘verhoudingen’. Goed beschouwd kan het laatstgenoemde leerstofgebied gezien worden als overkoepeling van breuken, kommagetallen en procenten.
Neem de breuk ¼. Als kommagetal genoteerd is het 0,25. En in procenten uitgedrukt: 25%. Wat betekent 25%? Van oudsher betekent 25% niet anders dan 25 per honderd, ofwel  25/100   = 0,25. We zijn rond.

225

Je kunt je afvragen waarom er na de uitvinding van de kommagetallen nog breuken bestaan. Er zijn ook in het (recentere) verleden stemmen van rekendidactici opgegaan, om het rekenonderwijs op de basisschool te beperken tot kommagetallen. Het is er niet van gekomen en wellicht gelukkig maar.
Behalve het feit dat kommagetallen de aandacht sterk op het cijferen richten, zijn er ook een paar beperkingen. Neem maar het geval dat je bij een verdeling tussen drie personen niet over  1/3     maar over zoiets als 0,333… beschikt. Er zijn maar weinig gewone breuken die zich zonder meer laten omzetten in kommagetallen. Bijvoorbeeld ½  ¼  3/5   7/25  en dergelijke. Het zijn de (niet meer te vereenvoudigen) breuken die louter factoren 2 en/of 5 in de noemer hebben. Voor alle andere gevallen moet men zich behelpen met een afronding 1/6    = 0,167 of afbreking 1/6    ~ 0,166. In het dagelijks gebruik van breuken zou dit trouwens weinig problemen veroorzaken. Overigens levert dit onderdeel, het omzetten van gewone breuken in kommagetallen, een interessant reken-wiskundig onderzoeksgebied voor leerlingen op.

Decimale breuken in de vijfde klas (en verder)

In de bovenstaande inleiding is het belang van het onderwerp aangegeven. De maatschappelijke relevantie en reken-wiskundige mogelijkheden zijn evident. Maar ook werden reeds de belangrijke aspecten van het leerstofgebied naar voren gebracht. We komen tot de volgenden aandachtspunten voor het onderwijs over decimale breuken in de vijfde klas:

Elementaire kennis en vaardigheden

Men kan daarbij onder meer denken aan:

• Een half = 1/2    = 5/10 = 0,5 = (50%)
• 0,25 = 25/100  = 25% = ¼ = een kwart.
• 0,125 = hondervijfentwintig duizendsten.
• De plaatswaarde van de cijfers in een kommagetal.
• Het idee van nauwkeurigheid in verband met het aantal cijfers achter de komma.

Cijfervaardigheid

Dit betreft de basiskennis en -vaardigheid die te maken heeft met de techniek van de rekenprocedures.

Daarbij valt te denken aan vragen als:

• Hoe reken ik uit 0,125 + 3,5?
• Hoe 2,25 x 3,75?
. Hoe 3,75: 5?
• Hoe 3,25 : 0,25?
• Tot hoever zet ik de staartdeling, achter de komma, in een bepaalde situatie voort?
• Zaag een plank van 2,25 m in 7 gelijke stukken. Hoe lang wordt elk stuk?
• Hoe zet ik eenvoudige breuken om in decimale breuken?
• Waarom is 10 x 12,25 =122,5? Waarom kan ik in dit geval beter zeggen dat het getal verschuift, en niet de komma?

226

227

Interessante reken- en wiskundige inzichten

Zoals bijvoorbeeld die van de wetmatigheden (eigenschappen, regelmaat, patronen), die bij het omzetten van gewone breuken naar kommagetallen, in zicht komen.

De toepassingsgebieden

Bijvoorbeeld op het gebied van geld. Omdat kinderen in het dagelijks leven veelvuldig met geld rekenen, biedt dit toepassingsgebied een goede mogelijkheid om het onderwerp decimale getallen te introduceren en het daarmee een concrete basis te geven op grond van eigen ervaring en beleving.
Bij het meten zijn decimale getallen essentieel. Een meetresultaat, uitgedrukt in een kommagetal (decimale breuk), geeft ook iets prijs van de nauwkeurigheid van de meting. Natuurlijk mogen daarbij de context van het meten en het metriek stelsel niet vergeten worden.
Er zijn op vele gebieden toepassingen te vinden van kommagetallen. Denk maar aan prijskaartjes, kassabonnen, reclamefolders, benzinepomptellers, sportrecords, afstandstabellen, windsnelheden, koerslijsten, wegwijzers, peilglazen, radiofrequenties, snelheidsmetingen, enzovoort. Het verdient sterke overweging om deze toepassingsgebieden van meet af aan te benutten, om het rekenen met kommagetallen voor de kinderen (een) ‘betekenis’ te geven.

Rudolf Steiner over decimale breuken

Rudolf Steiner geeft slechts aan dat je in de vierde klas al kan overgegaan op de decimale breuken. Verder is in de voordrachten niets te vinden wat direct met decimale breuken samenhangt.
In de vijfde klas wordt twaalf weken hoofdonderwijs ter beschikking gesteld. Er valt meer te doen dan alleen het meten en rekenen met kommagetallen. Ook de verbanden met gewone breuken en eenvoudige procenten (als aantal per honderd) worden, zo mogelijk ook in reële situaties, aan de orde gesteld.

WERKEN AAN ELEMENTAIRE INZICHTEN EN BASISVAARDIGHEDEN

Voorbeelden van onderwijsleersituaties met kommagetallen

Het onderwerp decimale breuken hoeft voor de leerlingen geen grote moeilijkheden op te leveren. Daartoe dient men de doelen die men zich stelt (zie H 9) gedifferentieerd op te vatten. De elementaire inzichten en basisvaardigheden op dit terrein, vertonen grote verwantschap met hetgeen eerder geleerd werd in het gebied van de gehele getallen. De bekendheid met geldbedragen en het rekenen ermee, kan goede steun bieden bij het verwerven van meer abstracte inzichten. Niet alle leerlingen hoeven alle leerdoelen op het hoogste niveau van abstractiete bereiken. Bij het ontwerpen van het eigen onderwijs kan men variëren (en dus differentiëren) op onder andere:

• Grootte van de getallen.
• Complexiteit van de berekeningen.
• Mate van concrete ondersteuning.
• Relatie met de toepassingen.
• Vereiste flexibiliteit.
• Keus tussen cijferen en (schattend) hoofdrekenen.

228

Ik ben begonnen met de vraag waar in het dagelijks leven decimale breuken te vinden zijn. De kinderen kwamen vrijwel direct met geld. Dit heb ik dan ook als ingang genomen voor deze periode: “Neem het bedrag f€ 125,45. Bedenk nu eens hoe we dit bedrag aan de kassa kunnen betalen.” Dan komen de kinderen met een antwoord als:

“Eén briefje van honderd, twee briefjes van tien, vijf 1-eurostukken, vier dubbeltjes en vijf cent.”
Er zijn er ook die wat anders hebben bedacht:

“Twee briefjes van vijftig en een briefje van twintig en een van vijf, en twee 20-cent stukken en 1 van 10 cent, dan krijg ik nog 5 cent terug.’.”

De mogelijkheden schrijven we in ons notitieblokje:

Op deze manier hebben we allerlei bedragen ‘ontleed’. Later kwamen we ertoe om een tabel te maken:

Op die manier kun je ook bedragen samenstellen. Dat geeft goed inzicht in de plaatswaarden. Voorafgaand aan de tabel deden we al oefeningen als:
“Schrijf in je notitieblok en reken steeds het volgende bedrag direct uit:

Eén gulden 1,00
Erbij drie dubbeltjes 1,30
Erbij een stuiver 1,35
Erbij een kwartje 1,60
Eraf tachtig cent 0,80
……..                       ……..

229

Daarna hebben we boodschappenlijstjes en optellingen gemaakt. Reclamefolders boden allerlei interessante mogelijkheden om ‘wens’boodschappenlijstjes samen te stellen. De kinderen mochten dat ook doen voor andere kinderen. Ik vroeg dan wel of ze het totale bedrag op de achterkant van het lijstje wilden noteren.
Interessant was ook de vraag om inkopen te doen voor een feestje: “Er komen zes vrienden en vriendinnen, dus zijn ze met zeven personen. Je hebt een bedrag van f 23,75 te besteden. Kijk maar op de folder wat het zal worden.”

Het viel me op dat de kinderen spontaan de komma’s onder elkaar schreven, dus hoefde ik daar nauwelijks bij stil te staan.

Móet je de komma’s onder elkaar opschrijven of is het alleen maar ‘handig’ om dat te doen? Dat laatste natuurlijk. Door in een optelling of aftrekking de komma’s onder elkaar te zetten, is het cijferwerk al voor een goed deel georganiseerd. Dat organiseren van rekenwerk verdient in het rekenonderwijs aparte aandacht. Als de kinderen gebruik hebben leren maken van positiestrepen, is ook voor dit geval met decimale breuken het organisatieschema al gegeven:

Uitgaande van het concrete zijn er meer mogelijkheden om een instap te maken in de wereld van de decimale breuken. Zojuist werd geldberekening genoemd. Het kan ook via het meten.
Neem bijvoorbeeld een sportdag waarop de kinderen een bepaalde afstand geworpen hebben of een zekere afstand hebben gelopen in een bepaalde tijd. Wanneer de uitslagen bekend zijn, kan aan de hand van deze ‘metingen’ gewerkt worden aan het begrip van decimale breuken.
Stel bijvoorbeeld dat er een afstand van 16,25 meter geworpen is. Men kan dan het volgende daarmee doen:
“Wat is er geworpen?” “16,25 meter.” “Schets de situatie op het bord.”
“Waar kwam de bal terecht?”
“Ergens tussen de 16 en de 17 meterlijn.”
“Op ruim 16 meter.”
“Preciezer: op 16 meter en een kwart.”

230

“Met de centimeter erlangs: 16 meter en 0,25 meter.
Of: 16 meter, 2 decimeter en 5 centimeter.
16,25 m is dus:16 meter + 2/10  m + 5/100  m.”

Er is een wezenlijk verschil tussen het gebruik van kommagetallen in de context van geldrekenen en meten. Meten is namelijk nooit precies; een meetresultaat is slechts een benadering. Daarom lenen decimale breuken zich zo goed voor het meten. Maar pas op! Hoe meer cijfers achter de komma, des te nauwkeuriger de meting lijkt. Inderdaad: lijkt! Neem bijvoorbeeld een plank van één meter, die moet je in drie gelijke delen zagen. Voordat je echt gaat zagen, kun je uitrekenen hoe lang elk van de drie plankjes wordt. Wat komt eruit? 100 (cm) gedeeld door 3 levert de volgende repeterende decimale breuk op: 33,333333 cm. Je kunt zover achter de komma doorgaan, als je (rekenkundig) wilt. Maar hoever ga je door? De eerste 3 achter de komma staat voor 0,3 cm, dat is 3 mm. Met een goede liniaal zijn die 3 mm nog wel te zien, al moet je bedenken dat de zaagsnede die 3 mm aardig kan benaderen. De tweede 3 achter de komma (0,3 mm) is al niet meer met onze huishoudcentimeter vast te stellen. In de gegeven meetcontext heeft een lengte van 33,333333 cm dus geen betekenis.

231

Een dergelijke overweging zou niet aan de kinderen van de vijfde klas voorbij mogen gaan. Een reflectie op de meetprocedure in samenhang met het gevonden meetresultaat, kan leiden tot een rijker begrip van decimale breuken. Zowel rekenkundig als toegepast.
In andere situaties waarin de decimale breuken gebruikt worden, kunnen dergelijke dingen natuurlijk ook gedaan worden. Zoek maar in de krant of denk aan het Guiness Book of Records. Ook de doe-‘t-zelfwinkel heeft rekenwerk met decimale breuken in petto. De folders van de Hubo, Houtland, Gamma enzovoort vormen een onuitputtelijke bron voor realistisch rekenwerk met kommagetallen. Ook op verpakkingen kan men niet om kommagetallen heen.
Bijvoorbeeld de tekst op een melkpak:

Het is goed denkbaar dat dit alles het sterkst werkt wanneer de kinderen direct betrokken zijn; een sportdag, sporttijden bijhouden, metingen doen, zelf boodschappen bedenken, …

We hebben allerlei getallen ontleed. Beginnend bij geldbedragen, kwamen we tot de essentie van de decimale getallen.
Neem het getal 2345: de 5 staat op de plaats van de eenheden, de 4 staat op de plaats van de tientallen, de 3 staat op de plaats van de honderdtallen en de 2 staat op de plaats van de duizendtallen, dus 2345 = 2000 +300 + 40+ 5.
Elke cijfer verder naar links heeft een (plaats)waarde die tien keer zo groot is als de plaatswaarde van het cijfer ernaast.

Eenheden, tientallen, honderdtallen, duizendtallen, zo kunnen we verder gaan. Gaan we van links naar rechts (volgen we dus de leesrichting), dan is elke plaatswaarde verder dus nog maar van de vorige. We hebben gezien in de geldbedragen dat je dan niet bij de eenheden hoeft te stoppen. Je gaat dan ‘achter de komma’ verder, met de tienden en honderdsten. En, kun je je dan afvragen, waarom zouden we bij de honderdsten stoppen?

Duizenden, honderden, tienen, enen, tienden, honderdsten, duizendsten.
De komma staat dus op de grens tussen de hele getallen- en de breukenwereld. Dit alles wetende, hebben we vele getallen met bewegingen uitgebeeld; elke plaats van het cijfer in het getal had een bepaalde beweging.

232

Nu zijn we inmiddels toe aan het vermenigvuldigen van een getal met een tiental. We kunnen hierbij teruggrijpen naar wat in de jaren daarvoor bij de kinderen aangelegd is.
Bijvoorbeeld: 10 x 2 = 20. De 2 komt te staan op de plaats van de tientallen. Hoe deden we dat ‘vroeger’ ook weer? Weet je het nog, tien keer twee (schoenen) betekende natuurlijk dat we het aantal van tien paren (schoenen) moesten vinden. De positiestrepen waren toen pas in gebruik genomen. Het komt nu goed van pas daar nog eens op terug te zien.

Dit laatste is natuurlijk ook te lezen als 10 x ½. Gemakkelijker nog als ½ x 10; en zo komen we dus ook aan het antwoord 5. Nog anders; we kiezen namelijk verschillende inbeddingen van het inzicht: “Maak tien sprongetjes van 0,5 cm over de liniaal. Waar denk je dat je terecht komt?”

Zo hebben we dus drie sporen gevolgd:

1. Via het cijferen van vroeger.
2. Via de breuken uit de vierde klas.
3. Via meetgetallen op de liniaal (getallenlijn).

Deze activiteiten zijn bekend vanuit het verleden. De bedoeling is dat de kinderen bepaalde rekenregels ontdekken of zelf uitvinden. Bijvoorbeeld:
10 x 3,75 = 37,5 en 10 x 12,25 = 122,5. “Hé, wat gebeurt hier?”
Bedenk bij deze voorbeelden dat de kennis van geldbedragen goede steun kan bieden, als de rekenregels nog niet opgemerkt zijn:

10 x euro is 30 euro
10 x 75 cent is 7 euro 50 cent (10 x een dubbeltje is een euro, enzovoort).
Samen: 37 euro 50 cent, oftewel € 37,50.

In het geval van 100 x 0,5 = 50,00 wordt de aanpak van zojuist uitgebreid. Je kunt via 10 x (10 x 0,5) = 10 x 5 op 50 komen. Schrijf je de getallen tussen positiestrepen, dan ligt de rekenregel zichtbaar voor het oprapen: de 5 op de plaats van de tienden, gaat na vermenigvuldiging met 100 naar de plaats van de tientallen. Dat is twee plaatsen naar links. Dus een verschuiving van het getal en niet van de komma!

233

In een spel maken we nog eens duidelijk dat de komma bij het vermenigvuldigen met tien een grens is, die door de cijfers van rechts naar links overschreden wordt.
De kinderen waren de cijfers in een bepaald getal. De honderdtallen stonden op een tafel, de tientallen op een stoel, de eenheden op de grond. Dan stond er een kind met een grote komma; de grens! Daarnaast weer de tienden knielend, de honderdsten zittend. Aan de buitenste zijden was er nog een tafel met een stoel erop voor de duizendtallen en aan de andere kant een plaats om te liggen voor de duizendsten.
Om een bepaald getal uit te beelden, kregen ze elk een kaart met een cijfer. Dan klonk de opdracht: “Ik vermenigvuldig dit getal met tien.” (Later ook met honderd, enzovoort). Alle kinderen klommen dan een of meer plaatsen omhoog.

Bij delen was dat natuurlijk weer anders. De rekenwijze hebben we daarna in het schrift op allerlei manieren beoefend.
Zo kwam het idee van getalverschuiving spontaan naar voren. De uitdrukking kommaverschuiving heb ik nooit correct gevonden.

Natuurlijk is dit ook maar, hóe je het bekijkt. Als je het getal fixeert dan verschuift de komma na vermenigvuldiging. Je zult zien dat het gebruik van positiestrepen er toe leidt dat kinderen zeggen: het getal verschuift want de cijfers gaan (bij de vermenigvuldiging met 10), een plaats hogerop (naar links dus). Logisch, want zo is ons positionele decimale systeem ingericht.

OEFENINGEN

Getallendictees

Getallendictees maken dat de kinderen de getallen op een geschikte manier gaan uitspreken. Wat wordt hier bedoeld met ‘geschikt’? Wel, kommagetallen worden in velerlei situaties gebruikt. En elke situatie heeft een eigen, specifieke context. Op school hoor je nogal eens het getal 425,12 uitspreken als vierhonderdvijfentwintig komma twaalf honderdsten. Dat is een manier om te laten zien, dat je

234

weet hebt van de waarde van de cijfers achter de komma. In een didactische context is het dus vierhonderdvijfentwintig komma twaalf honderdsten, of vierhonderdvijfentwintig twaalf honderdsten. Maar neem nu eens het bedrag € 425,12. Dat spreek je natuurlijk heel anders uit: 425 euro 12. Of 425 euro 12 cent. Of 425 12. Of 425 komma 12.

Decimale getallen ordenen

Zie de gewone breuk achter een decimale breuk:

• “Wat is groter 0,1 of 0,01?”
• “Welk getal ligt het dichtst bij 2,5; 2,45 of 2,449?” Hier kan een meetlat of een getallenlijn natuurlijk hulp bieden:

• “Tussen welke twee hele getallen ligt 2,3?”

Het omzetten van breuken in kommagetallen

Dit onderwerp brengt ons weer op het niveau van het abstracte rekenen. De vraag luidt: “hoe zet je een gewone breuk om in een decimale?” Begin bij ½ = 0,5. Dat wisten we al. Maar hoe doe je dat? Laat de kinderen aan het woord. Vaak komen ze zelf al met goede ideeën.

Bijvoorbeeld:

• Een halve euro is gelijk aan 50 cent. Heel concreet dus. Maar er moet wel ingezien worden dat  0,5 = 0,50. Is daar al aandacht aan besteed?
• Een half (½) betekent dat je 1 gedeeld hebt door 2. Dus ga die deling maar eens maken.
• Je kunt het ook zó zien: maak van ½ de ‘tiendelige’ breuk 5/10   of 5/100  .

Hoe vind je nu 3/8    = 0,375 ? Dat kan via 1/8   en dan 3x. Sommige kinderen weten 1/ al uit het hoofd, of kunnen het handig uitrekenen via de helft van ¼ (= 0,25 : 2, de helft van een kwartje, enzovoort). Zo niet, dan moet er gedeeld worden, of handig op een liniaal van 100 cm (= 1000 mm) gekeken worden. Deze opgaven zijn nuttig, want nu leren de kinderen onder meer uit het hoofd dat 1/ deel gelijk is aan 0,125 of 12,5%. En ze leren dat met een visueel beeld en met een concrete context op de achtergrond. Als je het goed beschouwt, komen hier diverse leerstoflijnen bij elkaar: staartdelen, handig rekenen, meten, breuken, en kommagetallen / procenten.

Wat doe je als leraar van een vrijeschool, wanneer de kinderen vragen waar je dat voorgaande voor nodig hebt; waarom je dat allemaal moet weten? Natuurlijk neem je die vraag uiterst serieus.

235

Wie geïnteresseerd is in getallen zal verrast worden bij het omzetten van 1/7          in een decimale breuk. Om een kader te scheppen waarbinnen de bijbehorende decimale breuk gecontroleerd kan worden, kun je beginnen met een schatting te maken: Er zijn zeven zesdeklassers die met oude kranten 100 gulden voor de school hebben verdiend. Hoeveel heeft elk van deze groep verdiend? Deel dan 100 gulden door 7. Dat kun je wel schatten: elk 14 gulden, want 7 x 14 = 98. Over 2 gulden, dat zijn 8 kwartjes. Verdeel die ook maar met z’n zevenen: ieder 0,25. Nog 25 cent over: deel door 7, er komt 3 cent. Over 4 cent, vergeet die maar. Dus 100 gedeeld door 7 is ongeveer 14,28.
Nu de staartdeling en vergeet niet gebruik te maken van wat we zojuist gedaan hebben.

Waarom enzovoort? kun je de kinderen vragen. En vervolgens: “hoe lang gaat het, denk je, duren met deze staartdeling? Ben je zeker van je antwoord? Kun je dat aan de anderen uiteggen?”
De essentie is natuurlijk dat er nooit de rest 0 komt. Je kunt dat op twee manieren ‘weten’.
In de eerste plaats kun je het inzien als op een zeker moment de rest 1 opduikt. Je bent dan weer op hetzelfde punt als waarmee de delingsprocedure begon: “1 als rest, haal een 0 aan, het wordt 10 gedeeld door 7. Dat gaat 1 keer enzovoort.”
Je kunt het ook anders inzien, wat abstracter. Om de breuk  1/7   om te zetten, zou je van de noemer 7 een macht van 10 moeten maken. En dat gaat niet, omdat machten van 10 slechts uit de factoren 2 en/of 5 bestaan. Basta. Overigens is deze redenering niet zo geschikt om aan de hele klas uit te leggen.

Het ambachtelijke werk van het omzetten veroorzaakte een waar enthousiasme in de klas. Ze vinden  1/7    maar een vreemd geval. We zochten met elkaar uit:

1/7    = 0,142857                                      4/= 2 x 0,285714 = 0,571428

 2/7   =  2 x 0,142857  = 0,285714         5/7 = 0,714285

3/= 3 x 0,142857  = 0,428571          6/7 = 0,857142

Als we de cijfers achter de komma van 1/7 in een cirkel opschrijven, dan zijn de andere breuken af te lezen. Je hoeft alleen maar een ander beginpunt te kiezen.

236

Kinderen kunnen zich afvragen hoe dat komt dat steeds hetzelfde patroon zich herhaalt;
1/7   = 0,142857 142857 142857 142857 142857 enzovoort.
Om de oorzaak daarvan te onderzoeken, moet je de staartdeling nog eens goed bekijken. Je ziet dan, net zoals daarstraks, dat na zes keer de eerste rest 1 weer terugkomt. Voordat het zover was, zijn er zes andere resten geweest: 1, 3, 2, 6, 4, en 5. Dat zijn precies de zes getallen kleiner dan 7.
Neem je nu bijvoorbeeld de breuk 3/, dan moet je eigenlijk de volgende staartdeling maken:

7 / 3,000000\ … De eerste deling, die je tegen komt, is dan 30 : 7. En dat was in het vorige geval precies de tweede deling. Wat daarna gebeurt, is in beide gevallen hetzelfde. En zo komen dan in het geval van 3/ de resten 3, 2, 6, 4, 5 en 1 achtereenvolgens tevoorschijn. In het quotiënt verschijnen dan ook in dezelfde volgorde de cijfers als bij 1/7   . Vandaar 3/= 0,4 285714 enzovoort.

We zetten natuurlijk slechts een bepaald aantal breuken om in decimale breuken. Dit doende wordt er ook geoefend met het delen; een goede rekenoefening dus.

237

Moeten de kinderen van de vijfde en zesde klas dit rijtje uit het hoofd weten? En zo ja, waarom dan wel? Moeten ze weten dat  1/3   tot een repeterende breuk voert? En als we op dat probleem in gaan, moeten ze dan leren dat er ook andere repeterende breuken bestaan, zoals we eerder bij 1/7   aantroffen? Wie in de bakens en concrete leerdoelen kijkt, vindt een antwoord. Dat kan persoonlijke elementen bevatten!
Laten we ook een breuk als  25/43  omzetten? Als we dat doen als een rekenoefening, dan moeten we de kans waarnemen om een schatting te laten maken.
Wat moeten de kinderen dan doen? Eerst inzien dat bijvoorbeeld  25/43  > 25/50
= ½ =  0,5.  Of preciezer: 25/43 > 25/45  = 5/9 = 0,555555.

Omzetten van komma getallen in breuken

Gaan we ook de weg terug? Dus zoeken we een oplossing voor de vraag van 0,55 een gewone breuk te maken? Wie de vraag beschouwt voor ‘niet’ repeterende decimale breuken is gauw klaar. Al het rekenwerk, dat nodig is om van 0,55 te komen tot  5/9  bestaat uit het vereenvoudigen van breuken. Dus technisch gezien uit het vinden van gemeenschappelijke delers, ontbinden in factoren en delen. Niet de moeite waard dus om gewichtig over te doen.

Kommagetallen en procenten

Belangrijker is dat er ook verband gelegd wordt met procenten. We zagen hierboven al ½ = 0,50 ofwel 50%.
Dit verband, dat tussen kommagetallen, breuken en procenten bestaat, kan ten nutte gemaakt worden. Het volgende voorbeeld, van een lastige procentenopgave, laat daar iets van zien:
De vraag luidt: “Hoeveel procent is 8 van 27?”
In de zestiende eeuw had de vraag geluid: “Hoeveel ‘ten honderd’ is 8 van 27?” In deze formulering komt de essentie van de vraag goed naar voren. Het gaat er immers om te zien, welk getal zich ten opzichte van 100 verhoudt, als 8 dat doet ten opzichte van 27.
Bekijk dan de breuk (beter verhouding) 8/27 . Maak er een decimale breuk van, door de deling uit te voeren:

Het antwoord is: 8/27  = 0,296. Wie afrondt, leest dit als: = 0,30. En ziet dan dat
8/27  = 30% (30 ten honderd!).

Zo ook :”Hoeveel procent is 3 van de 8?” Noteer  3/8   = 3 x 0,125 = 0,375 en zeg 3/8   =37,5%.”
Procenten vormen een onuitputtelijke bron van fouten. Veel ervan zijn te voorkomen als men het verband met decimale breuken kent en met decimale breuken weet om te gaan.

238

239

Een gedachte-experiment: procenten en kommagetallen

“De prijzen zijn vorige trimester met vijf procent gestegen. Nu heeft men gelukkig weer met een 5% prijsdaling de zaak recht getrokken.
Is dat zo, zijn de prijzen weer op het oude peil teruggebracht?
Laten we even rekenen. Neem een prijs van 100 euro. Prijsstijging 5%, dat betekent dat het artikel nu 1,05 x 100 = 105 euro kost.
Zie je hoe die vermenigvuldiging met 1,05 werkt? Vermenigvuldigen met 1,05 betekent vermenigvuldigen met 1 + 0,05, of met 1 + 5/100   . Je krijgt dus het getal vermeerderd met 5 procent ervan.
Nu dan de prijsdaling met vijf procent. Het artikel kost daarna 0,95 x 105 euro . Dat is € 99,75. Zie je hoe dat gekomen is?
Wat gebeurt er als eerst de prijsdaling had plaatsgevonden, en dan de stijging? Het antwoord in één keer: 0,95 x 1,05 x 100 = 99,75. Verrast? Niet als je de berekeningen met de decimale getallen goed in het oog hebt gehouden.”

Deze werkwijze levert ook een goede toegang tot berekeningen met rente en samengestelde interest. Je hebt € 525,00 op de spaarrekening. De rente bedraagt 4%. Na 1 jaar heb je dan 1,04 x € 525,00 = € 546,00 op de bank.
En na twee jaar? Wel, dat is dan 1,04 x € 546,00 = 567,84. Wie een
zakrekenmachientje mag gebruiken, vindt hier een opening naar een relevant wiskundig leerstofgebied: groeifuncties, samengestelde interest.

IDEEEN VOOR EIGEN ONTWERPWERK

Er zijn ook heel wat situaties waarin kommagetallen niet gemist kunnen worden. Elke situatie kan aanleiding zijn voor een verkenning, een probleemstelling, een toepassing, een oefening, een doordenking, een berekening of een reflectie. Hier volgen er een paar:

• Kilometerteller met één cijfer achter de komma (dagteller met hectometers).
• Boodschappenlijstjes met bedragen: schatten. (“Heb ik genoeg geld bij me?”).
• Liniaal met millimeter-indeling. Ook regenmeter en dergelijke. Om af te lezen.
• Uit een berekening komt 0,8. Welke deling kan dat geweest zijn? En in welke situatie?
• Het boek van de Olympische Spelen 1992 met records. Ook Guiness Book of Records.
• Geef jurypunten (met één cijfer achter de komma) en bepaal eindstanden.
• Maak prijsvergelijkingen.
• Buitenlands geld: omrekenen van prijzen.
• Omtrek en oppervlakte van cirkels: π – 3,1415.
• Omrekenen van zeemijlen naar kilometers, van km/u naar m/sec en knopen.
• De zuinigste auto bepalen, gegeven aantal kilometers en aantal gebruikte liters.
• Handig (schattend) rekenen met 0,25 (kwartjes) en dergelijke.
• Gordijnen maken.

240

6.2.De wereld in verhoudingen

De wereld in verhoudingen

Achtergrond

De wereld is vol met datgene wat wij verhoudingen noemen. In de proporties van mens en dier, in de vormen en ritmen der plantenwereld en in de kristalstructuren van de mineralen vinden we herkenbare verhoudingen. Ook binnen de stof zelf heerst structuur. Avogadro ontdekte, dat de elementen zich in verbindingen verhouden als eenvoudige, gehele getallen. (Bijvoorbeeld H2O)
Een schitterend voorbeeld van verhoudingen vinden we in de muziek. Al kunnen we ten aanzien van een muziekstuk van mening verschillen over de tempi, de verhoudingen binnen de maat blijven gelijk en bepalen mede de herkenbaarheid van het stuk.
Van stond af aan is het kind dus omringd door een wereld vol verhoudingen, uiterlijke zowel als innerlijke, die vormend op hem werken, op een geheel natuurlijke en veelal onbewuste wijze.

“Zondags in de Hout, kregen wij ons traditionele La Venezia-ijsje: onze ouders een ijsje van vijf, wij van drie cent en het kwam niet in ons hoofd op om daartegen te protesteren. Het was immers volgens de natuurlijke verhoudingen geregeld, destijds in de jaren dertig. (Leuk hè, bijna volgens de Gulden Snede!)”

In de eerste schooljaren knopen we bij het natuurlijke gevoel voor verhoudingen aan. Vragen we een eersteklasser zijn twaalf kastanjes eens mooi over de bank te verdelen, dan liggen er in negen van de tien gevallen op elke hoek drie. Ook bij het vormtekenen gaat het allereerst om mooie verdelingen en verhoudingen, om gestructureerde, ritmische vormen.
Het schatten, graag en veel door kinderen beoefend, heeft alles met het verder ontwikkelen van hun gevoel voor verhoudingen te maken.
Zo omstreeks het negende jaar treedt het kind bewuster de buitenwereld tegemoet. Het gaat de wereld met andere ogen bezien en wat beleefd is, wordt nu ook beschouwd. De doorleefde ervaring wordt tot voorstelling, tot ‘denkbeeld’. Het vermogen zich tegenover de dingen te kunnen plaatsen, ontwikkelt zich vanaf nu in toenemende mate. Het oordeelsvermogen maakt zich los uit de directe ervaring.

“Onlangs kwamen twee vierdeklassertjes aan de deur met een intekenlijst. Ik tekende achteloos voor twee euro in: leuk toch, zulke actieve kinderen! Maar ik had beter moeten luisteren! Voor elk rondje, dat zij binnen een kwartier rondom het hertenkamp zouden rennen, moest ik twee euro betalen. “Dus als we bijvoorbeeld vier keer rondrennen, moet u acht euro betalen meneer.” En lachend verdwenen zij.”

Een tweedeklasser zou de situatie zeker niet zo goed hebben doorzien. Vanaf klas vier komen de verhoudingen bij diverse thema’s aan de orde, ook naar maat en getal.

“Een olifant eet 325 kg groen per dag, een rinoceros 50 kg. Hoeveel keer eet een olifant meer dan een rinoceros?” Dat zijn sprekende feiten, waar de vierdeklasser dol op is. Wat in de tweede en derde klas aan winkelbedrijf en heemkunde is

241

bedreven, kan nu bewuster rekenkundig worden benaderd en de nieuwe onderwerpen, zoals breuken, decimale maten en het op schaal tekenen, zijn uiteraard geheel uitdrukkingen van verhoudingen.

Omstreeks het twaalfde jaar kan het kind een volgende stap nemen. Aansluitend op bovengenoemd ‘groenetersprobleem’ zou een volgende vraag kunnen luiden: “Als Artis drie ton groen voor de twee dieren samen aanvoert, hoeveel krijgt de olifant daar dan van?” Hier moet dan een gecompliceerde berekening uitgevoerd worden, waarbij verscheidene bewerkingen op elkaar betrokken worden. Rekenkundig zit dat zo: de olifant en de rinoceros eten per dag samen 375 kg groen; zij verorberen 3000 kg in (3000 : 375 = 6000 : 750 = 12000 : 1500 = …) 8 dagen. De olifant heeft daarvan 8 x 325 kg = 2600 kg gegeten. Een
beredeneersom dus, die aan het verstandelijke vermogen van een zesdeklasser appelleert.

Omstreeks het veertiende jaar kan de leerling het vraagstuk in een algemene, abstracte vorm oplossen: O : R = 325 : 50 = 13 : 2. O eet  13/15   3000 kg = 2600 kg.
Met deze algebraïsche benadering kunnen we elke situatie van O en R oplossen, tot grote vreugde van de puber, die nu op zo’n slimme manier de werkelijkheid kan bemeesteren.

Kort samengevat: zie verhoudingen in de juiste verhouding tot leeftijd en de totaliteit van het leerplan. En vooral: zie ze niet over het hoofd!

Verhoudingen in het traditionele rekenonderwijs

Tot in de jaren zeventig werden de verhoudingen in het rekenonderwijs aan het eind van de vijfde klas, meestal pas in de zesde klas behandeld. De breuken, kommagetallen en de procenten waren dan inmiddels al aan de orde geweest. Dat mag op z’n minst merkwaardig heten, want het verschijnsel verhouding ligt ten grondslag aan elk van die onderwerpen.
Waarom dan toch pas zo achteraan in het rekenprogramma? Het antwoord op die vraag wordt duidelijk als we zien welke leerstof behandeld werd. Goed beschouwd werd het verschijnsel ‘verhouding’ nauwelijks in beschouwing genomen. Het ging hoofdzakelijk over evenredigheden (‘reden’ voor verhouding en ‘even’ voor gelijk, dus over de gelijkheid van verhoudingen) als a : b = 3 : 4. En bovendien werkte men louter getalsmatig en meetkundige situaties werden niet in beeld gebracht.

Het hoofdstuk verhoudingen bestond in principe uit vier paragrafen.
Eerst een introductie op het begrip en de notatiewijze: “De waarden van een stuiver en een dubbeltje verhouden zich als 5 en 10. Je mag ook zeggen dat ze zich verhouden als 5 staat tot 10, geschreven als 5 : 10. En dat is hetzelfde als 1 : 2. Dus stuiver : dubbeltje = 1 : 2.” (Een echte schoolmeester voegde daar aan toe: “het moet natuurlijk zijn, de waarde van een stuiver staat tot de waarde van een dubbeltje is als één staat tot twéé.”) Hier staat ook te lezen dat een dubbeltje twee keer zoveel waard is als een stuiver. Of dat een stuiver de helft is van een dubbeltje. Dan kwam er een paragraaf met opgaven als: “Twee kapitalen verhouden zich als 3 : 4. Het grootste kapitaal is f 200,-, hoe groot is het kleinste kapitaal?”
De oplossing verliep via een evenredigheid als K : 200 = 3:4. Soms pastte men de hoofdeigenschap van de evenredigheden toe: 4 x K = 3 x 200, dus K =  600/ = 150.

242

Wie inzag dat 200 = 50 x 4 en dus K = 50 x 3 moest zijn, was sneller klaar.
De volgende paragraaf behandelde opgaven als: “De aantallen knikkers van Jan en Wim verhouden zich als 3 : 5. Samen hebben ze er 40. Hoeveel heeft elk?”
De oplossing ging ongeveer aldus: ‘Jan’ : ‘Wim’ = 3 : 5. J + W = 40. Dan heeft Jan 3/8    x 40 = 15 en Wim  5/8   x 40 = 25 knikkers. Het getal 8 kreeg je door 3 en 5 op te tellen, en je wist dat omdat het aantal knikkers was gegeven, dat ze samen hadden.
In de laatste paragraaf was de verhouding en het verschil gegeven: “Twee stokken verhouden zich als 3 : 8, de ene stok is 40 cm langer dan de andere. Hoe lang zijn de beide stokken?”
Oplossing: Stok A =  3/5   x 40 cm = 24 cm. De andere is dus 64 cm. (Routineuze rekenaartjes vonden dit via  8/5 x 40 cm = 64 cm).

In de jaren vijftig werd de didactiek van de verhoudingen verrijkt met het zogeheten verhoudingsblok. Hiermee konden de drie genoemde typen vraagstukken in één klap en met inzicht worden opgelost.
De evenredigheid a : b = 3 : 6 werd in een schema geplaatst:

                  a                      b            of                    a                          3

                  3                      6                                   b                          6

Kijkend van a naar b zie je ook de stap van 3 naar 6. Dat is dus een vermenigvuldigingsfactor van 2. Je krijgt b door a met 2 te vermenigvuldigen.

Is nu bijvoorbeeld gegeven dat B – A = 40, zoals in het vraagstukje met de twee stokken, dan breid je in gedachten het schema uit:

A                     B                                 B – A = 40

3                      8                                8 – 3 = 5
(Vermenigvuldigingsfactor is: 8)

Je ziet dat de stap van de onderste rij verhoudingsgetallen naar de bovenste rij ‘werkelijke’ getallen een is van vermenigvuldigen met 8. Hieruit volgt direct a = 8  x  3  en  b = 8  x  8

Dit verhoudingsblok is nauw verwant met de ‘evenredigheidsmatrix’ die door de didacticus P.M. van Hiele werd geïntroduceerd. In dit boek zijn we het idee ook al tegenkomen in het hoofdstuk over breuken: de verhoudingstabel. Met deze constatering wordt ook duidelijk dat de verhoudingen in het rekenonderwijs al vóór de introductie van de breuken, vóór de vierde klas dus, aandacht verdienen.

Kinderen ontmoeten verhoudingen

Observatie: het haantje van de toren

Met een paar kleuters bij een toren. “Kan iemand vertellen hoe groot dat haantje op de toren is?” K: “Ik weet het.” “Zo groot ongeveer? Wat denk jij?” K: “Hij is nog veel groter.” “Ik zag laatst dat ze de haan naar beneden haalden. Hij was wat kaal geworden en ze wilden ‘m schilderen. Toen stond hij dus op de grond. Hier vlak bij. Wat denk je, hoe groot was het haantje toen hier?” K: “Zoiets. Een kip is toch niet zo lang!” “Nee, een echte kip niet. Maar is dit een echte kip?” K: “Nee.”

243

“Het is een haantje van ijzer. Hoe groot is een vliegtuig in de lucht? K: “Heel klein!” K: “Ik weet het, net zo groot als het schoolplein.”… “Denk nog eens aan de haan. Hoe groot was die op de toren? En hoe groot als die hier op de grond staat?” K: “Groter, nog veel groter.” “En als ik nu naar boven zou gaan op de toren, hoe groot zou ik dan worden?” K: “Zo’n klein mannetje.” “Nu neem ik het haantje mee als ik naar boven ga. En ik word kleiner en kleiner.” K: “Ik zie geen haan.” “Nu moet jij zeggen hoe groot ik ben als je me boven op de toren ziet.”… K: “Zo’n klein mannetje.” “En de haan naast me?” K: “Zó klein.” “Nu komen we allebei naar beneden. Ik heb de haan meegenomen. Hoe groot zou die haan zijn?” K: “Dan is de haan net zo groot als de schoolbank …”

(Uit Goffree,F.(1979). Leren onderwijzen met wiskobas, IOWO Utrecht.)

Of je zo’n vraag aan kleuters moet stellen? Misschien beter aan de leerlingen van de vierde klas, die op weg zijn naar de grote kerk om de toren te beklimmen en dan de stad in vogelvluchtperspectief willen zien.

Observatie: Bastiaan en de regenwolken

Bastiaan (7;6). Na een reeks zonnedagen ziet hij wolken en zegt: “Het gaat regenen.” “Neen”, zeg ik, “dit zijn heel hoge wolken, daar komt geen regen van; regenwolken zijn laag en donker .”Hij: “En hoe hoog zijn die wolken?” Ik: (overdrijvend) “Tienduizend meter.” Hij: “En hoe hoog zijn die regenwolken?” Ik: “Duizend meter.” Hij: “Dus (met de hand op de grond) als wij hier zijn en de regenwolk zó hoog (wijst ongeveer dertig centimeter boven de grond), dan zijn dat (wijst ongeveer één meter boven de grond), geen regenwolken.”

(Geciteerd in Tijdschrift voor nascholing en onderzoek van het reken-wiskundeonderwijs, jrg.8 nr.2, blz.57)

Het blijkt dat het verschijnsel verhoudingen niet zonder meer aan kinderen voorbijgaat. Ze voelen soms de zaak intuïtief heel goed aan, kunnen zelfs aan hun intuïtieve noties uiting geven, in gebaar en woord. Maar ook kunnen ze door de omstandigheden misleid of door hun intuïtie in de steek gelaten worden. Hoe het ook zij, de wereld om hen heen en de kinderen zelf geven aanleiding om verhoudingen niet buiten beschouwing te laten.

Het verschijnsel verhoudingen

Onze wereld zit vol met verhoudingen, visueel en numeriek (meetkundig en getalsmatig), onopvallend en aandachttrekkend, om accenten te plaatsen en om verschillen te verhullen. Vul zelf maar in en aan, wie om zich heen ziet en een verhoudingenbril opzet, kan daar tegen deze bewering geen bezwaar hebben.
Wat overigens direct opvalt, zijn de zaken waarbij sprake is van
‘wan’verhouding. Neem bijvoorbeeld een karikatuur, waarin karakteristieke trekken buiten verhouding zijn weergegeven. Maar ook de plaat waarop het menselijk lichaam in bepaalde ontwikkelingsstadia is weergegeven, vraagt aandacht voor verhoudingen: Is het hoofdje van de baby niet veel groter dan dat van de volwassene verder op in de rij? Natuurlijk niet in absolute zin, maar wel ‘naar verhouding’. Wie let daar in het bijzonder op? De schilder, die een jong kind wil tekenen! Diezelfde schilder weet veel meer van verhoudingen met betrekking tot het menselijk lichaam. Een mooie geheugensteun werd eens getekend door Leonardo da Vinci:

244

Het zijn verhoudingen die opvallen als je je er niet aan houdt. Veel gewone verhoudingen vallen haast nooit op. Neem de vakantiefoto’s, waarop de mensen, dieren en dingen vele malen kleiner staan afgebeeld dan ze in werkelijkheid zijn. Niemand zal daar een aanmerking op maken, want alle objecten zijn naar verhouding evenveel verkleind. En geldt niet hetzelfde voor hetgeen juf of meester op het bord zet? Die vormtekening van een meter lijkt achter in de klas maar een decimeter en wordt vervolgens weer vergroot tot twintig centimeter, geen kind of leraar die daarover valt. En dan de dia’s of misschien wel de transparanten op de overheadprojector: vergrotingen van verkleiningen van de werkelijkheid. Wie de dia tegen het licht houdt, meent toch ‘hetzelfde te zien’ als hetgeen op de wand wordt geprojecteerd! Wij zijn eraan gewend en zolang niet aan de onderlinge verhoudingen wordt getornd, valt het verschijnsel ons niet meer op.

Wanneer maken we gebruik van verhoudingen? Daar is al sprake van op het moment dat kinderen zich in de fysieke ruimte gaan oriënteren. Als ze schattingen maken, bijvoorbeeld: “Wat is verder vanaf het tafeltje voor de klas, de deur in het lokaal of de kast achterin? Even afpassen met stappen.” Of als kinderen een legpuzzel maken. Eén achteloos gesteld vraagje kan de aandacht richten: “Hoe groot denk je dat de puzzel zal worden?” Het antwoord kan globaal, louter met gebaren worden gegeven. Net zoals Bastiaan dat deed met de regenwolken. Maar het kan ook heel precies, als kinderen het meten al onder de knie hebben.
Foto’s, waar de verhouding onopvallend aanwezig is, geven ook aanleiding tot het doen van schattingen en dus het gebruiken van het verschijnsel verhoudingen.

“Hoe hoog is die boom? Ik denk dat dat grootste kind ongeveer 1,55 m is. Dan is de boom, laten we zeggen …”

245

Wie schat, zoekt vergelijkingsmateriaal. We zeggen ook wel: referentiepunten. Ieder mens bouwt in de loop van de jaren een repertoire op van persoonlijke referentiematen. Ik ben 1.69 m lang en dus schat ik de hoogte van die keukenplank op ongeveer 1.85 m. Deze balk is ongeveer 2,5 cm dik, dat zie ik door mijn duim ertegen aan te houden. Een mok is ongeveer 2 dl, dus kan ik gemakkelijk een halve liter melk afpassen: 2½ mok. En in mijn kookboek vind ik dat één theelepeltje hetzelfde is als drie gram. Maar dan gaat het wel over …
Later komt de laatste overweging terug als het begrip dichtheid aan de orde is. Massadichtheid, wat vroeger soortelijk gewicht werd genoemd. Het is de verhouding van gewicht en volume; anders gezegd is het het gewicht van een bepaalde hoeveelheid van een stof. Hoeveel kg weegt 1 dm3 lood? Of, meer van deze tijd: wat is de massa van 1 m3 lood?
Ook bevolkingsdichtheid (verhouding van aantal bewoners en oppervlakte van het land waarop gewoond wordt).
Met deze verhoudingsproblematiek zijn we te snel door de wereld van de verhoudingen heen gesneld. We hebben het vergroten van foto’s en platen (kopieerapparaten doen dat momenteel procentsgewijs) niet genoemd. En het werken met landkaarten en stadsplattegronden, waarbij het begrip schaal essentieel is. Zowel getalsmatig (schaal 1 : 10 000 bijvoorbeeld) als meetkundig (dit lijnstuk is 1 km). Ook nebben we de modelbouw niet behandeld, met speelgoed op schaal of Madurodam op schaal 1 : 25. Ook de Mercatorprojectie niet, waarop Groenland naar verhouding veel te groot is afgebeeld.

En wat te zeggen van de verhoudingen die schaduwen met zich meebrengen? De schaduw van de vlaggenmast was om vijf uur langer dan om twaalf uur. Wat zegt die lengte, van de hoogte van de zon en dus van de tijd? Later, in klas 10, zie je dat het om een hoek, dus om een goniometrische verhouding gaat.
We zijn meetkundig bezig. Dat geldt ook voor het verschijnsel van de grijstinten op papier (of op een computerscherm). De indruk ‘grijs’ ontstaat door een mengsel van witte en zwarte puntjes. De verhouding ‘wit : zwart’ bepaalt de donkerheid van het grijs:

Mengsels worden ook bepaald door verhoudingen. Kinderen hebben ervaringen op dit terrein met limonadesiroop, waarschijnlijk niet zozeer getalsmatig, maar zeker intuïtief.
Pas echt moeilijk wordt het rekenwerk als we ons begeven op het terrein van scheikunde. Daar moeten verdunningen precies naar voorschrift gemaakt worden. De verhoudingen van het metriek stelsel (“Hoeveel cc gaan er ook weer in een ml?”) komen nu ook in beeld. En hoe zit dat ook weer met de verhouding tussen km/uur en m/sec of het Angelsaksische miles/hour (knoop)?
Omrekenen doe je ook op reis, bijvoorbeeld naar de V.S.. Euro’s  voor dollars, tegen een vastgestelde verhouding (wisselkoers). En wie in het buitenland prijsbewust is, loopt al winkelend verhoudingsrekenen te beoefenen.

246

Met voorgaande beschouwing is het verschijnsel nog lang niet uitputtend behandeld. Zo zijn voor de hand liggende zaken als prijs-kwaliteit verhouding, prijs per gewicht-lengte-aantal en dergelijke, inflatie en koopkracht, indexcijfer, kiesdeler, kijkdichtheid, … niet behandeld. Een leraar, die oog heeft voor het onderwerp, hoeft niet ver te zoeken. En als hij ook verder ziet dan de basisschool, komen onderwerpen als lineaire verbanden, formules en grafieken in zicht.

Verhoudingen in het leerplan

Het is niet mogelijk een volledig leerplan voor verhoudingen te geven. Dat moet met de bovenstaande verkenning van het gebied al duidelijk geworden zijn. Verhoudingen moeten in het kader van veel andere onderwerpen aan de orde worden gesteld. Dit houdt een gevaar in, namelijk dat het onderwerp in de vergeethoek geraakt. Er kan echter van een minutieus gefaseerde leergang, zoals in het geval van de tafels en de cijferalgoritmen, hier geen sprake zijn omdat elke vrijeschoolleraar de onderwerpen kiest, die in zijn klas geschikt zijn en hij ze vervolgens in de context van andere onderwerpen aan de orde stelt.
Globaal kan men het volgende als richtlijn beschouwen: Verhoudingen vormen in de eerste drie klassen geen leerstof die expliciet aan de orde komt. Toch is er een bedding voor te vormen middels het schatten en vormtekenen. In de vierde klas is door het denken in breuken een goede basis te leggen voor de verhoudingstabel, die handig is om verhoudingsvragen mee te bewerken. Zo ontstaat de verhouding als relatieve maat.
De laatste stap kan dan in de hogere klassen plaatsvinden, waar inzicht in de dubbele open getallenlijn en het gebruik van de verhoudingstabel worden geleerd. Met de laatste kunnen verhoudingssvragen ook algoritmisch worden opgelost. Bij een goed doordachte keuze kan in de loop van acht jaar het onderwerp verhoudingen doorgewerkt worden. Tot en met de toepassingen binnen en buiten de wiskunde, tot en met de lineaire functies en als een goede basis om het gebied van de hogere machts- en exponentiële functies te betreden.

Nu volgen suggesties om het onderwerp door alle lessen en perioden heen aan de orde te stellen.

1 vormtekenen

Wat op het bord voorgedaan is, wordt ‘in verhouding’ overgebracht op het eigen papier.

2 Het elementaire meten

Hier worden natuurlijke grootheden vergeleken, vaak met behulp van het eigen lichaam als maatstaf. Meetgetallen zijn verhoudingsgetallen.

3 Schatten met referentiematen

In het dagelijks leven, maar ook op foto’s en platen. Het is een waar feest wanneer de kinderen in de lagere klassen mogen schatten. Er verschijnen vele antwoorden op het bord. Ze zoeken nog houvast bij elkaar: “Zou ik er helemaal naast zitten of heeft Johan ‘het’ te ruim genomen?” Dan mag iemand het gaan nameten. Met ingehouden adem wacht de klas af, tot de ‘nameter’ met het juiste antwoord terug komt en een gejuich stijgt op, wanneer iemand dat antwoord ook geschat heeft.

247

De bakker had aan de school een oude balans uitgeleend met grote gewichten. We waren net begonnen met metselen in de huizenbouwperiode en een eerste zakje met cement stond in de hal klaar. Ik gaf een van de kinderen de opdracht het te halen en op de balans te plaatsen. Daarna gaf ik hem een gewicht in zijn handen en vroeg: “Hoeveel van die gewichten moet ik aan de andere kant op de weegschaal zetten?” Daarna deden we dat dan ook met grotere en kleinere gewichten.

Zo is tot in de hoogste klassen bij kinderen in het ‘schatten’ gevoel voor verhoudingen te stimuleren.

4 ruilhandel

Het begint voor de kinderen al in de knikkertijd op het schoolplein. Knikkers, bammen en supers staan in vaste verhouding tot elkaar. Omrekenen naar knikkers is het gemakkelijkst om ruilhandel te kunnen plegen. Maar op een zeker moment komen koerslijstjes in de klas …

5 Vergroten en verkleinen

Met roosters op papier en met een projector in werkelijkheid.
Bouwen van een voorbeeld, een plattegrondje van de klas maken, een tekening maken van de weg van huis naar school, met karakteristieke punten op de juiste plekken.
Op een overheadprojector liggen drie munten. Op de wand zijn drie zwarte
cirkelschijven te zien. Welke munten zijn dat? Het antwoord wordt gemakkelijker als een van de munten wordt geïdentificeerd als een dubbeltje. Hoe kunnen we zeker zijn?

6 Vervormen

Met behulp van roosters: van vierkantenrooster naar rechthoeken. Uitrekken in de lengte of in de breedte. De verhoudingen ‘kloppen niet meer’.

248

In de handwerklessen van de zevende klas maken de kinderen vergrotingen en verkleiningen met behulp van een raster. Wellicht hebben ze in de zesde klas al eens de kaart van het Romeinse Rijk vergroot, maar er komt meer bij kijken als het erom gaat een kledingstuk passend te krijgen.
In de voorgaande klassen maakten de kinderen patronen voor handschoenen, stoffen beesten of sloffen, door bijvoorbeeld de voet om te trekken en dan de stof iets groter te knippen. Nu, in de zevende klas, wordt er een blouse ontworpen. Om een blouse of bodywarmer op de juiste maat te krijgen bepalen de kinderen de verhouding tussen patroon en lichaam. Het meten aan lichaam en patroon levert dan de vergrotingsfactor, die vertelt hoe de ruitjes van het raster vergroot moeten worden.
Daarbij komt het vraagstuk of het kledingstuk misschien langer of wijder moet worden dan het patroon aangeeft. Dat vraagt om veranderingen (vervormingen), waarbij de verhoudingen niet in stand blijven. Hoe brengen we die vervormingen tot stand in het op ruitjespapier getekende patroon?

En vanuit een andere invalshoek komen er vragen als: “Wat is er aan de hand met die karikaturen?” “Is het hoofd van die getekende baby niet te klein?” “Hoe lang moet je de armen van een mens tekenen?”

249

7 Referenties voor schaal

Gegeven een foto van een bij. De afbeelding van het insect is veel groter dan het in werkelijkheid is. Dat kun je zien omdat er en liniaaltje naast ligt.

Je ziet dat het een vergroting is. Wie weet hoe groot die bij in werkelijkheid is? Op het fotokopieerapparaat kun je ook vergroten en verkleinen. Wat betekent een vergroting van 125%? Probeer het maar uit.

8 schaal

Maak een schets van je kamer op schaal. Wat is een geschikte schaal? Lukt het met 1 : 10? Of moet je naar 1 : 20? Welke schaal staat op stadsplattegrond? Wat betekent die visuele schaal: een lijntje van 1,5 cm staat voor 1 km? Wat betekent schaal 1 :100 000? Weet je een grotere schaal? Weet je wat een curvimeter is? Hoe werkt dat met schalen?

9 Schattend rekenen met aandacht voor de relatieve fout

Afronden gebeurt binnen bepaalde grenzen. Hoever ga je door met de staartdeling 3 / 100,0000\ … als het erom gaat een plank van 1 meter in drie gelijke plankjes te zagen? Welke benadering is nauwkeuriger: 7,8 = 8 of 97,8 « 100?

10 Opgaven ‘onderweg’

Die kaars heeft volgens de fabriek 10 branduren. Hoelang zou hij al gebrand hebben? Die wegwijzer moet ergens op de weg van Driebergen naar Arnhem gestaan hebben? Waar precies? Hoe kunnen we een ‘schaalmodel’ maken van de aarde, maan en zon? Kunnen we ook de grootten van de hemellichamen op die schaal maken? Leg eens uit waarom de zon en de maan even groot lijken als ze aan de hemel staan? Weet je een manier om de snelheidsmeter in de auto van je vader (of een ander) te controleren? Kun je uitrekenen hoeveel de afstand van 12 cm op een kaart met schaal 1 : 100 000, in werkelijkheid is?

11 Stok-schaduwmodel

Zet een stok van één meter verticaal op het schoolplein en meet met vaste tussenpozen de schaduwlengte op. Gebruik de verhouding stok-schaduw om de hoogte van een boom, schutting, hek, muur of iets dergelijks in de buurt te vinden. Let eens op de driehoeken, die hebben dezelfde vorm.

250

12 Dichtheid en mengverhouding

“Pap kom eens kijken, deze struik zit vol bosbessen, hij ziet helemaal blauw, de blaadjes zie je haast niet meer!” We kwamen allemaal aanrennen, misschien zaten er op die fantastische plek van Bride nog meer van die struiken. “Poeh, wat een klein struikje”, riep Jannes mijn andere spruit, “de mijne ziet wel niet zo blauw, je ziet meer blaadjes, maar er zitten veel meer bessen aan! Ik ga terug.” “Dat kan niet!” zei Bride, “ik heb nog nooit zo’n volle struik gezien.”
Wie heeft er gelijk? Als je rekening houdt met de grootte, verhoudingsgewijs dus, dan zitten er absoluut gezien misschien wel meer bessen aan de struik van Jannes, maar relatief gezien zijn het er minder.
Verhoudingsgewijs … in verhouding tot wat? Relatief … ten opzichte waarvan?
Als de struik van Jannes even groot was als die van Bride dan zaten er aan zijn struik minder bessen. Om Bride gelijk te geven moet je dus beide struiken even groot denken, terwijl je de blauwheid -dat is de verhouding tussen bessen en blaadjes- van elke struik gelijk laat en de afmetingen in gedachten verandert.

13 Verhoudingen in de breukenleergang

Zie hoofdstuk 5 en denk in het bijzonder aan de introductie van de dubbele getallenlijn. Ook het breukenelastiek is gebaseerd op inzicht in verhoudingen.

Enkele opgaven ertussendoor: Ze kunnen nu ook verhoudingsopgaven aan. Voorbeelden:

• Dit recept… is voor vier personen er komen negen gasten, …

• Mijn flat is keer  1½  zo hoog als die aan de overkant, die is 20 meter hoog Hoe hoog is mijn flat ?

• De vader van Brandaan ziet op zijn dashbord dat de benzinetank nog maar voor ongeveer  2/5    gevuld is. Er passen 70 liter in een volle tank. Maar er moeten nog heel wat kilometers gereden worden voor hij thuis is. Hoeveel liter ongeveer zit er nog in die tank?
Deze opgave is heel goed op te lossen met de dubbele open getallenlijn.

14 Introductie en verkenning van de verhoudingstabel

Het begint eigenlijk al bij de tafels van vermenigvuldiging, een rij als 3, 6, 9, 12, 15, 18, 21, … hoort bij de rij 1, 2, 3, 4, 5, 6, 7, … Zet je beide rijen in één mooi schema:

dan heb je een verhoudingstabel, met vele eigenschappen om al te verkennen. Bijvoorbeeld in de bovenste rij 1 + 4 = 5, geeft in de onderste rij ook een juiste optelling: 3 + 12 = 15. Logisch, zeggen we later, alle getallen zijn naar verhouding vergroot (vermenigvuldigingsfactor 3).

251

In de lessen over breuken, in de vijfde klas, komt de verhoudingstabel uitvoerig in beeld. Daar ziet men dat een breuk ook steeds een verhouding weergeeft, waarbij een deel (teller) op een geheel (noemer) betrokken wordt.

Kinderen kunnen het ‘relatieve’ van de getallen in de context van verhoudingen ook (leren) ervaren, wanneer ze bezig zijn met gelijkwaardige breuken. Met het breukenelastiek (blz. 191) is dit ook mooi te demonstreren. We hoeven het hen daarbij nog niet in abstracte zin bewust te maken, maar ze werken er mee wanneer een gelijkrij wordt aangelegd:

De verhoudingstabel is op te vatten als notatieschema (om evenredigheden in op te slaan) en rekenschema (om te rekenen met verhoudingsgetallen) voor het oplossen van verhoudingsproblemen. Hiermee kunnen we nu verschillende opgaven te lijf:

• Hoeveel kwartjes in 13 gulden?

• Als 1 Franse franc ongeveer 32 cent is, hoeveel gulden krijg je dan ongeveer voor f 250,-?

De benadering scheelt dus ongeveer 0,12 francs, laat maar zitten.

• Als 0,25 % van een bedrag f 70,- is, hoe groot is dan het hele bedrag?

Procenten zijn dus op te vatten als op 100 genormeerde verhoudingen. (In plaats van 1 : 4 zegt men dan 25 : 100, ofwel 25%).

• We kopen in voor f 12.500,-; we willen 8 % winst maken. Wat is de nieuwe prijs?

In dit voorbeeld zien we dat uit verhoudingen (inkoop : winst) nieuwe verhoudingen (inkoop : verkoop) door optelling (en de andere basisbewerkingen) te vormen zijn. De verhoudingstabel maakt dat rekenwerk overzichtelijk.

252

15 Verhoudingen bij procenten

Procenten zijn verhoudingen met die bijzonderheid, dat de verhouding steeds ten opzichte van het getal 100 wordt beschouwd.( zie ook H 6.3) Dat maakt het vergelijken van twee of meer ongelijke verhoudingen gemakkelijker.
Welk grijs is donkerder: 17 witte puntjes op 19 zwarte, of grijs van 33 wit en 37 zwart? In het eerste geval zijn er 17 wit op een totaal van 36, in het tweede geval 33 wit op een totaal van 70. Hoeveel procent?
17 op 36 is
(17 : 36 = 0,4722222… = 0,472 =  472/1000   =) ongeveer 47,2%.
En 33 op 70 is
(33 : 70 = 0,4714285… » 0,471 = 471/1000   =) ongeveer 47,1%!

16 Rekenregels met letters in verhoudingen

Twee gelijkvormige driehoeken, de ene met zijden p = 5,0;   q = 5,5;   r = 7,5.
De andere met zijden a; b; c.
Als a = 10,0 bereken dan b en c. Een opdracht, die met behulp van een verhoudingstabel eenvoudig tot een oplossing leidt.

17 Op onderzoek naar het getal π

Het gaat om de onveranderlijke verhouding tussen de omtrek van een cirkel en zijn middellijn (of straal). Laat de kinderen dit merkwaardige verschijnsel nameten aan allerlei cirkelvormige figuren: rijksdaalder, schoteltje, kopje, bord, lampenkap, … Verzamel de gegevens in een mooie tabel en laat de verhouding (= quotiënt, de uitkomst van een deling) uitrekenen tot achter de komma. Wie bedenkt vervolgens een formule voor de omtrek van alle cirkels?
Zou er ook een formule bestaan voor de oppervlakte van een cirkel?

18 Lineaire verbanden in formules
Verder in de zevende klas (H 7).

253

6.3 Procenten

Uit de Cijfferinge van Mr. Willem Bartjens, 1 February, 1763.

Geschiedenis

Bovenstaande opgave is overgenomen uit een van de vele herdrukken van het beroemdste rekenboek in de Nederlandse taal, de Cijfferinge van Willem Bartjens. Het woord ‘procent’ komt er niet in voor, maar het gaat wel over procenten, men wil namelijk van die 600 gulden 7 ten honderd rente per jaar ontvangen. Dat is van elke 100 gulden er dus 7 gulden op toe krijgen. Of anders gezegd: voor elke 100 gulden die je uitleent, krijg je er na één jaar 107 terug.
De eigenlijke vraag is in dit geval anders, en behoorlijk lastig: “Wat mag je verwachten te ontvangen als men je nu contant terugbetaalt?” Dan kun je dat bedrag zelf op rente zetten en dan groeit het successievelijk weer in drie jaar aan tot 600 gulden.
De antwoorden en de berekeningen zijn er in het boek bij gegeven. Voor het rekenen is gebruik gemaakt van de ‘Regel van Drieën’. Eigenlijk de ‘Verkeerde Regel van Drieën’, die in de regel 107____100____200 | 186  98/107      tot uitdrukking is gebracht: “zoals 100 groeit tot 107, zo groeit het getal dat ik zoek tot 200.” Wie de goede opstelling van de getallen heeft,107____ 100____ 200 , kan gaan rekenen, middelste getal maal het meest rechtse, gedeeld door het meest linkse getal:  100 x 200/107    = 186 98/107  

Wie denkt dat deze opgave in het rekenprogramma van de vrijeschool anno 2000 thuishoort, heeft het mis. De opgave kan hoogstens als uitdaging voor een rekenbolleboos achter de hand worden gehouden. Nee, deze opgave is bedoeld om te laten zien dat het rekenen met procenten niet van de laatste tijd is en dat het behoorlijk lastig kan zijn om een ogenschijnlijk eenvoudige opgave met de gegeven middelen op te lossen.

254

De geschiedenis van het procentrekenen gaat verder terug dan het begin van de zeventiende eeuw, toen de eerste druk van de Cijfferinge uitkwam. Reeds de Grieken konden al tegen betaling geld lenen bij de bank. De rente werd vastgesteld per 100 drachmen. In de Middeleeuwen en daarna kende men het verschijnsel, dat boeren een tiende deel van de opbrengst van hun land moesten afstaan aan de kerk. In Brabant vindt men nog steeds landerijen die in het verleden van een dergelijke belasting vrijgesteld waren .’Tiendvrij’ werden deze stukken land genoemd. Toen zich in de twaalfde eeuw de handel en dus ook het boekhoudkundig rekenen begonnen te ontwikkelen, behoorde daartoe ook het rekenen met procenten.
Simon Stevin (1548-1620) stelde Tafelen van Interest samen om het berekenen van rente gemakkelijker en sneller te maken. Soortgelijke ‘tafels van rente’, of beter ‘kortingstafels’, vinden we heden ten dage in grootwinkelbedrijven, als er weer uitverkoop is.
Het woord procent (percent) komt van ‘per honderd’, of ‘ten honderd’, zoals in de opgave uit het boek van 1763. Op een gegeven moment is ook het symbool % uitgevonden.
Zo te zien werden aanvankelijk de procenten alleen gebruikt in de context van rente, maar momenteel komen ze in allerlei andere contexten voor. Denk maar aan ‘geen alcohol in het verkeer’ met alcoholpromillage en -percentage. Of aan de samenstelling van vezels in kleding (50% wol). Andere contexten zijn bevolkingssamenstelling, werkeloosheid, ziekteverzuim, AOW, loonsverhoging, winst en verlies, belasting, prijsverlaging, inflatie, koopkracht, uitverkoop, BTW, de discount, stoffen oplossen in een vloeistof, legeringen, kijkdichtheid, hypotheek, …
Procenten zijn niets anders dan verhoudingen. Als je wilt weten welke verhouding groter uitvalt, 17 op de 35 of 19 op de 39, dan kun je beide verhoudingen herleiden tot ‘per honderd’; 17 : 35 = 49 : 100 en 19 : 39 = 49 : 100. Allebei dus ongeveer 49 procent. Reken je wat nauwkeuriger, dan blijkt de eerste ongeveer 48,6 en de tweede ongeveer 48,7 procent te zijn. (Je vindt dat bijvoorbeeld door de delingen 17 / 35 \… en 19 / 39 \… te maken, en af te lezen ‘hoeveel honderdsten’ er zijn. Hiermee is dan ook weer een verbinding gelegd met de decimale breuken).

Achtergronden

In de veertiende voordracht van Erziehungskunst, Methodisch-didactisches koppelt Rudolf Steiner de behandeling van de rente, de procenten en het disconto aan de leeftijd van twaalf jaar. Hij stelt dat rond deze leeftijd de laatste instincten van de ziel overwonnen moeten worden door het oordeelsvermogen. Duidend op de renteberekening voegt hij er de waarschuwing aan toe, dat we met de genoemde stof niet te laat moeten zijn. Op de leeftijd van twaalf jaar zijn in het kind de innerlijke egoïstische gevoelens nog niet ontwaakt. Het werken met procenten in de context van renteberekeningen, appelleert dan nog niet aan een mogelijk sluimerende hebzucht.
In de dertiende voordracht van Erziehungskunst, Seminarbesprechungen und Lehrplanvortrage ligt de nadruk op de
overgang van interestformule

R = K x P x T
                 100                 
naar de algebra. In die voordracht komen ook andere onderwerpen aan de orde, die destijds maatschappelijk relevant waren, zoals rabat, emballage en het rekenwerk met betrekking tot een wis-

255

sel. Handelsrekenen, zeggen we nu. De relevantie voor het reken-wiskundeonderwijs van nu heeft zich gewijzigd.

We kunnen ons afvragen of Rudolf Steiners aanwijzingen voor het leerplan gelden voor het hele gebied van de procenten. We menen van niet, de dominante context van weleer, de renteberekening, is vervangen door een scala van andersoortige contexten, waarvan vele een duidelijke maatschappelijke relevantie hebben zonder in direct verband te staan met het vermeerderen van eigen bezit of vermogen.

Bakens voor een rekenperiode over procenten zijn:

• Procenten worden visueel in beeld gebracht.
• Schattingen maken van percentages in concrete voorstellingen.
• Percentages van stroken; percentages bepalen met ‘breukenelastiek’ (met een indeling ‘in 100’); gebruik leren maken van de dubbele lege getallenlijn.
• Gebruik leren maken van de verhoudingstabel (zie blz. 251) om percentages te berekenen.
• Procenten als groei/krimpfactor.
• Toepassingen.

Procenten in de zesde en zevende klas

Vragen, waarvoor op dit terrein samen met de leerlingen een antwoord gezocht moet worden, zijn:

• Waar zijn we het % begrip (al) tegengekomen?
• Wat zijn procenten?
• Waarvoor gebruikt men procenten?
• Wat is de meerwaarde van procenten ten opzichte van gewone en decimale breuken?
• Hoe rekent men met procenten?
• Hoe kun je het reken- en denkwerk bij procenten ondersteunen?
• Wat zijn de knelpunten bij het procentrekenen?
• Welke toepassingen zijn er?
• Wat is het verband met decimale breuken?
• Wat is het verband met verhoudingen?

Gezien het veelvuldig gebruik van procenten en de vele contexten, waarin dit gebruik zinvol is, is het verstandig in de vijfde klas al te beginnen met een periode procenten. Het onderwerp procenten wordt eerst verkend, het gaat dan om een inventarisatie van hetgeen de kinderen al weten of denken te weten. Vervolgens wordt het onderwerp nader onderzocht met voorbeelden uit de eigen omgeving. Het gaat om de begripsvorming, het idee dat procenten bijzondere verhoudingen zijn (tegen de achtergrond van 100) of breuken, waarvan de eenheid niet 1 is maar 100 is geworden. Natuurlijk komen dan ook de visuele voorstellingen in beschouwing, ze zijn bij de breuken net aan de orde geweest.

256

En als bij de breuken de dubbele getallenlijn (zie blz. 218) in gebruik is genomen, kunnen de procenten ook op dat schematische niveau tot ontplooiing komen. De bemiddelende grootheid is nu 100.

Het werken met stroken kan hieraan voorafgaan, het breukenelastiek als procenten’meter’ voor ‘liefhebbers’, als toegift er achteraan.
Procenten worden gekoppeld aan het begrip verhouding, de begripsvorming bij de kinderen gaat vooraf aan het verwerven van rekentechniek; van de traditionele ‘1% didactiek’ is geen sprake.
Het verband met breuken kan als volgt duidelijk worden: ½ = 1/25       =0,25 is 25%

In de zesde klas kan een tweede periode aan (onder andere) de procenten gewijd worden. Nu kunnen de door Rudolf Steiner aangegeven ontwikkelingsdoelen verwezenlijkt worden. Ook kan de dubbele lege getallenlijn verder geëxploiteerd worden, de verhoudingstabel in gebruik worden genomen, veel toepassingen als uitgangspunt worden gekozen en, meer theoretisch van aard, het verband met de decimale breuken onderzocht worden.

Hoe maak je van   3/8   de decimale breuk 0,375? Bijvoorbeeld via 1/8         , waarvan je wist dat het 0,125 is. Misschien wist je dat indirect, omdat bij het hoofdrekenen het getal 1000 al meer dan een keer ontbonden was in 8 x 125, eventueel aanvankelijk door drie keer te halveren: 1000; 500, 250, 125. Of nog indirecter, omdat je de decimale breuk 12,5 goed kunt thuisbrengen, als het achtste deel van 100. Maar de herleiding hoeft natuurlijk niet te lopen langs 3 x 0,125; je kunt ook  3/8 ineens aanpakken, en de deling 8 / 3, 000 \… gaan maken
Wie bij deze opgave zijn zakrekenmachientje kan gebruiken, is er met vier welgekozen toetsen uit. Met de weg terug, om van 0,375 weer een gewone breuk te maken, kan een gewone zakrekenmachine geen hulp bieden. (Dat kan een bijzondere uitvoering van de zakrekenmachine wel. We denken hier aan de Galaxy 9x van Texas Instruments, waarop je met gewone breuken en decimale breuken kunt rekenen. Het is een zakrekenmachine die speciaal voor het onderwijs is ontworpen.)

Het rekenen met procenten moet na deze tweede rekenperiode natuurlijk niet in het vergeetboek raken. Welnu, het leven van alledag levert genoeg op om ze af en toe nog eens voor het voetlicht te halen. De fouten, die op dit gebied regelmatig gemaakt worden, vormen een rijke bron voor opgaven. Een voorbeeld:
‘Het ministerie van onderwijs heeft de oorspronkelijke vraagprijs van 1,2 miljoen gulden voor de lhno-school de Oesterschelp in Tholen met bijna 100% verlaagd tot 608.000 gulden. Voor die prijs kocht de gemeenteraad maandagmiddag het pand aan. De Eendrachtbode.’

257

Rekenen met procenten (I)

De opgave uit de Cijfferinge, waarmee deze paragraaf begon, werd destijds opgelost met de (Verkeerde) Regel van Drieën. Een ondoorzichtige rekenregel, die bij juist gebruik tot de goede uitkomst voert. Is men in staat goed in verhoudingen (evenredigheden) te denken, dan kan hetzelfde resultaat, via dezelfde berekening, bereikt worden.

Hoe was het ook weer? Het ging om 200 gulden, te betalen over één jaar. De vraag was wat er er nu contant betaald zou moeten worden (bij een rente van zeven procent per jaar), zodat dit bedrag over één jaar aangegroeid is tot de verschuldigde 200 gulden. Je denkt dan eerst aan een groei van 100 (procent) tot 107 (procent). Dit leidt tot de evenredigheid 107 : 100 = 200 : … Want de verschuldigde 200 gulden komt overeen met het aangegroeide bedrag van 107, en het gevraagde bedrag met 100. De hoofdeigenschap van evenredigheden levert 107 x … = 100 x 200, zodat je het gevraagde bedrag vindt via  100 x 200/107

In een bekende rekenmethode uit de jaren vijftig (Ik Reken, van P. Bosdijk) werden evenredigheden geschreven in de vorm van verhoudingsblokken. Een prachtige didactische vondst, die in één slag de bekende verhoudingssommen van die tijd tot een peulenschil maakten.

Ons instapprobleem zou met de verhoudingsblokken aldus opgelost zijn:

In die tijd, maar ook daarvoor en ver daarna, namelijk tot op de dag van vandaag, worden procentberekeningen veelal via ‘de 1%-methode’ gemaakt. Het verhoudingsidee is hier volledig verdwenen, men volgt in dat geval slaafs de regel: ‘neem eerst 1 procent’.

Ook in het geval dat bijvoorbeeld 10 procent van 15,45 moet worden berekend: 1% van 15,45 = 0,1545; 10% is 10 x 0,1545 = 1,545. Of, nog merkwaardiger, 75% van 64:1% van 64 = 0,64; 75% is 75 x 0,64 = … In plaats van| te nemen van 64, bijvoorbeeld als de helft (32) plus de helft van de helft (16) is 48.

Rudolf Steiner zegt in de dertiende werkbespreking, dat iemand die deze berekeningen beheerst (bedoeld worden renteberekening en rabatberekening), de werkwijze van het hele rekenen beheerst. Met deze uitspraak heeft Rudolf Steiner waarschijnlijk op het centrale belang van verhoudingen willen wijzen. Het hele rekenen is doortrokken van het verhoudingsbegrip. Dat geldt niet alleen de procenten, maar ook de gewone en decimale breuken, de meetkunde, het meten, begrippen als (bevolkings-, kijk-, massa-)dichtheid, kans, gehalte en ook de getallenlijn. Merkwaardig genoeg is ons slechts één plaats bekend waar Rudolf Steiner

258

de verhoudingen noemt. Dat is in het leerplan voor de gecombineerde klas 5/6, opgesteld op 25 mei 1919: “Verhoudingen zouden heel goed in samenhang met procenten behandeld kunnen worden.”
In het realistisch reken-wiskundeprogramma van nu wordt deze gedachte gerealiseerd, zij het dat het begrip verhouding het eerst onderwerp van studie is en het rekenen met procenten wordt gebaseerd op de notie van verhouding.

Rekenen met procenten (2)

Op dit gebied zijn niet zoveel opgaven te bedenken, die wezenlijk van elkaar verschillen.
Welke procentenopgaven kun je tegenkomen?
In de eerste plaats moet je een bepaald percentage van een gegeven bedrag kunnen berekenen. Al naar gelang de gegeven getallen kies je een geschikte rekenwijze. Soms is het voldoende een grove schatting te maken. In dat geval, maar niet alleen, is het bezitten van een visuele voorstelling een prettig hulpmiddel.
De omgekeerde opgave is lastiger, je moet bijvoorbeeld berekenen hoeveel procent 37,50 is van 245 (gulden). In het algemeen leerde men daar, op basis van de 1%-methode, een algoritme voor. Maar dat zouden we nu handiger kunnen doen met de zakrekenmachine, denkend aan verhoudingen en decimale breuken. Je toetst 37.5 : 245 = en leest af 0.1530612. Wetend dat een percentage de verhouding tot 100 aangeeft, neem je van het venstergetal alleen het deel wat je kunt gebruiken: 0,15. Dat is  15/100  , of wel 15 procent. Een goede rekenaar vraagt zich toch nog even af of hij geen (toets)fout gemaakt heeft, en maakt daarom nog een schatting. Hoeveel procent is 40 van de 250? O, dat is 160 van de 1000, dat is 16 van de 100, dat is 16 procent. Niet gek!

Een ander type opgaven gaat over groei of krimp, prijsstijging of prijsdaling, loonsverhoging of premieverlaging en dergelijke. In het algemeen werden dit soort opgaven in de vorige categorie geplaatst.
Bijvoorbeeld: op een bedrag van 65 euro wordt 15% korting gegeven. Hoeveel te betalen? Neem 1% van 65, … Momenteel, mede met het oog op komende wiskunde, pakken we de zaak anders aan: te betalen 0,85 x 65 = 55,25.
We zetten de rekenwijzen nog even op een rijtje aan de hand van het volgende sommetje

259

Rekenwijze 1: de visuele voorstelling
Hier is de situatie van het ‘bedrag + BTW’ op een strook afgebeeld. Het verdelen van de strook, in zes gelijke porties, vraagt inzicht in de betekenis van ‘20% erbij’. Is de voorstelling tot stand gekomen, dan is het rekenwerk uit het hoofd te doen: deel 204 door 6; dat is 102 : 3, dat is (bijvoorbeeld) 99 : 3 = 33 plus 3:3 = 1, samen 34. Nettoprijs, zie strook, 5 x 34 = 170.

Rekenwijze 2: de dubbele lege getallenlijn
Deze is eerst in het geval van de gewone breuken in de vijfde klas geïntroduceerd en wat daar geleerd is, kan nu zijn vruchten afwerpen. De bemiddelende grootheid is in het geval van de procenten altijd 100 (zo nodig 1000).
In dit geval is er sprake van een denkmodel. De lijn noodt uit om de gegeven getallen op een rijtje te zetten, hetgeen aanwijzingen geeft voor de uit te voeren berekening. Hoe kom ik van 204 naar …? Dat moet op dezelfde manier als van 120 naar 100. Een stap van 20 terug, dat is (‘verhoudingsdenken!) een zesde deel terug.
Hier wordt duidelijk dat bekendheid met het werken met verhoudingen op dit niveau heel noodzakelijk is.

Rekenwijze 3: verhoudingstabel
De verhoudingstabel is een bruikbaar notatieschema dat grote verwantschap vertoont met het eerder genoemde verhoudingsblok. Het schema is zo ingericht, dat de berekening er stap voor stap en meer in algoritmische zin gemaakt kan worden.
Hier staat de vraag in schemavorm geformuleerd: als 204 overeenkomt met 120 (procent), wat komt dan overeen met 100 (procent)? Rekentechnisch ligt het voor de hand om door 6 te delen:

260

Rekenwijze 4: de vermenigvuldigingsfactor
Deze aanpak is al eerder genoemd. Hij is meer verwant met het letterrekenen en de algebra. Nu kunnen we hem nader uitwerken. De vraag was hoe we 100 procent kunnen vinden als 204 euro gelijk is aan 120 procent.
Noem het gevraagde nettobedrag G. G staat dus voor een nog niet bekend getal, dat hier voor 100 procent doorgaat. Er komt 20 procent bij, dat is 0,20 x G. G groeit zo aan tot G + 0,20 G = 1,20 x G. Hier staat de essentie van deze rekenwijze: 120% van G is hetzelfde als 1,20 x G (of 1,2 x G). Anders gezegd:
Bij een groei van 20% is er een vermenigvuldigingsfactor van 1,20. En natuurlijk bij een krimp van 20% is er een vermenigvuldigingsfactor van 0,80. En bij een prijsverlaging van 12% worden de prijzen met 0,88 vermenigvuldigd.
De boormachine kostte dus netto 204 :1,2 euro, dat is 170 euro.

Een verrassend probleem:
De boormachine kostte netto € 170,00. Maar er moest f 204,00 betaald worden. Dat scheelt € 34,00.Hoeveel procent is de nettoprijs lager dat hetgeen ervoor betaald moest worden? Hoeveel procent is 34 van 204? Dat is (schatting) krap 17%. Hoe zit dat nu met die 20% BTW?
Zie ook het krantenbericht (probleem) over de lhno-school in Tholen (blz. 257).

Een nog verrassender probleem:
Bij een discount wordt op een artikel van € 375,00 12% korting gegeven. Bij de kassa moet je nog 18% BTW betalen. Zou het niet goedkoper zijn als je eerst de BTW betaalde, en dan van dat hogere bedrag de korting nam?
Nee hoor, de volgorde doet er niet toe. Reken maar mee. Geval 1 leidt tot 0,88 x 1,18 x 375 en geval 2 tot 1,18 x 0,88 x 375. Je hoeft niet eens te rekenen, je doorziet het met deze rekenwijze direct.

Ideeën voor rekenwerk met procenten

Na de tekenles werden alle citroengele kleurpotloden verzameld. Toen ze naast elkaar gelegd werden, bleek dat sommige potloden veel vaker gebruikt werden dan andere. Hoe kun je iets (getalsmatigs) zeggen van dat gebruik? Met procenten! Hoeveel procent is van een gegeven potlood gebruikt?
Al snel besloten we om de lengte van een ongebruikt potlood op 100 procent te stellen. Dat potlood bleek 17 cm lang. We dachten meteen aan een strook van 17 cm, die op 100% moest worden gesteld. Een dubbele getallenlijn mag ook.
Iedereen kon aan het werk om de verbruikspercentages van de potloden te bepalen. Het breukenelastiek werd ook nog even erbij gehaald. Dat was om de verdeling van 17, in tien gelijke delen snel af te handelen.

Na het kleurpotlodenvraagstuk heb ik de ‘procentenmeter’ geïntroduceerd. Met dat ‘instrument’ kun je de kinderen mooi de relativiteit van procenten laten zien.

261

De overeenkomst met het breukenelastiek is treffend en de kinderen moeten dat zelf kunnen ontdekken. De uitrekking van het elastiek, waarbij de onderlinge verhoudingen in takt blijven, komt overeen met de meetkundige vermenigvuldiging, die op de percentagemeter tot stand wordt gebracht.

De kleurpotlodendoos

Hoeveel procent is het potlood afgeslepen? Zie tekening hieronder. Schuif het hele potlood zover naar rechts, dat de punt precies tegen de schuine lijn, die naar 100% loopt, aan past. Trek dan een lijn door het startpunt links onder en de bovenkant van het afgesleten potlood. Die lijn snijdt de verticale ‘schaal’ rechts in een punt P. Als de schaal van 0 tot 100 netjes is aangegeven, kun je het percentage zo aflezen.

Het kledingstuk

Tijdens een gesprek over procenten kwam al snel naar voren dat in bijna ieder kledingstuk een etiket zit waarop de samenstelling van de vezels vermeld staat. Er waren kinderen die konden vertellen waarom de fabrikant dat deed. Voor de aardigheid hebben we een paar kledingstukken gewogen en vervolgens uitgerekend hoeveel gram wol (knotten van 50 en/of van 100 g) (katoen) ervoor gebruikt was.

Segment- en sectordiagrammen

We hebben eerst uit de vrije hand cirkels verdeeld in gegeven percentages. Ook hebben we grove schattingen gemaakt bij gegeven sectordiagrammen.

262

Het buurtcentrum

De wijk krijgt een nieuw buurtcentrum. Hoe zal de verdeling van de ruimten eruit komen te zien? In een enquête wordt naar de voorkeur van de buurtbewoners gevraagd. Men kan kiezen uit: Lezen/bibliotheek, (jazz)ballet, sport, koken, spel, techniek/hobby, muziek en toneel.
Nu wordt de klas in groepen verdeeld van zo’n acht à tien kinderen. Elke groep maakt zijn keuzen in een sectordiagram op een groot vel zichtbaar. Die vellen worden voor de klas gehangen.

Daarna zijn we in groepjes allerlei statistische gegevens van de klas gaan verwerken in segment- en sectordiagrammen. De groepen mochten zelf bepalen hoe en wat. Eerst dienden ze de gegevens te bepalen en vervolgens moesten ze de verwerkingsplannen even met mij bespreken. Als voorbeeld hebben we eerst samen een sectordiagram gemaakt van het aantal jongens en meisjes in de klas. Daarvan konden we percentages schatten en de schattingen hebben een paar kinderen toen met precieze berekeningen geverifieerd.
De volgende onderwerpen werden door de kinderen zelf gekozen: Bedtijden, met/zonder beugel, zakgeld, favoriete snoepgoed, sport.

Fouten opsporen

Er zijn inmiddels in de media al heel wat verhalen met fouten op het gebied van procenten, gepubliceerd. Hieraan is het heerlijk werken. De kinderen voelen zich uitgedaagd en willen zelf ook op zoek gaan. Hier een paar voorbeelden. Ze zijn niet allemaal even gemakkelijk, sommige horen pas in de zevende klas thuis.

Voorbeeld 1: Samen 27 procent

Uit onderzoek is gebleken dat 12% van de leerlingen die naar de mavo gaat, niet goed kan lezen en 15% niet goed kan schrijven. We kunnen er dus vanuit gaan dat meer dan een kwart van de aanstaande mavoleerlingen met onvoldoende taalvaardigheid beginnen •••!(?)

263

Voorbeeld 2: Zeventien procent van …
Een reclame campagne van Dirk van den Broek:

Moet dat eigenlijk niet ruim 14% zijn?

Voorbeeld 3: Verdubbeling

United verdubbelt de toegangsprijzen

MANCHESTER (Rtr) -Manchester United verhoogt volgend seizoen de prijs van de toegangsbewijzen met 50 procent …

Voorbeeld 4: Honderd procent per dag?

(…) Het inflatiespook, dat vrijwel heel Latijns Amerika tot zijn jachtgebied heeft gemaakt, is kind aan huis in Nicaragua. In 1988 gierde de geldontwaarding omhoog tot een percentage tussen de 32.500 en 36.000. “Ik zeg altijd maar: honderd procent per dag. Dat rekent lekker makkelijk”, grapt een westerse diplomaat in Midden-Amerika. (…)

Ten slotte

Hoe zou men de opgave van Willem Bartjens, waarmee deze paragraaf over procenten begint, nu – in de zevende klas – oplossen? Misschien wel met de vermenigvuldigingsfactor en een zakrekenmachine?

6.4 Geometrie

Voorbereidend periodeonderwijs meetkunde in de vijfde klas

De eersteklasser weet het al; als je later groot bent en bijna aan het eind van de gang zit (in de zesde klas) maak je van die mooie grote tekeningen met ‘rondjes door elkaar en allemaal kleuren!’ Een geliefd toekomstbeeld om naar uit te zien! De meetkunde, als wiskundig vak, vindt zijn aanvang in het onderwijs als het heldere denken begint te ontwaken. Het oordelend vermogen van de leerlingen wordt sterker en de zesdeklasser vindt zijn weg in het sociale leven en gaat op zoek naar ‘law and order’. De kinderen gaan, zogezegd in de voetsporen van Caesar, letterlijk en figuurlijk het dagelijks leven strijdlustig tegemoet. Dam- en schaakspel, door orde en wetmatigheid geleid, worden geliefde en zinvolle bezigheden in regenachtige pauzes.

We gaan ervan uit dat het denken van een kind zich in dezelfde fasen ontwikkelt (in één leven), als het denken van de gehele mensheid in de opeenvolgende
cultuurtijdperken.
In de vrijeschool zijn de meetkundelessen bedoeld als een bijzondere bijdrage aan de scholing van het denken. Het leerplan voor geometrie (en algebra) laat

264

zien, dat de kinderen de ontwikkeling van het denken in de geest der geschiedenis opnieuw kunnen meemaken. We doorlopen als het ware iedere fase uit de geschiedenis van de geometrie en geven de leerlingen de gelegenheid en ruimte om hun wiskundige talenten naar eigen vermogen te ontwikkelen. Door het herbeleven en zelfstandig beoefenen van de klassieke meetkunde ontstaat een vruchtbare bodem voor de leerstof in een volgende (ontwikkelings)fase. Meetkunde draagt zo bij aan de ontwikkeling van het denken en reflecteren (dat is denken over het eigen handelen, dus ook het mentale handelen, dus ook het denken zelf). De interactie van de mens met de hem omringende wereld stimuleert de ontwikkeling van vermogens die het abstracte denken mogelijk maken.

In de Oudindische en Perzische cultuur, de periode die onderdeel uitmaakt van het geschiedenisonderwijs in de vijfde klas, was de mens één geheel met het heelal. Omdat de mens nog niet beschikte over een eigen bewustzijn, werd hij geleid door de goden. In Egypte leidden de ingewijden (de priesters) het volk, als plaatsvervangers van de goden. Op oude Egyptische voorstellingen en inscripties zien we dat de priesters, die wiskundige handelingen voor het volk verrichtten, zoals bijvoorbeeld landmeten, als goden werden afgebeeld.

In de Griekse cultuur komt een verandering tot stand. De mens probeert bewust kennis te verkrijgen over de goddelijke wereld middels het beoefenen van de natuurwetenschappen en filosofie. De afstand tussen mens en goddelijke wereld wordt groter, de mens wordt zelfstandiger.
In de geschiedenislessen van de zevende klas zien we dat het tot ver in de Middeleeuwen duurt tot er verandering komt in het klassieke wereldbeeld. In de Nieuwe Tijd gaat Copernicus voorop. Hij ontdoet zijn waarnemingen van alle mythische elementen en maakt hemel en aarde tot een kwantitatief ruimtelijk geheel. Niet de aarde, maar de zon beschouwt hij als middelpunt van de wereld. De acceptatie van zo een afwijkend standpunt verloopt niet zonder strijd tegen de gevestigde orde. De kinderen maken in deze periode kennis met de levensloop van verschillende grote natuurwetenschappers, met Leonardo Da Vinei als centrale figuur. Het denken van deze geleerden staat model voor wat in de zevendeklasser ontwaakt.

In de vrijeschool staat, net als in de scholen van de Griekse wijsgeren, al het onderwijs en zeker de wiskunde in dienst van de vorming van de gehele mens. Kennisinhouden en denkvaardigheid, ingebed in het grote geheel, geven de mens de mogelijkheid het denkend handelen te toetsen aan Goedheid, Schoonheid en Waarheid. In het bijzonder in de meetkundelessen wordt dit zichtbaar.
Voor het leerplan wiskunde, dat in de laatste klassen van de onderbouw aanvangt, heeft de keuze van deze historische leerroute grote consequenties. De

265

meest recente ontwikkelingen in de wiskunde krijgen namelijk zo pas laat een plaats in het curriculum. Zeker met betrekking tot de nieuwe ontwikkelingen in deze eeuw is er nog veel te onderzoeken. De laatste ontwikkelingen, die onder meer voerden tot een algebraïsche meetkunde en/of een meetkundige algebra, hebben sinds de jaren ’50 hun weg in het Nederlandse onderwijs gevonden. Resultaten ervan zijn nu ook zichtbaar in de reken-wiskunde programma’s van de basisschool en de basisvorming.

Een gefundeerd onderzoek naar de kwalitatieve betekenis van de nieuwe wiskunde en de veranderende inzichten in het wezen van de wiskunde zal, voor het vrijeschoolonderwijs, nodig zijn om zicht (geesteswetenschappelijk inzicht) te krijgen op het waarom, hoe en wanneer van het invoeren van de grondprincipes uit deze nieuwe onderwijsinhouden.

In deze paragraaf beperken we ons tot het geven van ideeën voor periodelessen meetkunde, gegeven vanuit de visie dat het meetkundeonderwijs enerzijds een algemeen pedagogisch ontwikkelingsdoel dient, maar anderzijds ook een relatie heeft met de directe levenspraktijk van het kind.

Periode-opbouw in de vijfde, zesde en zevende klas

In aansluiting op de geschiedenis van de Egyptische, Babylonische en Griekse cultuur, waarvoor in de vijfde klas al een aanzet is gegeven, verkennen we de meetkunde uit die tijd. Dit neemt een korte periode van veel doe-werk in de vijfde klas in beslag en bereidt voor op het geometrie-onderwijs in de zesde klas. De werkzaamheden zullen vooral een ‘handvaardig’ karakter hebben.
In het woord ‘geometrie’ lezen we de herkomst: het opmeten van de aarde (bijvoorbeeld van stukken land). Het vak werd in aanzet ontwikkeld door de Egyptenaren, die daartoe door de omstandigheden werden genoodzaakt. Als de jaarlijkse overstroming van de Nijl de akkers met een dikke en vruchtbare
sliblaag had bedekt, deelden de priesters (wiskundigen), als bemiddelaar van de goden, het land opnieuw in. Ze gebruikten daarvoor twee stokken en een stuk touw met een vaste lengte.
Verschillende lengten werden vergeleken door de stokken in de grond te zetten, maar er werd ook met oppervlakte gewerkt. Eén stok vast in de grond en met de ander werd een cirkel in het zand getrokken. Door dit te herhalen met hetzelfde touw, en ondertussen de positie en rol van beide stokken te verwisselen, konden landstukken worden afgepast.
Er werden geen tekeningen gemaakt. Al het meetwerk werd ter plekke uitgevoerd (zie blz. 265).

Ook kenden zij het ‘twaalf-knopen touw’. Een touw met twaalf knopen op gelijke afstanden, waarbij de einden in een van de knopen aan elkaar zijn gebonden. Met behulp van zo’n touw kunnen rechte hoeken worden uitgezet.

266

De Egyptenaren gaven aan de bijbehorende driehoekszijden godennamen. Later in de zevende klas ontdekken de kinderen dat in dit ‘meetwonder’ de stelling van Pythagoras schuil gaat (32 + 42 = 52).

Gewapend met stukken touw en de zelfgemaakte knopentouwen (een van de kinderen wilde per se het tien-knopen-touw uitproberen) gaan we buiten ‘landverdelen’.
In de kleuterzandbak, of liever nog op een groter zanderig veldje in de buurt van de school, zetten we rechte stukken, cirkels en rechthoeken uit.

Wie weet gaan we op deze manier de schooltuinen nog eens indelen. Hoe zouden we dat aan moeten pakken?”

“Kun je ook andere driehoeken maken met het twaalf-knopentouw?” Of stel de vraag anders: “Hoe maak je driehoeken met het twaalf-knopentouw? Teken de knopen er in.”

Door de levendige handel van Italië met het Oosten is via overlevering bekend gebleven, dat ook de Babyloniërs de bijzondere eigenschappen van de rechthoekige driehoek kenden.
We weten bijvoorbeeld hoe een landmeter in die tijd de afstand van een schip tot de kust bepaalde.
De landmeter zag het schip vanaf de kust recht vooruit en markeerde de grond. Vervolgens zette hij een paal een eind verderop en markeerde dezelfde afstand langs de kust nog eens. Dan liep hij landinwaarts net zolang tot hij het schip precies ‘in-lijn’ had met de paal.
Hij ‘wist’ dat de laatste afstand die hij gelopen had gelijk was aan de afstand tot het schip.

267

Aan de klas wordt vervolgens de vraag gesteld hoe de landmeter er zeker van kon zijn dat zijn methode juist was. De verleiding is groot om ook eens te overdenken hoe ze in die tijd zouden kunnen uitrekenen, hoe laat het schip de haven zou bereiken. Misschien een leuk probleem voor de ‘rekenhardlopers’ in de klas. Het probleem ‘afstand schip-kust’ vraagt erom om in ‘werkelijkheid’ uitgevoerd te worden. Ga met de klas buiten op onderzoek. Kies een vast voorwerp in de verte (niet te ver!), een boom bijvoorbeeld, en probeer of je de afstand kunt bepalen, zoals de Babyloniërs dat deden. We moeten wel een ‘kustlijn’ afspreken, want we kunnen natuurlijk niet naar het schip, pardon de boom, toelopen.
De kinderen kunnen in groepjes aan de oplossing gaan werken. De leraar pendelt tussen de groepjes en houdt in de gaten of men op het goede spoor zit. Tevens moedigt hij de kinderen aan om de gang van zaken op papier te zetten. Dat maakt de verslaglegging, straks in de klas, gemakkelijker.

Als sluitstuk van de periode gaan we de ons bekende meetkundige figuren nog eens tekenen. Ze worden ook uitgeknipt, nadat ze op gekleurd karton zijn getekend. Dezelfde figuren wel even groot maken, tenminste een aantal van dezelfde grootte! Kinderen vinden het heerlijk om hiermee in groepjes mooie patronen te leggen of te plakken, ze ontdekken er van alles aan. Wat een verrassing als je zomaar eens drie ruiten aan elkaar legt op de volgende manier:

Voor wie het al ‘ziet’, is spelen met kleureffecten ook leuk. Er is altijd wel een kind dat ontdekt, dat “het lijkt of de zon erop schijnt!”
En misschien komt een van de kinderen de volgende dag met Tangram, het eeuwenoude Chinese spel, op school. Dat inspireert tot het zelf maken van Tangram en het verzinnen van vormopdrachten, die aan elkaar worden opgegeven. Een heerlijk spel (ook buiten op het gras) voor zo’n echte warme zomerdag aan het eind van het schooljaar, waardoor de kinderen al doende lekker aan het (meetkundewerk zijn.

268

Eindelijk de zesde klas 

Meetkunde, maandagmorgen: Op die ochtend geen druk besproken weekendbelevenissen, maar een serieuze klas ernstig in de weer om alle nieuwe bezittingen voor deze periode uit te stallen. Midden op tafel liggen een passer, liniaal, geodriehoek, zwart potlood (met schuurpapiertje voor het scherp houden), kleurdoos, gum (het zoveelste).

Na de spreuk zie ik alle ogen vol verwachting op mij gericht. Onmiddellijk laat ik mijn voornemen, om eerst de bekende meetkundige figuren te lopen en op allerlei manieren uit de hand te tekenen, vallen. “Jongens, behalve je periodeschrift krijgen jullie nu ook een tekenvel. Zoek heel precies het midden van je papier op!” “Mag je vouwen juf?” “leder mag het op zijn eigen manier doen”, antwoord ik diplomatiek. Maar ik laat duidelijk weten dat het papier glad moet blijven om goed op te kunnen ‘construeren’.
Nieuwe, voor hen ongebruikelijke, woorden doen wonderen en nadat we de passer eerst goed bestudeerd hebben, zetten we de passerpunt in het zo juist gevonden middelpunt, trekken de benen van de passer uit elkaar en maken onze eerste, echte cirkel.
“Mogen we er nog een maken?” “Natuurlijk. Ik weet nog iets leuks: probeer een vorm te vinden waarbij je gebruik maakt van allemaal cirkels met hetzelfde middelpunt.”

Het resultaat van het werk varieerde van bijna chaos tot zeer geordende regelmatige cirkels.

In de zesde klas is een aantal kinderen natuurlijk al bedreven in het gebruik van passer en liniaal, anderen hebben bij de start van de periode nog hulp nodig. Het vraagt enige motorische vaardigheid om de cirkel ook echt rond te laten worden en niet als de passer ‘er bijna is’ een zijspoor te laten ontstaan.
Het construeren zelf roept precisie op en is daarmee een extra oefening voor de fijne motoriek. De op motorisch gebied zwakke kinderen zwoegen hier met plezier en in de loop van de periode gaat ook hun werk er nauwkeuriger uitzien.
Na deze ‘opmaat’, al of niet voorafgegaan door het uit de hand tekenen van bekende figuren, gaan we meetkundige figuren construeren en proberen we deze figuren en hun karakteristieke eigenschappen te doorzien.

In de voetsporen van de Griekse wiskundigen, die de grondslag legden voor onze wiskunde, gaan we nu aan het werk.

269

Bij het voorbereiden van de lessen en het kiezen van de opdrachten moeten we ons van ‘meet’ af aan voornemen geen definities te geven. We gaan dus niet uit van een definitie, maar van beelden. We proberen de gegeven figuur vanuit zoveel mogelijk gezichtspunten te bekijken en trachten zo kenmerken en eigenschappen ervan te vinden.

Bij de opbouw van de lessen maken we gebruik van de aanwijzingen van Rudolf Steiner. Zo zegt hij bijvoorbeeld dat wat wij met de kinderen in de reken-wiskun-delessen doen, ’s nachts tijdens de slaap in het kind doorwerkt, (zie ook H 2.) We houden hier rekening mee door de ene dag de (nieuwe) eigenschappen alleen maar te karakteriseren. De volgende dag komen we er dan op terug, reflecteren vervolgens op het werk van de vorige dag en gaan van daaruit weer een stapje verder. Op deze manier kan er bij de kinderen inzicht ontstaan dat door henzelf tot stand is gebracht.
De door het ‘nachtproces’ versterkte beelden van de vorige dag voeren naar activiteiten die het wiskundig denken op gang brengen; een proces, dat niet alleen voor de meetkunde, maar voor alle reken-wiskundige activiteiten geldt.

Schematisch voorgesteld:
1e dag: • doen
              • karakteriseren
              • beschrijven

nacht (niet meer aan denken, bezinken)

2e dag: • actualiseren, reflecteren
              • beschouwen, oordelen, uitbreiden
              • inzicht

Bij het leren kennen van de regelmatige figuren, hadden op een dag de gelijkzijdige driehoek en de rechthoek de aandacht gehad. De volgende dag daarop terugkijkend, kregen de kinderen de opdracht: “Construeer een driehoek, waarvan de basis zes centimeter is en de opstaande zijden beide acht centimeter. Kun je van deze driehoek een rechthoek maken met dezelfde oppervlakte?”
Het was niet makkelijk. En we moesten nog even met elkaar in gesprek blijven tot een aantal kinderen durfde te beginnen.
De eerste, die een idee kreeg, vroeg: “Mag je de driehoek nog een keer maken en dan verknippen?” Dat mocht natuurlijk, maar als die vragen hardop en centraal in de klas gesteld worden, is het wel moeilijk de andere kinderen ervan te weerhouden om ook de schaar te pakken.
Een aantal probeerde eerst op een blaadje wat uit en durfde, vooral door mijn aanmoedigingen, verder te gaan. Zo kwamen de kinderen toch tot verschillende oplossingen.

270

Bij het voorbereiden van de lessen en het bedenken van opdrachten gaan we ook op een andere manier te rade bij de Griekse Klassieken. In navolging van Plato en Aristoteles uit de oude school der wijsbegeerte kunnen we in het meetkundeonderwijs twee wegen bewandelen.
De ene weg volgt de opvatting van Plato: de ontwikkeling van het verstand geschiedt via de voorstelling, los van de stoffelijk waarneembare werkelijkheid. De meetkunde wordt dan uit de figuren, de voorstelling, de idee ervan verder ontwikkeld.
De andere weg sluit aan op de opvatting van zijn leerling Aristoteles, die afstand
nam van zijn leermeester door te beweren dat de algemene principes juist gevormd worden door ervaringen in het dagelijks leven. Dat gebeurt dan via de zintuigen. Zo gezien leiden meetkundige activiteiten in ‘het dagelijks leven’ tot meetkundige begrippen en inzichten.

In de lespraktijk leiden de mooie constructietekeningen met cirkels tot versterking van het voorstellingsvermogen. Ook de volgende oefening zou je met de klas kunnen doen.

“Stellen jullie je eens voor: we hebben een cirkel. Nu laten we de cirkel steeds groter worden. Hoe groot kan de cirkel worden?
Stel je voor dat je een klein stukje uit de eerste cirkel hebt genomen. Dat is een klein gebogen lijntje. Wat is er nu met dat lijnstukje gebeurd?” Waarschijnlijk antwoorden sommige kinderen: “Het wordt steeds rechter en is uiteindelijk helemaal recht.” Er kan ook twijfel aan deze uitspraak ontstaan: “Misschien toch niet, want je kunt altijd een nog grotere cirkel denken!”
Maak er een tekening bij of laat de kinderen een tekening erbij maken.

We maken ook uitstapjes, op zoek naar rechte lijnen, naar horizontale en verticale lijnen en naar een loodrechte stand. “Hoe weet een timmerman eigenlijk hoe hij een plank horizontaal moet ophangen, hoe weet hij waar de haken aan de muur moeten komen? Waarom gebruikt hij wel waterpas, schietlood en zweihaak, maar geen duimstok om vanaf de vloer gelijke stukken af te passen?”
Door zo’n ‘onderzoekje’ naar het werk van de timmerman ervaren we recht en loodrecht, wat we weer in een tekening kunnen weergeven. Horizontaal langs de aarde en loodrecht daarop naar het middelpunt van de aarde.

We zien hier twee verschillende benaderingen van de ideeën recht, rechte en loodrecht. Ze kunnen een voorbereiding zijn op de lessen over de
grondconstructies.
Door meetkunde in de zesde klas ook dicht bij de praktijk en de toepassingen te verkennen, kunnen we proberen beide bovengenoemde wegen, die leiden tot wiskundig denken, te verbinden.

271

Meetkunde in de zesde klas is een ontmoeting met en een verkenning van:

• passer, liniaal en geodriehoek
• cirkels en bijzondere lijnstukken in de cirkel
• geometrische figuren in cirkelconstructies
• karakteristieke eigenschappen en het leren construeren van geometrische vormen zoals driehoeken, vierhoeken in verschillende gedaanten.
• cirkelverdelingen in graden en schattend meten van hoeken
• scherpe, stompe, rechte en gestrekt hoeken en hun constructie
• symmetrieën in figuren en het beschrijven ervan, zoals bekend uit het vormtekenen
• de vijf basisconstructies en het gebruik ervan in andere opdrachten
• ruimtelijk meetkundige figuren in de wereld van de kinderen

De opbouw van een periode

Na de eerste dag vervolgen we het construeren van figuren met behulp van de passer. Bij het inkleuren van de figuren laten we de kinderen zoeken naar ideeën om dit zo te doen, dat het karakter van de tekeningen nog sterker tot uiting komt.

We hadden al eerder een cirkel in zessen verdeeld. Vandaag volgde de constructie van de verdeling in twaalven. “Teken een cirkel en twaalf nieuwe cirkels, met de middelpunten op gelijke afstanden op de cirkelomtrek van de eerste cirkel”, was de opdracht. “Hoe groot mag de straal worden zodat het figuur de hele tekenbladzijde in je schrift vult?”
Nu gaan we op zoek naar (andere) regelmatige figuren in deze figuur. “Zien jullie een vierkant? Zoek de hoekpunten, ze liggen op de snijpunten van cirkels.”
Dat was geen gemakkelijke vraag. Eerst moesten we de uit de tekenlessen bekende figuren uit het geheugen opfrissen en toen vonden we met elkaar de eerste figuur (de ruit) op het bord. Vervolgens gingen de kinderen, vooral samen, het verder proberen. Het vinden, het zelf ‘zien’ van de andere figuren in de cirkels, was voor veel kinderen een moeilijke opgave. Met wat hulp kwamen ze er allemaal uit en dan was er grote vreugde over het prachtige resultaat.

272

Nu we ‘weten’ hoe een cirkelomtrek verdeeld kan worden, maken we ook regelmatige figuren in een cirkel zonder de hulpcirkels volledig te tekenen. Een klein hulplijntje is voldoende om een punt op de cirkelomtrek aan te geven.

De variaties zijn eindeloos en alle kinderen kunnen hierin hun eigen weg gaan, waarna ze de resultaten kunnen uitwisselen. Dat kan een sprankelende happening worden.

Vanuit de gelijkzijdige driehoek, die we leerden construeren op een zelf gekozen basis, gaan we nu ook figuren construeren. Hier geldt weer dat de kinderen enerzijds zelf mogen ontwerpen en dat er anderzijds ook een aantal verplichte vormen door iedereen gemaakt worden. Nu krijgen de kinderen de opdracht te beschrijven, hoe ze de constructie hebben uitgevoerd. Het blijkt niet makkelijk om dat zo kort en functioneel mogelijk te doen.

Het is de moeite waard om tekeningen van meetkundige figuren, bijvoorbeeld de ‘cirkel-bloemen’, nu ook in de schilderlessen te gebruiken. Laat de cirkels bijvoorbeeld inkleuren met een beetje verdunde verf op droog papier; daar waar de ‘sluiers’ over elkaar vallen ontstaan de mooiste ‘bloemen’. Dit kan weer op een andere manier bijdragen aan het ervaren van de schoonheid van regelmatige figuren.

De vijf basisconstructies

Vervolgens krijgen de vijf basisconstructies een plaats in de lessen. Deze periode is niet alleen een periode van ‘tekenen en inkleuren’, maar vooral een periode waarin we ook respect krijgen voor de exactheid van het vak.
Het leren kennen van de basisconstructies moet geen activiteit op zichzelf zijn. Zorg dat de kinderen de toepassing ervan ook echt ervaren.

273

Zoek samen met de kinderen naar een ‘taal’ waarmee de constructies beschreven kunnen worden en leer ze ook een aantal wiskundige benamingen en symbolen, zoals loodlijn en                                                                                                    enzovoort

Ter introductie gaf ik de opdracht een horizontaal lijnstuk AB te tekenen. De letters A en B komen bij de eindpunten van het lijnstuk te staan.
“Maak een cirkel met middelpunt A en met een straal gelijk aan de lengte van AB. Daarna doen we hetzelfde met B als middelpunt. Nu maken we de straal van de cirkels steeds kleiner, maar tekenen steeds vanuit A en B een cirkel met dezelfde straal.”
De kinderen ontdekken zelf het ontstaan van de verschillende driehoeken op dezelfde basis, die we ook ‘gelijkbenige’ driehoeken noemen.
De volgende dag roepen we de opdracht van gisteren nog even in herinnering en kiezen opnieuw een lijnstuk AB. “Vandaag construeren we uit ieder punt A en B maar twee keer twee cirkels met gelijke straal.”
We komen nu tot de duidelijke conclusie dat de twee cirkels met middelpunt A en middelpunt B twee snijpunten hebben. Als we deze snijpunten verbinden, ontstaat er een rechte lijn die het lijnstuk AB precies middendoor deelt.
In deze tekening kunnen de kinderen op zoek gaan naar gelijke driehoeken en die met een kleur aangeven.

274

Na een uitvoerige introductie van de eerste basisconstructie kunnen de andere gewoon door middel van een korte instructie gegeven worden.

275

De regelmatige figuren

Nu de kinderen lijnstukken en hoeken kunnen verdelen en loodlijnen kunnen oprichten en neerlaten, gaan we verder met het construeren van de regelmatige figuren. Belangrijk is daarbij, dat we ook de eigenschappen en de namen van de figuren leren kennen.
Na de regelmatigheden in verschillende driehoeken gevonden te hebben (weten we nog van het twaalf-knopentouw van de Egyptenaren?), gaan we verder met de vierhoeken. Uit het vierkant ontstaan steeds onregelmatigere figuren, die steeds minder gemeenschappelijk hebben en tenslotte enig in hun soort zijn; wiskundige ‘individuutjes’.

Dit overzicht kan ook op een later tijdstip gebruikt worden om met de kinderen terug te kijken naar het werk in de periode.

276

Omgekeerd kan uit dit bijzondere weer het algemene voortkomen; uit een willekeurige vierhoek ontstaat weer het vierkant. De constructietekening kan de kroon op het werk van deze dagen zijn!

Al doende leren de kinderen de eigenschappen kennen en hanteren, zodat bijvoorbeeld opgaven als hieronder, geen moeilijkheden meer op hoeven te leveren:

• Construeer een vierkant met een zijde van 7 cm.
• Construeer een gelijkbenige driehoek met een basis van 6 cm en benen (opstaande zijden) van 8 cm.
• Construeer een ruit met zijden van 6 cm.

Dergelijke opdrachten kunnen de kinderen ook aan elkaar geven. Ze hebben veel plezier bij het controleren van de opgave. Wie knipte het eerst een zelfgemaakte figuur uit, om die vervolgens op het werk van de buurman te leggen? Klopt het? Had de opdrachtgever dezelfde ruit in gedachten als de buurman heeft geconstrueerd? Dit levert een mooi moment om hoeken nader te bekijken!!

Hoeken

Nog even de breuken:
We gaan terug naar de cirkel! We proberen ons de breukenperiode te herinneren: allerlei verdelingen van de cirkel(schijf).

We vertellen dat de Babyloniërs hun jaar in 360 dagen verdeelden en dan vijf godendagen eraan toevoegden. We laten zien hoe die 360 dagen geleid hebben tot de verdeling van de cirkel in 360 graden. Nu weten ze ook waarom een rechte hoek 90 graden is, en niet 100 graden, wat meer voor de hand zou liggen als ‘rekenaars van nu’ het voor het zeggen hadden.
We construeren een cirkel en kiezen vanuit het middelpunt twee loodrecht op elkaar staande middellijnen. We onderzoeken de hoeken die zijn ontstaan en de grootte, die we nu in graden gaan aangeven.

We kiezen ook willekeurige middellijnen en vinden de scherpe hoek, de stompe hoek en de gestrekte hoek.

277

Ik sprak af dat de kinderen deze week iedere ochtend tenminste één keer op de klok moesten kijken. Achter in het schrift moest de klok schematisch met de wijzers worden weergegeven. “Hoe groot schat je de hoek tussen de wijzers in graden? Hoe heet de hoek?”
Een wilsoefening, want had ieder kind aan het eind van deze week wel iedere dag gekeken? En een goede oefening voor het schatten van hoeken.

We zien ook de halve gradenboog op de geodriehoek en leren daarmee hoeken in graden nauwkeurig aan te geven.
Met veel plezier voeren de kinderen opdrachten uit, zoals: “Construeer een ruit met een zijde van 6 cm en een hoek van 60 graden.”
“Heeft de buurman, die de opdracht ook uitvoert, nu weer een andere ruit?”
En is het een heel mooie dag, dan ‘doen’ we deze opdrachten ook weer eens in het groot met stoepkrijt op het plein. Juist bij dit samenwerken gaat menig kind, waarvoor het werk nog niet al zijn geheimen had prijsgegeven, een lichtje op!

Tot slot: veel bleef onbesproken. Hopelijk is duidelijk geworden dat meetkunde voor de kinderen een geweldige ervaring is, maar dat er stevig doorgewerkt moet worden. Want iedere leerkracht wil de kinderen juist deze laatste mooie constructies niet onthouden.

Er zijn tekeningen, die zich lenen om eens in het groot te worden uitgevoerd. En wat een verrassing, als er in de pauze op het grote speelplein zo’n mooie vorm in prachtige kleuren is ontstaan.
Een tentharing met een touw en een krijtje is een uitstekende passer! En je kunt er heel grote cirkels mee maken.

278

Van oefenuren naar zelfstandig werken

Over oefenen, bijhouden, inslijpen, toepassen, beoefenen en zelfstandig werken

De discussie over oefenuren

Spreken we in de vrijeschool over oefenuren voor rekenen, dan bedoelen we de tijd die tussen twee rekenperioden aan rekenen besteed wordt. Het woord oefenuren is ingeburgerd, maar de term werkuren (of zelfstandig werken) dekt de lading beter. Hoe het ook zij, oefenuren behoren eigenlijk niet bij onze visie op rekenonderwijs. In de rekenperioden zelf dient het karwei geklaard te worden; de introductie, de verkenning, de verdieping en de oefening. Deze fasen in het leerproces zouden elk op hun tijd voldoende aandacht moeten krijgen, wat een kwestie is van het economisch inrichten van de beschikbare tijd.
De erop volgende periode, waarin een ander vak in het hoofdonderwijs gegeven wordt, is van belang voor rekenen – hoewel er geen rekenlessen worden gegeven- omdat het geleerde dan kan bezinken. De kinderen moeten dan op het gebied van rekenen even tot rust komen; de zojuist verworven inzichten behoeven niet meteen parate kennis te zijn. Meestal lijkt het alsof veel van het geleerde vergeten wordt en dat het weer heel wat herhaling en onderwijs zal vergen om het belangrijkste ervan weer in het bewustzijn te brengen. Maar wie de ontwikkeling van kinderen observeert, ziet ook dat op onverwachte momenten van herinnering nieuwe inzichten -en daar gaat het nu net om- optreden. De stof is blijkbaar niet vergeten, heeft zelfs nog doorgewerkt en er is iets tot stand gekomen, dat er voordien nog niet was.
Zo is de filosofie van het periodeonderwijs in de vrijeschool. De praktijk van het onderwijs is evenwel weerbarstiger. Reeds in de tijd van Rudolf Steiner werden twee rekenwerkuren ingevoerd omdat het met het rekenen slecht gesteld was. Sindsdien zijn zulke wekelijkse uren op het lesrooster terechtgekomen.
Thor Keiler (zie Gedanken zu den Üb- und wiederholungsstunden uit Lehrerrundbrief nr.46, okt. ’92) heeft ze in zijn klas om principiële en praktische redenen weer afgeschaft. De praktijk wees uit dat de oefenuren niet goed voorbereid konden worden omdat het hoofdonderwijs alle voorbereidingstijd opeiste, dat de oefenuren voor rekenen (wiskunde) teveel van de tijd van het andere vak afsnoepten en dat het zelfs voorkwam dat de oefenuren (oneigenlijk) besteed werden aan bijvoorbeeld het schrijven in het periodeschrift. Het ergste was dat de zwakke leerlingen niet geholpen waren met de oefenstof en de andere leerlingen zich verschrikkelijk zaten te vervelen. In plaats van een krachtige impuls aan het reken-wiskundeonderwijs te geven, werkten de oefenuren verlammend.

De bovenstaande analyse van de situatie in de schoolklassen met betrekking tot het rekenonderwijs, is heel actueel. Het pedagogische principe is duidelijk, maar de praktijk vraagt om aanpassingen. Zwakke rekenaars hebben extra zorg nodig, een grote groep leerlingen moet leren zich te concentreren en zelfstandig te werken. Elke leerling en ook de leraar vindt het prettig als iedereen eens goed voor zichzelf bezig is. Automatiseren heeft oefentijd nodig. Leerlingen die ziek zijn geweest moeten weer bij kunnen komen zonder dat het om extra (t)huiswerk vraagt en zonder dat de anderen daar onder lijden. Het is daarnaast ook belangrijk dat kinderen leren in alle rust systematisch en ordelijk te werken.
Kijken we naar onze leerlingen dan constateren we dat ze het erg druk hebben met buitenschoolse activiteiten en media-verstrooiing. De concentratie neemt af en de conventionele leerstof beklijft moeilijker. Tegelijkertijd beschikken ze enerzijds over veel informele kennis en anderzijds over veel onverteerde informatie. Daarbij zijn ze meer dan wakker, rap en soms zeer vaardig met de tong.

279

Er komt bij, dat een toenemend aantal kinderen steeds meer moeite heeft de leerstof te onthouden. Ook al is er in de periode efficiënt geoefend, dan nog beklijft niet alles. Deze kinderen zullen veel hebben aan momenten dat er zelfstandig gewerkt wordt.
In de hogere klassen hebben we bovendien te maken met een veelheid aan onderwerpen, bijvoorbeeld in klas zes:

• Verder werken aan de breuken-bewerkingen
• Verhoudingen
• Schaal-begrip (kan ook eerder behandeld worden)
• Redactie vraagstukjes
• Procenten
• Renteberekening en rente-formule
• Bruto, netto, tarra
• De eerste algebra (zo men daar aan toekomt)
• Afronding van het cijferen, deelbaarheid.

Per periode moet er een keuze gemaakt worden uit de onderwerpen, globaal zullen er zo’n drie rekenperioden zijn. Het kan dus lang duren voor een onderwerp, in de periode althans, terugkomt.

Kortom, goed voorbereid, didactisch doordacht en creatief ontworpen materiaal voor rekenwerkuren voorziet in een behoefte.
Tegelijkertijd weten we dat de praktijk van de oefenuren er anders uitziet: geen voorbereidingstijd, weinig geschikt materiaal, kopieën uit rekenboekjes uit lang vervlogen tijden (Naar Zelfstandig Rekenen schijnt nog hoog te scoren …!?), instrumentele uitleg, met als resultaat het ontstaan van weerzin tegen het vak rekenen.

Conclusies:
• Richt in eerste instantie het hoofdonderwijs economisch in, dat wil zeggen verdeel de tijd evenwichtig over de genoemde fasen van het leerproces.
• Creëer, indien gewenst, tussen de rekenperioden een aantal uitgekiende rekenwerkuren met een duidelijke doelstelling en een creatieve invulling.
• Verzamel voortdurend materiaal dat gebruikt kan worden om dergelijke uren van een goede invulling te voorzien.

Economisch werken in het periode-onderwijs

Eigenlijk zou de ‘bekende stof in elke periode een vast onderdeel moeten zijn, bijvoorbeeld aan het begin. Hier zou een halfuur d drie kwartier voor uitgetrokken kunnen worden. Zo ontdekken de kinderen ook wat ze wel en niet beheersen. In de hogere klassen wordt dit steeds belangrijker, dit besef van wat ze wel en niet weten. Als we er niet toe komen de stof in de periode te oefenen, kan in de volgende rekenperiode het gevoel ontstaan dat we weer opnieuw kunnen beginnen. De leerstof is weggezakt en in de vergetelheid terecht gekomen. In het werken aan bekende stof kan vaak de nieuwe stof al voorbereid worden, zodat het nieuwe van meet af aan ingebed is in wat gekend wordt en niet ondersneeuwt in wat weggezakt is en daarom ‘even’ herhaald wordt. Dat vraagt om een programmatische en didactische doordenking vooraf. Is de nieuwe stof behandeld dan kan deze eveneens naar het begin van de dag ‘verhuizen’. Het is belangrijk dat gedurende een aantal dagen de stof geoefend wordt; dan pas kunnen we van inslijpen spreken. Dan ontstaat de vaardigheid om ook met die stof om te gaan.
Complete muzieklessen aan het begin van de dag moeten vermeden worden. Een kort dagbegin en vervolgens van start met rekenen, om de twee uur zo optimaal mogelijk te benutten. Aan het eind van de periode kunnen de kinderen zelf aangeven waar ze nog moeite mee hebben. Ze kiezen dan zelf uit waar ze nog aan zullen werken. Dit betreft dus de stof, die door de periode heen                                 steeds herhaald is.

280

Rekenwerkuren 

Tussen de rekenperioden zouden er wekelijks één of twee rekenwerkuren kunnen worden ingericht. Daarbij kunnen we denken aan werkbladen die eventueel ook thuis afgemaakt kunnen worden. Het voordeel hiervan is, dat het huiswerk gekoppeld is aan een vaste dag in de week.
De leerkracht zou tijdens de periode al werkbladen kunnen maken, die het behandelde herhalen. Hij zit dan goed in de stof en maakt zo ‘werk op maat’ voor zijn klas. Van ieder werkblad zijn er een paar exemplaren. Met sterretjes zou de moeilijkheidsgraad op het werkblad aan te geven zijn, zodat kinderen zelf hun niveau kunnen kiezen. De kinderen werken de vragen dan in hun schrift uit. Het voordeel is dat het niet voor iedereen gekopieerd hoeft te worden en dat niet iedereen aan hetzelfde werkt.
Het blijkt voor kinderen een stimulans te zijn om aan een opdracht te werken, die ook al door een ander gemaakt is.

De rekenwerkuren zijn bedoeld om:

• het vaardig rekenen van de hele klas op peil te houden
• parate kennis in te slijpen
• achterblijvers op maat te helpen
• vaardigheden en inzichten creatief toe te passen

Thematisch onderwijs

Een andere invulling voor de zelfstandig werkuren is het rekenen in het kader van een ander vak, dat op dat moment in het periode-onderwijs naar voren komt, zoals bijvoorbeeld in de geschiedenisperiode de indeling van een tijdbalk of de kalender. En in de aardrijkskundeperiode het uitwerken van de schaal of het verrichten van metingen rond het weer. Hierdoor worden de vakken geïntegreerd. Taal speelt in elke periode een grote rol.
Hoe zit het in dit verband met het rekenen? Rudolf Steiner heeft vaak gewezen op de samenhang tussen de verschillende vakken en de mogelijkheden om daar optimaal gebruik van te maken. Wat een plezier geeft het om bij Engels te ontdekken, dat men in het United Kingdom de getallen precies omgekeerd benoemt! De tafels opzeggen in het Duits is ook geen verspilde tijd!

Wanneer beginnen met de rekenwerkuren?

De praktijk wijst uit dat als men al in de derde of vierde klas begint met een uurtje rekenen, buiten het hoofdonderwijs, dit nog niet ‘werkt’. De kinderen zijn dan nog niet in staat zich te concentreren op een activiteit, die eigenlijk in het hoofdonderwijs thuishoort.
In de vijfde klas kan het wel werkzaam zijn.
Voor het individueel helpen van zwakke rekenaars kan en moet al eerder tijd worden vrijgemaakt.

Kort rekenen aan het begin van de dag

Een mogelijkheid om bepaalde onderdelen van het rekenen bij te houden is het dagelijks oefenen, buiten de rekenperiode. Dit hoeft zeker geen rekenles te worden en mag hooguit vijf d tien minuten duren. Hier kan gedacht worden aan hoofdrekenen of aan het oefenen van tafels. Hoofdrekenen kan zowel mondeling als (gedeeltelijk) schriftelijk gebeuren. We kunnen ook denken aan een staartdeling die ’s morgens al te wachten staat op het bord.
Ook kunnen kinderen die moeite hebben met bepaalde onderdelen van het rekenen, elke dag een eigen oefening krijgen. Deze kan ook liggen op het vlak van de lichaamsgeografie of de ruimtelijke oriëntatie.

281

Samenhang in de zelfstandig werkuren

Door de weken heen kunnen we wat lijn in de rekenwerkuren brengen door één thema bijvoorbeeld vier weken lang te herhalen. Achtereenvolgens kunnen zo verschillende aspecten aan bod komen. Het wordt ook pas echt oefenen als de stof die problemen oplevert, de week daarop in dezelfde of in een andere vorm terugkeert.

Rekenwerkuren ten tijde van de rekenperiode?

In eerste instantie gaat het om rekenwerkuren tussen de rekenperioden. Drie uur achter elkaar rekenen op één dag is teveel. Het rekenwerkuur kan dan beter een andere invulling krijgen.

Als het rekenwerkuur in de middaguren plaatsvindt en een heel ander onderwerp heeft dan in de rekenperiode behandeld wordt, kan het juist zinvol zijn dit niet te onderbreken. Het hangt er ook vanaf welke werkvormen daarbij gehanteerd worden. Als de invulling gericht is op zelfstandig werken aan een eigen opdracht, verdient het wellicht aanbeveling de leerlingen hier juist wel aan te laten werken.

Taakuren

Voor veel kinderen in de vijfde klas wordt het echt nodig om rekenwerkuren in te richten, omdat ze meer ervaring met het aangeboden onderwerp moeten opdoen dan er binnen de periode mogelijk is. In de zesde en zevende klas is het eveneens zinvol om een rekenwerkuur in het rooster te hebben, maar daarnaast zou er een taakuur kunnen worden ingericht om verschillende kinderen eens extra met het rekenwerk te helpen. De overige leerlingen krijgen dan andere opdrachten omdat voor hen het rekenwerk nooit problemen geeft en zij in het rekenuur al extra materiaal hebben verwerkt. In het taakuur zou de ‘kaartenbak’ heel goed gebruikt kunnen worden. Deze kaartenbak bevat allerlei opdrachten waarmee de leerlingen zelfstandig aan het werk kunnen. De kinderen kiezen zelf een kaart uit de bak en kijken het werk ook weer zelf na. De kaarten zouden ook betrekking kunnen hebben op het reilen en zeilen van de school. Kinderen kunnen zich zo ook nog eens bewust worden wat er zoal nodig is aan brandstof, elektriciteit, of welke consequenties een gebroken ruit heeft.

Uit de kaartenbak:

1 Het zand in de grote zandbak moet ververst worden.
a) Hoeveel kubieke meter oud zand moet er afgevoerd worden?
b) Hoeveel kubieke meter zand gaat in de bak wanneer ik hem tot aan de rand vul?
c) Het zand klinkt tien procent in, hoeveel centimeter staat het zand onder de rand van de zandbak?

2 Met één pot lakverf kun je tien vierkante meter schilderen. Hoeveel potten zijn nodig om alle binnendeuren van de gang twee keer te lakken?

3 De klas lager is nu bezig met het onderwerp … Maak een lijstje van punten die daar mee te maken ‘hadden’. Herinner je je nog hoe jij die dingen vorig jaar hebt geleerd en begrepen? Dat kun je dan goed gebruiken om iets voor die kinderen te maken. Kies er een leuk onderwerp uit en maak daarover zelf een werkblad. Vergeet niet er een antwoordenlijstje bij te maken.

Aan de keuzen die leerlingen maken, kan de leraar zien waartoe zijn leerlingen in staat zijn.

282

Herhaling van de leerstof

Het is een goede gewoonte de leerstof van een heel jaar in de laatste weken van het schooljaar te herhalen. Zo komt alles, de nieuwe leerstof inclusief de vaardigheden die hierin ontwikkeld zijn, nog weer eens terug in verkorte vorm.

Rekenen in praktijk situaties

Een zeer belangrijk onderdeel van het rekenen is het toepassen van de kennis en de verworven vaardigheden. De verhaalsommen, de vroegere redactiesommen, hebben hun plaats in het geheel. Het leren lezen van een vraagstuk en vervolgens zelf een oplossingsmethode zoeken, is een belangrijke oefening die juist in hogere klassen meer aandacht kan krijgen. Veel kinderen hebben moeite om de gegevens te verzamelen, die nodig zijn voor het beantwoorden van een vraag. Deze vraagstukjes, eigenlijk ook een vorm van begrijpend lezen, kunnen een vaste plaats hebben in het rekenwerkuur.
Daarnaast kunnen kinderen ook zelf opgaven maken, waarbij ze zelf gegevens, bijvoorbeeld uit de krant of een folder, verzamelen, gegevens schattenderwijs bedenken of berekeningen (uit de krant) controleren op hun werkelijkheidswaarde. Juist zulk rekenen is verwant aan het rekenen van alle dag, waarbij ook niet alle gegevens panklaar aanwezig zijn. Zulke opgaven kunnen weer een plaats krijgen in de kaartenbak.

.In dit hoofdstuk wordt gesproken over:

Vormtekenen: alle artikelen
Steiner: werkbesprekingen in GA 295, vertaald: Praktijk van het lesgeven, uitverkocht. (Scan via vspedagogie@gmail.com)
Meetkunde: alle artikelen
Periodeonderwijs: alle artikelen

Over het boek
Inhoudsopgave
Voorwoord en inleiding
Hoofdstuk    [
1] [2] [3[4] [5] [7] [8[9]
Slot (1-1) Reflectieve notitie
Slot (1-2) Korte toelichting bij enkele gebruikte begrippen
Slot (1-3) Citaten van Rudolf Steiner met betrekking tot                                    aanvankelijk rekenen
Slot (1-4) Literatuuropgave

.

Rekenen klas 4: alle artikelen

Rekenen klas 5alle artikelen

Rekenen klas 6: alle artikelen

Meetkunde klas 6: begin van een periode

Rekenenalle artikelen op deze blog

 

2455

 

.

VRIJESCHOOL – 6e klas – meetkunde (5)

.

VOORBEREIDENDE MEETKUNDE

Gedurende de kinderleeftijd moeten rekenen en meetkunde zo gegeven worden, dat ze bij de leeftijd van het kind passen.
Rudolf Steiner heeft het over een levendigheid in het doen en laten van de mens die daaruit kan ontstaan.
De symmetrie is daarbij heel belangrijk.
De tekeningen die hieronder volgen zijn bedoeld als een kunstzinnig, geen intellectualistisch begin.
Van hier naar het bewijs van de stelling van Pythagoras in de 7e klas, is nog een lange weg. [1]  [2]

Deze bijdrage over de driehoeken is gedacht voor de 4e tot de 6e klas als waarnemende meetkunde.

Onder de vele verschillende driehoeksvormen bevinden er zich een paar die door hun symmetrie en hun ‘karakter’ bijzondere aandacht verdienen. Een nadere kennismaking met deze eenvoudige geometrische figuren is buitengewoon stimulerend.

Eerst noemen we de gelijkzijdige driehoek, het is de oerdriehoek. Behalve de drie zijden zijn ook de drie hoeken gelijk (60º).
De hoogtelijnen, bisectrices, middelloodlijnen en zwaartelijnen zijn allemaal even groot en gaan alle door één punt dat we ‘middenpunt’noemen. Die is tegelijkertijd zwaartepunt, middelpunt van de ingeschreven cirkel en van de omgeschreven cirkel. De lijnen zijn symmetrie-assen:

De halve gelijkzijdige driehoek is rechthoekig, heeft dus een hypotenusa en twee rechthoekszijden. Door het halveren is de symmetrie verloren gegaan. Het verschijnsel links – rechts treedt op. Naast de rechte hoek is de hoek van 30º ontstaan. We gebruiken deze driehoek van hout of kunststof om te tekenen. Er zijn twee soorten, met een linker en een rechter helft die je niet op elkaar kan leggen zonder ze om te draaien. Een halve gelijkzijdige driehoek is meer dan alleen maar een helft:

De gelijkbenige rechthoekige driehoek kan ook als een een half vierkant worden beschouwd. Die is eveneens rechthoekig, heeft echter twee even lange zijden; daardoor is die eveneens nog gelijkbenig. Er is een hoek van 45º, de driehoek heeft een symmetrie-as. Ook deze driehoek gebruiken we als tekendriehoek:
Tot slot moet het paar ‘gouden driehoeken‘ worden genoemd. Het gaat om de driehoeken waarvan de zijden in de verhouding van de ‘gulden snede’ staan. Omdat we een lange en een korte zijde hebben, kunnen we daarmee twee verschillende driehoeken maken: één met twee lange en een korte zijde en één met een lange en twee korte zijden:

 

De eerste noemen we de ‘scherpe gouden driehoek’ en de tweede de ‘stompe gouden driehoek’. Beide zijn gelijkbenig. Er ontstaan hoeken van 36º, 72º en 108º.

Nu moeten deze driehoeken zichzelf karakteriseren. Daartoe proberen we uit een van de driehoeken figuren te maken. Wat er zich aan mogelijkheden voordoet, is verbazingwekkend groot, hier kan er slechts een deel van worden weergegeven.

Uit zes gelijkzijdige driehoeken ontstaat een zeshoek:

Dit is de basisfiguur
We klappen de driehoeken een voor een naar buiten om en krijgen de zesster:

Klappen we ieder tweede punt weer naar binnen, dan ontstaat er een vergrote gelijkzijdige driehoek:

De randen zijn drie keer zo lang, het vlak is negen keer zo groot.
Wanneer we in de onderste rij de buitendriehoeken naar binnen en de binnendriehoek naar buiten omklappen, ontstaat er een grote ruit:

Hoe de zesster uit de basisfiguur door een gelijktijdig draaiende en verschuivende beweging van alle driehoeken ontstaat, wordt aan de vindingrijkheid van de lezer overgelaten.

De halve gelijkzijdige driehoek biedt ons meer mogelijkheden. Twee gelijke (linker of rechter) laten twee verschillende parallellogrammen of een rechthoek ontstaan:

Van verschillende kunnen we een stompe driehoek maken of een vliegerfiguur:

De derde mogelijkheid geeft de gelijkzijdige driehoek aan ons terug. Vier gelijke helften doen een vierkant ontstaan, waarin een tweede, kleinere, uitgespaard is:

We klappen de driehoeken naar buiten om en hebben dan weer een gelijke (niet in meetkundige zin!) figuur voor ons:

Uit drie paren ontstaat een grote gelijkzijdige driehoek:

Wanneer we alle driehoeken omklappen, hebben we een zeshoek voor ons waarin de oorspronkelijke driehoek uitgespaard is:

Zes gelijke driehoeken vormen twee zeshoeken in elkaar:

en twaalf gelijke driehoeken zowaar een twaalfhoek:

Een opdracht:
Uit zes gelijke driehoeken een zesster maken. Hierbij ontstaat een beweeglijke figuur die wat het middelpunt betreft symmetrisch is.

De gelijkbenige rechthoekige driehoek stelt een beetje teleur: die heeft niet zo’n grote vormenrijkdom te bieden. 2, 4, 8, 16, enz. laten zich tot een vierkant voegen. Maar ook achthoeken!:

De lezer moet zelf de twee verschillende achtsterren vinden waarin de afgebeelde achthoek veranderd kan worden.

Een vrolijke combinatie vertoont 18:

Nu wat betreft het ‘gouden driehoekspaar‘.
Door ze passend bij elkaar te zetten, herhalen ze zich zelf afwisselend in een steeds groter wordende vorm. In afb. 19 is met de scherpe driehoek links begonnen, daarbij een stompe geeft een vergrote stompe. De middelste, schuin op de punt staande scherpe driehoek daarbij, leidt tot een grotere scherpe, die net zo staat als de begindriehoek. Nog een stompe en een scherpe erbij en we krijgen die in afb. 19 getoonde grote stomphoekige driehoek. Daarmee kun je willekeurig verder gaan:

Hoe zou de afbeelding afgemaakt moeten worden om de eerst volgende grotere rechthoekige gouden driehoek te maken?

Een scherpe en twee stompe vormen een vijfhoek:

Van vijf scherpe driehoeken kunnen we het pentagram leggen:

Maar ook vijf stompe driehoeken laten dit rijke teken verschijnen, dit keer als binnenvorm:

Klappen we alle driehoeken naar buiten om, zien we twee vijfhoeken:

Dat betekent niet dat de scherpe driehoek op zich geen vijfhoek zou kunnen doen ontstaan:

Kenners zullen de positie van de driehoeken in afb. 25 in de voorstelling zo metamorfoseren dat enerzijds de vijfhoek van afb. 24 en anderzijds het pentagram van afb. 21 ontstaat:

De mooie ‘tienhoekkrans’ van tien stomphoekige driehoeken is het slot van deze ‘tentoonstelling’.

Natuurlijk kunnen tien scherpe driehoeken ook een tienhoek vormen en ook een tienster.

Als we het samenvatten:
De gelijkzijdige driehoek doet de zeshoek en de zesster ontstaan; ze is verwant met de getallen 3 en 6. Je kan er vierhoeken mee maken, maar geen vierkant; ook geen rechthoek.
Links en rechts van de halve gelijkzijdige driehoek zorgt voor beweeglijkheid. Door de rechte hoek kunnen ook de rechthoek en het vierkant ontstaan. De relatie met de getallen 3 en 6 blijft natuurlijk bestaan, nieuw is de twaalfhoek. We vinden dus verwantschap met de getallen 3, 4, 6 en 12.
De verwantschap van de gelijkbenige rechthoekige driehoek met de getallen 4 en 8 is duidelijk.
De ‘gouden driehoeken‘ verrassen ons door het ontstaan van het pentagram. Er is verwantschap met de getallen 5 en 10.

Waar haal je nu die driehoeken? Je kan ze van karton maken, bijv. Om ze voor de klas te kunnen laten zien, kan je ze met gekleurd karton en klittenband op het bord ‘plakken’.
.

Walter Kraul, Erziehungskunst jrg. 34 -04-1970
.

[1] Die wordt soms ook in klas 6 behandeld.

[2] Onder meetkunde alle artikelen vind je de reeks 2-3/1  t/m 2-3/4 als mogelijke weg naar dit doel.
.

De schrijver van het artikel heeft uit gekleurd hout een ‘vierhoek-vijfhoek- en zeshoeklegspel’ uitgebracht. De verschillende afmetingen van gelijkvormige driehoeken in de legspellen geven nog meer vormenrijkdom dan de hier getoonde voorbeelden.
Bij de genoemde uitgeverij zijn ze op dit ogenblik (02-01-2018) niet voorradig.
.

Meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas meetkunde

.

1401

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – 6e klas – meetkunde (2-3/4)

.

1e week    2e week    3e week

4e week
Dit is de laatste week van de periode.
Het kan zijn dat je door omstandigheden een periode had van maar drie weken. Dan moet je een andere keus maken, dan ik heb gedaan. Trouwens, mijn keuze heeft ook een zekere willekeur: er zijn legio andere mogelijkheden.
Er is wel veel aan de orde gekomen en aan het begin van zo’n laatste week is het goed om alles nog eens terug te halen.

eerste dag

Je zou van een bepaalde begrippenlijst uit kunnen gaan:

geometrie
-passer (passerpunt, benen van de passer)
-willekeurige vorm t.o. vastliggende (gegeven) vorm – onwillekeurig
-cirkel
-middel (midden-)punt
-middellijn
-liniaal (lineair)
-omtrek    omtrekslijn
-snijden
-horizontaal, verticaal, diagonaal
-gemeenschappelijk
-vlak
-snijden
-punt
-hoekpunt
-symbool
– ꙩ M
-lijnstuk
-straal
-radius = r
-construeren
-constructie
-daaruit volgt    →
-loodlijn    met constructie
-loodrecht op:   ⊥
-zesster – hexagram
-zeshoek – hexagoon
-verzameling
– hoek  ∠ : scherpe, rechte, stompe, gestrekte, inspringende
-middelpuntshoek
-omtrekshoek
-overstaande hoek
-verwisselende binnen- en buitenhoek
-nevenhoek
-complement   supplement
-graad   º
-groter dan >
-kleiner dan <  (je kunt er een k, van kleiner, van maken)
-parallel
-driehoek: gelijkzijdig, gelijkbenig, rechthoekig, rechthoekig gelijkbenig
-koorde   koordeboog
-segment
-stelling
-hoekdeellijn -bisectrice
-middelloodlijn
-zwaartelijn
-vijfhoek – pentagoon
-vijfster – pentagram
-hypothenusa

We kunnen dus nu een aantal hoeken construeren: van 90º, van 60º en als we teruggaan naar deze constructie:

meetkunde-62

en we trekken er de lijnstukken CA en CB in, hebben we  ∠ C in twee gelijke hoeken verdeeld. ∠ C is de ∠ van een gelijkzijdige Δ, een hoek van 60º, dus elk deel is 30º.

We hebben dus weliswaar een ∠ van 60º verdeeld, maar we mogen ook gewoon zeggen dat we een ∠ hebben gedeeld. We kunnen nu iedere willekeurige ∠ delen!

Een willekeurige hoek ( ∠ A) delen we als volgt middendoor: construeer een willekeurige cirkel met A als m.p.; deze snijdt de benen van ∠A in B en C (de cirkel wordt niet in zijn geheel geconstrueerd, maar alleen de punten B en C). Construeer om B een cirkel met een willekeurige straal en om C een cirkel met dezelfde straal; deze cirkels snijden elkaar in P (ook van deze cirkels tekenen we maar een klein boogje). De halve lijn AP deelt nu ∠ A middendoor ( ∠ A1 = ∠ A2).

De (halve)lijn AP heet hoekdeellijn en we leren naast de benen v.e. hoek ook de moeilijkere naam: bisectrice.

Uiteraard moet dit goed worden geoefend.
Deel de rechte  ∠.   = 45º. Deze gedeeld: 22,5º.
Laat de kinderen ook zelf combinaties uitdenken en construeren. Bijv. 15 en dan dus 22,5 en 15= 37,5;
Als je nog toe komt aan de constructie van een hoe overbrengen, is er nog veel meer mogelijk.

Je zou nu meer bijzonder lijnen kunnen behandelen: de middelloodlijn, die we eigenlijk al gedaan hebben, de zwaartelijn. Het feit dat ze door één punt gaan.
Zie bijv. dit artikel   Je zou een deel hiervan in je periode kunnen opnemen. Het gedicht is zeker een vondst, maar ik weet niet of je zoveel tijd moet gaan besteden aan het leren ervan. Dat zouden bijv. een paar kinderen, die de stof snel snappen en wellicht ook snel klaar zijn, samen kunnen doen.
Uiteraard moet iedereen wél proberen om een kartonnen driehoek op het zwaartepunt in evenwicht te houden. (Exacte constructie!)

tweede dag

Herhalen. Maar stel dat je deze periode tegen de kersttijd geeft, dan is het heel mooi voor de kinderen wanneer ze ook nog de vijfster (pentagram) en de vijfhoek (pentagoon) leren construeren.

De constructie is ingewikkelder dan die van de zesster en met de kennis die we tot nog toe hebben verworven, niet te bewijzen. Dat hoeft ons er niet van te weerhouden, de constructie te leren. Uiteraard eerst weer een cirkel met middelpunt M; willekeurige straal,  bijv, 3 cm.

 

 

 

  • Teken een cirkel met het middelpunt in O, waarop de hoekpunten AEGHF van de vijfhoek moeten komen te liggen. In de figuur is deze eerste cirkel groen. Een snijpunt van de verticale as en de groene cirkel is punt A.
  • Een van de snijpunten van de groene cirkel met de horizontale as is punt B.
  • Bepaal op de bekende manier het midden C tussen O en B.
  • Zet nu de passerpunt op punt C, en de potloodpunt op A. Teken een deel van de cirkel, in de figuur rood onderbroken, tot het snijpunt met de horizontale as. Dit is punt DD ligt aan de andere kant van de oorsprong O dan C.
  • Zet de passerpunt in A, trek nu een cirkel door D. Deze cirkel, in de figuur blauw onderbroken, heeft twee snijpunten met de eerste groene cirkel. Dit zijn de punten E en F, de eerste twee gevonden hoekpunten van de regelmatige vijfhoek.
  • Zet nu zonder de passer te veranderen de passerpunt in E en trek een cirkel, het snijpunt met de eerste groene cirkel is punt G.
  • Zet nu zonder de passer te veranderen de passerpunt in F en trek een cirkel, het snijpunt met de eerste groene cirkel is punt H.
  • Zet nu ter controle de passerpunt zonder de passer te veranderen in punt G, de cirkel moet nu door punt H lopen.
  • Het door rechte lijnstukken verbinden van de vijf punten AEGHF resulteert in een regelmatige vijfhoek.

Wikipedia

Vóór we aan de construcitie beginnen kunnen we 2 even grote cirkels tekenen. De ene wordt onze werkvorm, de andere – uiterst dun – wordt het resultaat, dus zonder uitgegomde lijnen en punten. Als we in de werkvorm de juiste afstand van de zijden tussen de passer hebben, brengen we die over op de andere vorm, vanuit het geschatte midden boven op de omtrek.
Nu is er een ‘schone’ vijfhoek ontstaan.

Door de punten met elkaar te verbinden – steeds 1 overslaan – ontstaat ook de vijfster:


en dan weer naar hartelust fantaseren en kunstzinnig uitwerken:

meer op VRIJESCHOOL in beeld: 6e klas meetkunde onder 5

Een bijzondere kunstzinnige verwerking van het pentagoon is het maken van een transparant of een lantaarntje:

zie voor een beschrijving:

Je kan hiermee, naast herhalen, de periode afsluiten als je deze de laatste week van december heb gegeven. Is dat niet het geval en wanneer je geen lantaarntje(s) of transparant wil maken, kan je ook nog kiezen voor de stelling van Pythagoras.
Sommige scholen geven die pas in de 7e. Dat vergt wel overleg met de leerkracht van die klas.

Of je een tweede periode kan geven, hangt van veel factoren af die ik vanhieruit niet kan overzien. Omdat ik zelf nog les kon geven in de 7e, omdat die toen nog bij de onderouw hoorde, heb ik het wel gedaan.
In Stockmeyers leerplan wordt voor de klassen 6-8 10 weken hoofdonderwijs uitgetrokken voor rekenen en wiskunde. En 1 uur per week om te oefenen, behalve als wiskunde hoofdonderwijs is. Maar toen golden er andere omstandigheden, al is het wel een indicatie.

Je kan ook verdergaan met, naast de driehoek, het vierkant, de rechthoek, de ruit, het trapezium, het parallellogram.

Steiner neemt de stelling van Pythagoras om aan te geven hoe je aanschouwelijk onderwijs kan geven.
In de pedagogische voordrachten GA 294, 295 en 311 staat:

GA 294
De meetkunde biedt u een buitengewoon fraai voorbeeld van de manier waarop een meetkundig probleem aanschouwelijk aangepakt kan worden. U tekent bijvoorbeeld een gelijkbenige recht­hoekige driehoek. Dan kunt u onder aan deze driehoek een vier­kant tekenen, zodat het vierkant grenst aan die gelijkbenige recht­hoekige driehoek [zie tekening 1]. Nu vertelt u de leerlingen, als u dat nog niet gedaan hebt, dat bij een rechthoekige driehoek de zij­den a en b de rechthoekszijden heten en c de hypotenusa wordt ge­noemd. Op de hypotenusa hebt u een vierkant geconstrueerd.* Dat geldt allemaal uiteraard alleen voor een gelijkbenige driehoek. Nu deelt u het vierkant in door middel van diagonalen. U maakt een deel ervan [boven en onder] rood en een deel [rechts] geel. Nu zegt u: ‘Het gele stuk knip ik eruit en ik zet het hiernaast’ [tekening 11].

Dan haalt u ook nog een rood stuk weg en u zet dat aan het gele stuk vast. Nu hebt u een vierkant gevormd op één rechthoekszijde, en dit vierkant bestaat uit een rood en een geel stuk. Dus wat ik ernaast heb getekend [tekening11], is net zo groot als rood en geel samen in tekening 1, en het is de helft van het vierkant op de hy­potenusa. Hetzelfde doe ik voor de andere zijde met blauw. Het blauw plak ik er aan de onderkant aan, zodat ik nog een gelijkbenige rechthoekige driehoek krijg. Dat teken ik er ook weer naast [tekening 111]. Daarmee heb ik nu het vierkant op de andere rechthoekszijde geconstrueerd.0

*voetnoot in de vertaling:
Een vierkant geconstrueerd: in de Duitse taal heeft de leraar bij deze verklaring van de stelling van Pythogoras het voordeel dat hetzelfde woord (Quadrat) zowel vierkant als kwadraat betekent
voetnoot in de vertaling:
voor wie de stelling van Pythagoras niet kent: het kwadraat van de hypothenusa is gelijk aan de som van de kwadraten van de rechthoekszijden, algebraïsch: c2= a2 + b2. De tussenstap die Steiner beschrijft – het aansluiten van een nieuwe (blauwe) driehoek onderaan het vierkant – is misschien verwarrend en in ieder geval overbodig; zie ook de pijlen die van tek. 1 naar tek. 3 gaan.

Dat geldt in eerste instantie alleen voor een gelijkbenige drie­hoek, maar bij een ongelijkbenige rechthoekige driehoek kunt u net zo goed de stukken op elkaar leggen, zoals ik u dat net heb la­ten zien. Dat is aanschouwelijk onderwijs. U kunt de meetkunde in de vorm gieten van aanschouwelijk onderwijs. Wanneer u
er­naar toewerkt om ook de stelling van Pythagoras voor kinderen na het negende jaar aanschouwelijk te maken, dan is het niet on­belangrijk – ik heb dikwijls de proef op de som genomen – dat u zich voor ogen stelt om de stelling van Pythagoras werkelijk op te bouwen uit de verschillende velden van het vierkant op de hypo­tenusa. En als u zich als leraar bewust bent dat u dat bij de meet- kundelessen wilt bereiken, dan kunt u in hoogstens zeven à acht lessen alles aanleren wat in de meetkunde nodig is om tot de stel­ling van Pythagoras – de bekende ezelsbrug – te komen. U zult ui­terst economisch te werk gaan wanneer u de eerste beginselen van de meetkunde op deze manier aanschouwelijk maakt. U zult veel tijd sparen en bovendien zult u de leerlingen iets heel belangrijks besparen – iets wat afbrekend werkt in het onderwijs als er niet spaarzaam mee wordt omgegaan – en dat is: u laat de kinderen geen abstracte gedachten volgen om de stelling van Pythagoras te begrijpen, maar u laat ze concrete gedachten volgen en u gaat van het eenvoudige naar het samengestelde. Het beste is om de stelling van Pythagoras eerst bij een gelijkbenige driehoek uit die verschillende velden op te bouwen zoals het hier in de tekening is gedaan, en dan pas over te gaan naar de ongelijkbenige driehoek. Zelfs daar waar de stelling van Pythagoras tegenwoordig aanschouwe­lijk wordt gebracht – wat zeker wel gebeurt – wordt dat niet vol­ledig gedaan. Men gaat niet eerst uit van het eenvoudige procédé bij de gelijkbenige driehoek, om daarmee het andere procédé goed voor te bereiden en over te stappen naar de ongelijkbenige recht­hoekige driehoek. Maar dat is belangrijk, dat men dat bewust op­neemt in de doelstelling van het meetkundeonderwijs. Wilt u er dus aan denken om verschillende kleuren te gebruiken. U moet de verschillende vlakken inkleuren en dan de kleuren over elkaar leggen. De meesten van u zullen iets dergelijks al wel eens gedaan hebben, maar toch niet op deze manier.
GA 294/148 e.v.
vertaald/148 e.v.

We kunnen in ieder geval aannemen dat de kinderen die we nu dit jaar krijgen bijvoorbeeld de stelling van Pythagoras verkeerd geleerd hebben, dat ze die niet geleerd hebben zoals wij dat be­sproken hebben. De vraag is dan wat we moeten doen om de leer­lingen niet alleen te geven wat ze gemist hebben, maar in zekere zin nog iets meer, zodat bepaalde krachten die al uitgedroogd en verdord zijn weer kunnen opbloeien, voorzover dat mogelijk is. We kunnen dan bijvoorbeeld een leerling vragen om zich nog eens de stelling van Pythagoras voor de geest te halen, we zeggen: ‘Je hebt die stelling geleerd. Hoe luidt die? – Inderdaad, dat is de stelling van Pythagoras: het kwadraat van de hypotenusa is gelijk aan de som van de kwadraten van de beide rechthoekszijden.’ Maar daarbij heeft zo’n leerling beslist niet dat in zijn ziel wat het leren van de stelling van Pythagoras hem gegeven zou moeten hebben. Daarom doe ik iets extra’s. Ik maak de zaak niet alleen aanschou­welijk voor hem, maar ik bouw die ‘aanschouwing’ ook nog eens genetisch voor hem op. Ik laat 181die op een heel speciale manier ont­staan. Ik zeg: ‘Ik wil graag drie leerlingen voor het bord. Eén van de drie kleurt dit vlak met krijt in. De anderen in de klas letten goed op dat hij niet meer krijt gebruikt dan echt nodig is. De tweede pakt een ander krijtje en kleurt dit vlak in. En de derde kleurt dit vlak, weer met een ander krijtje.’ En dan zeg ik tegen de jongen of het meisje dat het vierkant op de hypotenusa bedekt heeft: ‘Kijk, nu heb jij evenveel krijt gebruikt als de twee anderen samen. Jij hebt net zoveel krijt op dat vierkant gekalkt als de twee anderen bij elkaar, omdat het kwadraat van de hypotenusa gelijk is aan de som van de kwadraten van de rechthoekszijden.’ Ik maak de stelling dus aanschouwelijk door middel van het krijtverbruik. Dat gaat nog dieper in de ziel als de leerling ook nog bedenkt dat er iets van

het krijtje af is, iets wat nu niet meer aan het krijtje, maar op het bord zit. En dan ga ik nog een stap verder en zeg ik: ‘Nu verdeel ik de vierkanten in kleine vierkantjes: het eerste in 16, het tweede in 9 en het derde in 25 vierkantjes. Nu zet ik midden in ieder vierkantje één van jullie neer, 182 en je stelt je voor dat dat een akker is die je moet omspitten. De kinderen die deze 25 kleine vierkantjes hier omge­spit hebben, hebben net zoveel werk verzet als de kinderen van de 16 vierkantjes en de kinderen van de 9 vierkantjes samen. Door jul­lie werk is het vierkant van de hypotenusa omgespit, door jullie werk het vierkant op de ene rechthoekszijde en door jullie werk het vierkant op de andere rechthoekszijde/ Zo verbind ik met de stelling van Pythagoras iets wat de wil van het kind raakt, wat ten­minste de voorstelling oproept dat het kind met zijn wil zinvol in de wereld staat, en ik breng leven in iets wat tamelijk levenloos zijn schedel binnengekomen is.
GA 294/181 e.v.
vertaald/181 e.v.

 

Rudolf Steiner geeft vervolgens nog een aanschouwelijke toelichting bij de stelling van Pythagoras en verwijst naar een artikel van Ernst Müller: ‘Bemerkung über eine erkenntnistheoretische Grundlegmg des pythagoreischen Lehrsatzes’.
In de tekening is de stelling van Pythagoras (het kwadraat van de hypotenusa is gelijk aan de som van de gekwadrateerde rechthoekszijden) geometrisch aangetoond. De tekening laat in principe één driehoek zien met drie vierkanten, die de kwadraten vormen van zijn drie zijden. De beide ‘rechtopstaande’ vierkanten zijn de kwadraten van de rechthoekszijden, het ‘schuine’ vierkant is het kwadraat van de hypotenusa. Men ziet dat het rode deel van de eerstgenoemde vierkanten het vierkant op de hypotenusa al ten dele bedekt. Het restant wordt bedekt door de blauwe en de groene driehoek omhoog te schuiven, zodat het oppervlak van de kleinere vierkanten exact binnen het oppervlak van de grootste blijkt te passen.

Rudolf Steiner:… Men moet het allemaal uit karton knippen, pas dan wordt het aanschouwelijk.
GA 295/119
vertaald/110

GA 311
Hoe je alles vanuit het aanschouwelijke, niet vanuit wat men tegenwoordig dikwijls ‘aanschouwelijkheidsonderwijs’ noemt, in opvoeding en onderwijs moet doen, wil ik nog graag laten zien aan een bepaald iets dat in het onderwijs daadwerkelijk een bijzondere rol moet spelen. Dat is de stelling van Pythagoras die u allemaal wel kent, wanneer u in het onderwijs werkzaam bent, die u wellicht op een soortgelijke manier inzichtelijk is, maar we willen hem vandaag toch nog bespreken. Kijk, de stelling van Pythagoras is  iets wat je je concreet als doel kan stellen in de meetkunde. Je kan de meetkunde zo opbouwen dat je zegt: ik wil alles zo organiseren dat het uitmondt in de stelling van Pythagoras, dat het kwadraat van de hypotenusa van een rechthoekige driehoek gelijk is aan de som van de kwadraten van de beide rechthoekszijden. Dat is iets grandioos, als je er goed naar kijkt.
Ik moest eens een dame die toen al ouder was, omdat ze er zo van hield, meetkunde leren. Ik weet niet of ze alles vergeten was – maar vermoedelijk had ze op het meisjesinternaat waar je als meisje opgevoed werd niet veel geleerd – in ieder geval wist ze niets van meetkunde. Ik begon en liet alles uitmonden in de stelling van Pythagoras. Nu had deze stelling voor die dame inderdaad iets buitengewoon frapperends. Men is alleen gewend aan dit frapperende. Maar, niet waar, je moet simpelweg begrijpen dat wanneer ik hier een rechthoekige driehoek heb (het wordt getekend) het vlak dat als kwadraat op de hypotenusa staat, even groot is als het totaal van deze twee kwadraten op de rechthoekszijde. (Fig.l)

fig.lGA 311 blz. 91

Dat, wanner ik aardappelen poot en die  overal op gelijke afstand van elkaar zet, ik, wanneer ik deze akker en deze samen met aardappelen beplant, precies evenveel aardappelen zal poten als hier op deze akker. Dat is iets verrassends, iets heel verrassends en wanneer je er zo naar kijkt kun je het eigenlijk niet doorzien.
En juist dat je het niet kunt doorzien, dat het zo wonderbaarlijk is, moet je in het onderwijs benutten als een innerlijke stimulans; je moet ervanuit gaan dat je iets hebt wat niet zo makkelijk te doorzien is, dat moet je steeds weer toegeven. Je zou willen zeggen: bij de stelling van Pythagoras is het zo: je kan die aannemen, maar je raakt het houvast steeds weer meteen kwijt. Je moet steeds weer opnieuw geloven dat het hypotenusakwadraat gelijk is aan de som van de kwadraten van de beide rechthoekszijden.
Nu kun je allerlei bewijzen vinden en het bewijs moet eigenlijk heel aanschouwelijk geleverd worden. Het is makkelijk om het te leveren zolang de driehoek gelijkbenig is. Wanneer je hier een rechthoekige gelijkbenige driehoek hebt (het wordt getekend, fig.l l)

GA 311 blz. 93 1

dan is dit hier de kleine rechthoekszijde, dit is de andere, dit is de hypotenusa. Wat ik oranje teken (1,2,3,4) is het kwadraat op de hypotenusa. Wat ik blauw teken zijn de kwadraten op de beide rechthoekszijden.
Nu is het weer zo, wanneer ik op de juiste manier op deze beide blauwe velden (2, 5; 4, 6 ) aardappelen poot, dan krijg ik net zoveel als wanneer ik dat op de oranje velden (1, 2, 3, 4) doe. Het oranje veld is het kwadraat op de hypotenusa, de beide blauwe velden (2,5; 4,6) zijn de kwadraten op de beide rechthoekszijden.
Nu kun je het bewijs eenvoudig maken en zeggen: de twee stukken (2, 4) van de beide blauwe kwadraten die vallen daar (in het hypotenusakwadraat) binnen, die zitten er al in. Dit (5) kun je hier zetten ( op 3). Wanneer je het zou uitknippen, zou je het stuk (6) hier erop kunnen leggen (op 1) en dan heb je het al. Dus, nu is het goed te doorzien als je een zgn. rechthoekige gelijkbenige driehoek hebt. Maar als je die niet hebt, maar een met verschillende kanten (zoals fig.l) dan kun je het volgende doen: teken de driehoek nog een keer

(fig.lll: ABC)

GA 311 blz. 93 2

Teken nu het kwadraat van de hypotenusa ABDE. Nu kun je op de volgende manier tekenen: je kunt de driehoek ABC, die je hier hebt, er hier bij tekenen: BDF. Dan kun je deze driehoek ABC, respectievelijk deze BDF, die hetzelfde is, nog een keer hier tekenen: AEG. Doordat je deze driehoek hier nog eens hebt, kun je het kwadraat op deze ene rechthoekszijde zo opnieuw tekenen (rood) CAGH. Nu is dit, wat ik rood getekend heb, het kwadraat op de rechthoekszijde (CAGH).
Ik kan nu ook, zoals je ziet, de driehoek hier tekenen DEI. Hier heb ik die ook. Dan heb ik met wat ik hier nu groen teken, het kwadraat van de andere rechthoekszijde: DIHF; dan heb ik er twee, het kwadraat op de ene, het kwadraat op de andere rechthoekszijde. Ik gebruik alleen bij de ene deze rechthoekszijde AG, bij de ander deze DI. De driehoeken zijn daar (AEG) en daar (DEI); ze zijn gelijk (d.i. congruent). Waar heb ik het kwadraat op de hypotenusa? Dat wil ik nu paars tekenen, zodat we het goed kunnen onderscheiden: ABDE. Het kwadraat op de hypotenusa heb ik hier. Nu moet ik op de figuur zelf aantonen, dat rood (1,2) en groen 3, 4, 5) samen violet (2, 4, 6,7) oplevert.
Nu, dat zul je makkelijk kunnen snappen: ik neem dit rode kwadraat (1,2) hier eerst; wat de beide kwadraten gemeenschappelijkhebben (2), dat overlapt elkaar. Nu komt daar nog bij het stuk van het groene kwadraat (4). Dus krijg ik dit figuur (2, 4) dat je daar getekend ziet en dat niets anders is dan een stuk van het violette kwadraat ABDE, inderdaad een stuk van het violette kwadraat. Dit stuk van het violette kwadraat DE omvat dit stuk van het rode kwadraat (2); daarvan blijft alleen de punt hier over (1); die zit er nog niet bij. Maar bovendien bevat deze figuur de punt van het groene kwadraat (4). Nu moet ik er nog toe komen, onder te brengen wat ik nog over heb (1, 3, 5).
Nu moet je eens kijken: je hebt nog een stukje van het rode kwadraat over (1), daar een stukje van het groene (3) en daar is de hele driehoek (5) overgebleven, die ook bij het groene kwadraat DIHF hoort. Nu neem je wat je hier hebt, wat nog overgebleven is en dat leg je dan hier aan: wat je hier nog over hebt (5) neem je en leg je er hier aan (6). Nu heb je nog de punt (1, 3). Wanneer je die uitknipt, kom je er op dat deze beide vlakken (1, 3) in dit vlak (7) terecht zijn gekomen. Het kan natuurlijk nog duidelijker worden getekend, maar ik denk dat je de zaak wel doorziet. Het gaat er nu nog om dat je het door middel van de taal nog preciezer zegt. Op deze manier heb je eenvoudig door de vlakken over elkaar te leggen, laten zien, dat de stelling van Pythagoras juist is.
Wanneer je juist deze manier om de vlakken over elkaar te leggen neemt, dan zul je het vinden. Weliswaar zul je zien, dat wanneer je het uitknipt in plaats van te tekenen, de zaak dan heel eenvoudig te overzien is; ondanks dat: wanneer je er later over nadenkt, is het je weer ontschoten. Je moet het steeds weer opnieuw zoeken. Je kunt het niet goed in je geheugen krijgen, daarom moet je het steeds weer opnieuw uitzoeken. En dat is goed. Dat is namelijk heel goed. Dat hoort bij de stelling van Pythagoras. Je moet er steeds weer opnieuw opkomen. Dat je hem snapt, moet je ook steeds weer vergeten. Dat hoort bij het frapperende dat de stelling van Pythagoras heeft. Daardoor krijg jeleven in de zaak. Je zal wel zien dat wanneer je dit keer op keer door de leerlingen laat maken, zij daarbij nog aarzelen. Zij komen er niet meteen weer op, ze moeten iedere keer nadenken. Dat hoort echter bij die levendigheid die in de stelling van Pythagoras zit. Het is helemaal niet goed wanneer je de stelling zo bewijst dat die beperkt oppervlakkig te begrijpen is; het is veel beter dat je hem steeds weer vergeet en steeds weer opnieuw  moet zoeken. Dat hoort bij het frapperende, dat het toch iets wonderbaarlijk is dat het hypotenusakwadraat even groot is als de som van de beide kwadraten van de rechthoekszijden.
Nu kun je heel goed met elf-twaalfjarige kinderen zo ver met meetkunde komen, dat je de stelling van Pythagoras met een dergelijk vergelijken van de vlakken kan uitleggen; de kinderen zullen buitengewoon blij zijn, wanneer ze het gesnapt hebben en ze krijgen er zin in. Ze hebben er plezier in gehad. Nu willen ze het steeds opnieuw doen, vooral wanneer je ze laat uitknippen. Er zullen wel een paar intellectualistische deugnieten zijn die het heel goed in de gaten hebben, die het steeds voor elkaar krijgen. De meeste, verstandigere kinderen zullen het steeds weer verknippen en erbij aarzelen, tot het lukt, zoals het zijn moet. Dat hoort bij de wonderbaarlijke stelling van Pythagoras en je moet dit wonderbaarlijke niet kwijtraken, maar het vasthouden.
GA 311/90 e.v.
Vertaald  op deze blog

Het ziet er in eerste instantie wel ingewikkeld uit, maar als je het uitknipt – wat Steiner al aangeeft – is het veel makkelijker te doorzien. Ik heb de losse delen door de kinderen laten maken – vrij groot – en daarmee konden ze dan proberen de delen weer goed te leggen.

Tot zover een impressie van 4 weken meetkunde in klas 6.

Wanneer je er een geschikt ogenblik voor vindt, zou je nog kunnen teruggrijpen op de plantkundeperiode uit de vijfde klas.
Toen het over de bloem ging, moet haast wel aan de beurt zijn gekomen de bloem met de 5 blaadjes en die met de 6. Grohmann besteedt er hier aandacht aan:

Er bestaan prachtige foto’s van deze ‘meetkunde’bloemen. Een opdracht zou kunnen zijn dat alle kinderen met een bloemillustratie naar school komen en daarbij aangeven om welk getal het gaat:

bosanemoon (erachter speeenkruid)

ooievaarsbek

Ook in sneeuw- ijskristallen zit meetkunde:

Afbeeldingsresultaat voor sneeuwkristallen

wat opvalt is dat de kristallen alle van een 6- of veelvoud daarvan – structuur zijn.

 

suggesties voor de periode:

1e week
2e week
3e week

 

6e klasalle artikelen (waarbij de meetkunde-artikelen)

meetkundealle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

.

1391

 

 

 

 

 

 

 

 

 

 

.

 

 

 

VRIJESCHOOL – 6e/7e klas – meetkunde (2-4)

.

meetkunde klas 6 en 7

Een artikel in de Branding over meetkunde dat was de vraag die de redactie me stelde. Na nauwelijks deze vraag met ‘ja’ te hebben beantwoord, zag ik me voor de volgende moeilijkheid geplaatst: hoe kun je het wezenlijke van meetkunde dat zich tenslotte uitdrukt in lijnen en vlakken die tezamen de vormenwereld zichtbaar maken, beschrijven in woorden?
Om dit dilemma zoveel mogelijk op te lossen zal ik na een inleiding de vormen grotendeels zelf laten spreken en de woorden slechts als aanvulling gebruiken en om een overzicht te geven, hoe de meetkunde in de lessituatie in klas ó en 7 gestalte krijgt.

In de ontwikkeling van de mens van geboorte tot volwassenheid zijn 3 fasen te onderscheiden:

– van 0 – 7 jaar: baby-peuter-kleuterfase
– van 7 ~ 11 jaar; lagere schoolkind
– van 14 – 21 jaar: puberteit en adolecentie

In elke fase is er sprake van een samengaan van het willen, het voelen en het denken. Hoe deze drie zich in elke fase t.a.v. elkaar verhouden voert in het bestek van dit artikel te ver; enkel het volgende gegeven is van belang:

Bij de leeftijd van 0 tot 7 ligt het accent op het willen. Van 7 tot 14 ligt het accent op het voelen.
En bij de fase van 14 tot 21 ligt het accent op het denken.

Deze driegeleding van willen, voelen, denken is ook per fase een gegeven. Zo zit het benedenbouwkind in de lagere klassen nog sterk in de beweging (het willen) – denk aan het klappen en stampen van tafels, versjes etc. Vanaf ongeveer klas 6/7 groeit het kind langzaam naar de puberteit toe en ontstaat het vermogen tot o.a. het causale en abstracte denken. Het leerplan op de vrijeschool neemt de ontwikkeling van het kind als uitgangspunt. Zo komen dan in klas 6 en klas 7 voor het eerst een aantal vakken aan de orde waarbij een appèi op het causale en abstracte denken wordt gedaan zoals: natuurkunde, scheikunde, sterrenkunde, algebra en natuurlijk meetkunde.

Het verkennen, en op papier zetten van de vormenwereld begint al bij de peuter. De eerste dag in de 1e klas leert het kind twee oervormen: de rechte en de kromme.

meetkunde-6e

Vanaf deze dag zal het vormtekenen een dagelijkse of wekelijkse activiteit zijn. Een deel van de vormtekenlessen zullen bestaan uit geometrische vormen, die meerdere malen in één beweging worden getekend.

meetkunde-6e-2

 

In klas 6 gaan vele vormen die het kind al eens getekend heeft wederom getekend worden. Nu echter niet met de vrije hand als voordien, maar m.b.v. passer en lineaal.

De intentie van de meetkundeperiode kan het best als volgt omschreven worden;

“Exactheid, schoonheid en maat. Dat is waar het in de meetkunde om gaat”

Nadat de kinderen een gesprek te hebben gevoerd waar meetkunde overal in het praktische leven is toegepast, zijn de kinderen enthousiast en aangesproken in de wil om aan de slag te gaan met die fonkelnieuwe passer, of die passer die nog een erfstuk blijkt te zijn van de grootvader van moeder…

Zoals met vormtekenen veelal het geval was, zo zal men in beginsel ook elke vorm die op papier zal verschijnen eerst in het groot in de beweging doen; met de hele klas, een groepje of individueel.

De cirkel
Teken met grote bewegingen in de lucht of op de grond; een exacte cirkel vormen met de hele klas (een sociale oefening bij uitstek! )

Waar komen cirkelvormen voor? De aardbol, de schedel, een voetbal, een gloeilamp etc, etc. zullen als antwoorden van de kinderen komen. En dan uiteindelijk de eerste cirkel in het schrift; een lijn even dik of dun met de passer op bladzijde een – tongpuntje tussen de tanden! Vanaf nu heet dit geen “rondje” meer, maar een cirkel met al zijn andere namen erbij.

meetkunde-6e-3

Dan het eerste meetkundewonder!

De straal (afstand tussen de benen van de passer) blijkt precies 6x rond de omtrek van de cirkel afgezet te kunnen worden. De 6 punten kunnen dan op verschillende manieren met elkaar verbonden worden

meetkunde-6e-4

Vanuit deze mogelijkheid volgen dan een reeks tekeningen, waarbij het kleuraspect nog een zeer grote rol speelt voor de schoonheidsbeleving van het kind. Elk kind kiest eigen kleurcombinaties,- verhoudingen en hanteert de mogelijkheden hierin van de licht-donker effecten.

Voorbeelden vanuit de 6-deling:

meetkunde-6e-5

Dan komen er verschillende soorten hoeken aan bod. Ook weer om je heen kijken on hoeken benoemen of d© hoeken vormen met b.v, je lichaam (hoofd-romp, houding boven-benedenarin) of hoeken gevormd met meerdere kinderen samen.

Na de hoeken 2 constructies:
-het delen van een hoek (bissectrice)
-het oprichten en neerlaten van een loodlijn

Vanuit deze nieuw geleerde constructies zijn er weer talloze nieuwe figuren mogelijk. Zo kan men komen van de 6~deling naar een veelvoud hiervan:

meetkunde-6e-6

Als volgende is de mogelijkheid de driehoek te bekijken. Opdracht voor de kinderen voor thuis kan dan luiden: probeer eens uit hoeveel verschillende soorten driehoeken er zijn.

Bij het behandelen en het gebruik van de geodriehoek of de gradenboog greep ik terug op de geschiedenisperiode in de 5e klas. In deze periode wordt o.a. verteld over de Egyptische cultuurperiode en het ontstaan van de meetkunde aldaar. Het Egyptische jaar telde 5 heilige dagen en 360 overige dagen; de zon stond dan weer op hetzelfde punt.

Vandaar het volgende gegeven:

meetkunde-6e-7

Ook de termen complement, supplement en applement komen nu aan bod.

Nu kan er dan ook volop met gradenboog of geodriehoek worden gewerkt. Verder komen nog aan bod zaken als snijdende lijnen, parallelle lijnen, tegenoverliggende hoeken, verwisselende hoeken etc.

Als afsluiting in klas 6 wordt de 5-hoekconstructie geleerd. Tekeningen die vanuit deze constructie afgeleid kunnen worden volgen hierna. Ook kan gesproken.worden over de gulden snedeverhouding die in deze constructie te vinden is en terugkomt op vele wijzen in de menselijke gestalte.

meetkunde-6e-8

In klas 7 wordt het variëren en uitproberen van allerlei vormen nóg verder uitpewerkt. Het benoemen’en construeren van allerlei mogelijke meetkundefenomenen zal dan echter een groter accent krijgen.

Opgave waarin bepaalde constructies worden gegeven met daarbij een vraag zijn dan aan de orde.

Bijvoorbeeld:
1)gegeven: lijnstuk AB = 5 cm
lijnstuk BC 6 cm
LA of X = 90°

gevraagd:
a) teken een driehoek ABC
b) hoeveel graden zijn B en. X

2) Bewijs dat de 3 hoeiken van een driehoek samen. 180 zijn. etc.

Verder komen zaken als congruentie, rotatie en merkwaardige lijnen aan de orde.

Voorbeeld van een soort merkwaardige lijn in dichtvorm:

We zullen eens proberen
Een lijn te constueren
Die vanuit een hoekpunt gaat
En loodrecht op de tegenoverliggende zijde staat
Deze hoeken zijn dus beiden recht
90º dat is goed gezegd
Deze lijn heet: hoogtelijn
Het geeft de hoogte aan
Maar dat zal duidelijk zijn

Ook de bissectrice en de zwaartelijn komen zo aan de orde.

De berekening van omtrek en oppervlakte van o.a de cirkel, de driehoek, het parallellogram, de trapezoïde etc. worden in dit jaar behandeld.

Langzaam kan er ook toegewerkt worden naar perspectief en 3-dimensionaliteit als voorbereiding op de platonische lichamen die in klas 8 een centrale plek zullen krijgen.

meetkunde-6e-9

De periode zal eindigen bij de stelling van Pythagoras, zichtbaar gemaakt in:

Tijdens of na de periode krijgen de kinderen opdracht om met alle mogelijkheden en constructies die ze hebben leren kennen zelf een vorm te bedenken en te ontwerpen. Deze worden dan beoordeeld op exactheid, schoonheid en originaliteit.

Peter Giesen, vrijeschool Nijmegen, nadere gegevens onbekend

 

6e klas: alle artikelen (waarbij de meetkunde-artikelen)

meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

 

1181

 

 

 

 

 

 

 

 

 

.

 

 

VRIJESCHOOL – Meetkunde – (4-7)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz.26 t/m 30

Over de cirkel en over de rechte lijnen

Bij de ‘bloem’ en in het cirkelveld in ’t algemeen kunnen we zien, dat een cirkel een andere cirkel in de regel in twee punten snijdt. Verder kunnen we zien dat steeds de rechte verbindingslijn van de middelpunten, ‘centrale lijn’ genoemd, loodrecht staat op de rechte verbindingslijnen van de snijpunten. De ene rechte lijn is steeds de middellijn van een groot, de andere die van een klein blad en deze staan – zoals we al weten – loodrecht op elkaar.

Op deze tekening staan twee elkaar snijdende cirkels met willekeurige stralen. De stralen die de snijpunten met de middelpunten verbinden, vormen een deltoïde, waarvan de diagonalen de centrale lijn en de rechte verbindingslijnen van de snijpunten zijn; deze staan zoals bekend loodrecht op elkaar:

meetkunde-strakosch-5-8

 

 

 

 

 

 

 
In de volgende tekening is de linker cirkel even groot als de rechter, die t.o.v. de  tekening hierboven kleiner is geworden; de lengte van de centralen, dat is de afstand van de middelpunten, is hier en bij de volgende tekeningen even groot. Omdat hier de rechter cirkel even groot is als de linker, is de deltoïde een ruit geworden. Belangrijk is dat de afstand van de snijpunten kleiner is geworden; de figuur is vlakker geworden. De som van de stralen is nog steeds groter dan de centrale lijn:

meetkunde-strakosch-5-9

 

 

 

 

 

 
In de tekening hieronder is de som precies gelijk aan de centrale lijn. De deltoïde waarvan het langere paar zijden en het kortere, na door de ruit te zijn gegaan, van plaats gewisseld zijn, is nu geheel plat geworden; de beide snijpunten liggen bovenop elkaar, zijn in een dubbelpunt samengekomen. Dit punt ligt zowel op de ene als op de andere cirkel en heet raakpunt (Duits heeft ‘äussere‘ ‘buitenraakpunt), omdat het middelpunt van de ene cirkel buiten dat van de andere ligt. De beide cirkels hebben alleen dit punt gemeenschappelijk.

meetkunde-strakosch-5-10

 

meetkunde-strakosch-5-8

In bovenstaande tekening kunnen we de snijpunten van beide cirkels naar links laten lopen waarbij de rechter cirkel groter wordt en we kunnen waarnemen hoe deze zich steeds meer van elkaar verwijderen. De afstand zal het grootst zijn, wanneer het bovenste (snijpunt) het hoogste, het onderste het laagste punt van de cirkel heeft bereikt. Hun verbindingslijn gaat door het middelpunt en staat loodrecht op de centrale lijn; de deltoïde die uit twee gelijkbenige driehoeken ssamengesteld schijnt te zijn, is in één gelijkbenige driehoek veranderd, daar de linker driehoek steeds vlakker en tenslotte een rechte is geworden. Zoals op onderstaande tekening:

meetkunde-strakosch-5-11

Laten we de snijpunten nog verder naar links opschuiven, komt het middelpunt van de cirkel rechts van haar verbindingslijn te liggen. In onderstaande tekening met streepjes getekend:

meetkunde-strakosch-5-12Er vormt zich een gelijkbenige driehoek, die echter naar rechts ingestulpt is.

Gaan de snijpunten nog verder naar links, dan wordt de straal van de rechter cirkel nog groter, dan vallen ze weer samen, maar nu op het uiterste linkerpunt van de cirkel, op de centrale lijn; de beide cirkels raken elkaar zo, dat de ene binnen de andere ligt.

Hieruit volgt dat de afstand van middelpunt en straal van de beide cirkels zich zo verhouden: een cirkel raakt de ander aan de buitenkant: hun middelpuntsafstand is gelijk aan de som van hun stralen.
Een cirkel raakt de ander aan de binnenkant: hun middelpuntafstand is gelijk aan het verschil van hun stralen.

Kijken we nu ook naar de verbindingslijn van de snijpunten. Die staat als een diagonaal van een deltoïde loodrecht op de anderre diagonaal, de centrale. – Op de rechte. waarvan de richting bepaald wordt door de snijpunten van de twee cirkels, begrenzen de twee snijpunten een vlak dat in relatie tot de cirkel een ‘koorde’ wordt genoemd. Is deze rechte een niet begrensde lijn die de cirkel snijdt. wordt deze secant snijlijn’ genoemd. 

De lengte van een koorde groeit naar mate deze het middelpunt nadert. Wanneer deze door dit punt heengaat, heeft ze de grootste mogelijke lengte bereikt.

De doorsnede geeft de grootste koorde weer.

Iedere koorde is ook de basis van een gelijkbenige driehoek waarvan de beide benen door twee stralen worden gevormd. (Een driehoek die we in het cirkelveld overal gezien hebben met de drie zijden gelijk, heet gelijkzijdige driehoek; zijn er maar twee gelijk, dan heten de gelijke zijden ‘benen’, de driehoek: gelijkbenig).

Op iedere koorde als basis kun je nog een tweede gelijkbenige driehoek construeren. Die twee kunnen als een deltoïde beschouwd worden, waarvan de diagonalen loodrecht op elkaar staan en elkaar over en weer halveren. Daaruit volgt dat de op een basis van een gelijkbenige driehoek opgerichte loodlijn steeds door het er tegenoverliggende hoekpunt van een driehoek gaat en loodrecht op de tegenoverliggende zijde staat; de loodlijn die vanuit een hoekpunt op de tegenoverliggende zijde valt, heet een ‘hoogtelijn’. Bij een onregelmatige driehoek gaat de hoogtelijn niet door het middelpunt van de tegenoverliggende zijde.

De tekeningen die hierboven zijn gebruikt vatten we nu samen in  1 tekening:

meetkunde-strakosch-6-1hier staan alle snijlijnen (secanten)  – als diagonalen van deltoïden loodrecht op de centrale lijn. De koorden, d.w.z. de stukken van de snijlijnen binnen de cirkel, werden steeds kleiner, naarmate de rechte lijnen zich verder van het middelpunt (van de linker cirkel) verwijderen. In de getoonde tekeningen trekken de koorden zich in 1 punt samen; de richting van de rechten blijft echter onveranderd loodrecht t.o.v. de centrale lijn; het kleiner worden van de lengte is geen aanleiding tot een verandering van de richting. De rechte lijnen 1 en 6 snijden de cirkel niet meer, ze raken deze slechts aan. Daarom heten ze raaklijn of tangent of tangens.
Als je er zo naar kijkt is het duidelijk dat een tangens altijd loodrecht zal staan op de door het raakpunt getrokken straal (radius). Dat dit altijd zo is, blijkt ook uit hetvolgende:
Zou je de raaklijn ook maar met een oneindig klein hoekje om het raakpunt draaien, dan zou deze meteen de cirkel op nog een tweede punt snijden. Al naar gelang van de draairichting zou dit op de ene of op de andere kant van het raakpunt liggen en de hoek t.o.v. de centrale lijn zou geen rechte meer zijn.

Als we weer naar het cirkelveld kijken, dan kunnen we in deze tekening inzien, dat het zonet gevonden feit ook hier zichtbaar is.:

meetkunde-strakosch-6-2hier is de middellijn van het grootste blad gepuncteerd getekend als verbindingslijn van de snijpunten van twee cirkels. Deze staat loodrecht op de straal door het raakpunt, omdat deze straal de middellijn is van het erbij behorende kleine blad. Door het punt dat het raakpunt moet zijn, loopt de middellijn van de volgende grote bladeren parallel aan de eerste middellijn, dus ook loodrecht op de straal. Deze voldoet dus aan de voorwaarden van een tangens, zoals hierboven geformuleerd. In het maken van deze tekening ligt dus de oplossing van de opgave:

In elk gegeven punt van een cirkel een raaklijn tekenen.

In de eerste tekening lopen de tangenten 1 en 6 parallel, hun snijpunt ligt in het oneindige. Vanuit een punt in het oneindige kunnen we dus twee raaklijnen op 1 cirkel trekken, meer kunnen het er niet zijn. Dit blijft ook zo, wanneer het punt niet in het oneindige vanaf de cirkel ligt. Dat is hier te zien:

meetkunde-strakosch-6-3De verbindingsrechte van de beide raakpunten gaat niet meer, zoals bij de eerste tekening door het middelpunt van de cirkel (hier is ze middellijn van een groot blad); de stralen naar de raakpunten vormen geen rechte lijn meer, ze vormen een hoek die kleiner wordt naar mate het punt buiten de cirkel naar de cirkel toe komt te liggen. Deze twee stralen vormen samen met het vlak dat de raaklijnen begrenzen tussen de punten van waaruit de raaklijnen beginnen en de snijpunten een deltoïde met de bijzondere eigenschap dat de ongelijke zijden een rechte hoek vormen en alle vier de hoekpunten op een cirkel liggen.

Nu moet echter eerst in deze tekening de algemene oplossing van de opgave getoond worden hoe vanuit een punt buiten de cirkel de twee raaklijnen aan deze cirkel te trekken:

meetkunde-strakosch-6-4De oplossing moet eruit bestaan dat wat net getoond is, een deltoïde in een cirkel te tekenen. Het middelpunt van deze cirkel ligt op het midden van een rechte lijn die het beginpunt van de beide raaklijnen met het middelpunt van die cirkel verbindt waaraan de raaklijnen moeten komen. De snijpunten van de beide cirkels zijn de gezochte raakpunten.

meetkunde-strakosch-7-1

Op bovenstaande tekening zien wij verschillende punten op de omtrek van een cirkel en iedere keer blijkt uit de verhouding van de hoek tussen die van een klein en een groot blad, dat deze hoek de beide verbindingslijnen naar de eindputen van de doorsnedelijn, de zogenaamde omtrekshoek, een rechte hoek is. Het zijn hier echter punten waarvan de plaats door het cirkelveld wordt bepaald en wij moeten ons afvragen of in het algemeen iedere hoek op de omtrek een rechte hoek is.

Hiertoe willen we twee verschillende gezichtspunten uitvoeren waarvan elk tot het gewenste doel kan leiden. Echter is het steeds een verrijking van de ervaring via twee verschillende wegen een doel te bereiken.

Met bovenstaande tekening kunnen we zeggen: Er zijn bepaalde punten op de cirkelomtrek die aan de vereiste voorwaarde voldoen dat hun verbindingslijnen naar het uiteinde van de middellijn een rechte hoek vormen. (Wanneer er voor een andere richting van de middellijn wordt gekozen, verandert de rechte hoek alleen van plaats. Laten we ons voorstellen dat deze hoek groter en kleiner wordt, dus vlakker of spitser dan 90º zou worden, dan zou het hoekpunt niet meer op de cirkel liggen, dat zou zich erbinnen of erbuiten bevinden. Deze kan derhalve alleen maar het hoogste punt van een rechte hoek zijn, wanneer deze op de cirkel zelf ligt. Daarmee is vastgesteld  dat het deel van de hele cirkelboog dat overblijft precies zo groot moet zijn als dat waartoe de rechte hoek behoort.
Op de andere helft van de cirkel ligt echter ook een punt met dezelfde eigenschappen, maar symmetrisch daarop. – Je moet erop letten dat er steeds sprake van is, dat deze hoek tegenover de middellijn ligt. Draaien we de middellijn een hoekpunt verder, dan gaat hij niet meer door het middelpunt en is dus geen middellijn meer. Het ene been van de hoek (die bij het draaipunt) behoudt zijn positie, de andere moet anders worden wanneer hij het andere zich bewegende snijpunt volgt. In welk van de beide mogelijke richtingen deze zich ook mogen bewegen, de hoek kan geen rechte meer zijn. We kunnen dus zeggen:

Alleen de hoek op de halve cirkelboog (namelijk boven een middellijn) is een rechte hoek, maar ook: iedere hoek op de halve cirkelboog is een rechte hoek.

Dit feit kunnen we ook nog op een andere manier aanschouwelijk maken. We nemen deze tekening nog een keer:

meetkunde-strakosch-5-7We kijken nog eens naar de benen van de gelijkbenige driehoek. Die zijn – de naam zegt het al – in iedere driehoek van gelijke lengte en kunnen daarom ook als stralen van een cirkel met het middelpunt in de tophoek van de driehoek beschouwd worden. Wanneer je deze cirkels nu trekt, dan gaan ze vanzelfsprekend allebei door de beide eindpunten van de basis die alle driehoeken gemeenschappelijk hebben, zoals hier is te zien:

meetkunde-strakosch-7-2Er ontstaan in in iedere cirkel twee gelijkbenige driehoeken met een gemeenschappelijke basis die samen in iedere cirkel een vierhoek vormen en wel een deltoïde. Iedere vierhoek waarvan de hoekpunten op een cirkel liggen, heet een koordenvierhoek, omdat iedere kant een cirkelkoorde is. De basis van de driehoeken, een diagonaal, zal over het algemeen een koorde vormen en zolang dat het geval is, zullen de hoeken van de top van de driehoek  de ene groter, de andere kleiner dan 90º zijn. Alleen wanneer de koorde de bijzondere positie van de middellijn aanneemt:

meetkunde-strakosch-7-3en daarmee tegelijk haar grootste lengte heeft, worden deze beide hoeken gelijk en ieder ligt op een halve cirkel, ieder wordt een rechte hoek, de koordenvierhoek wordt een vierkant.

We zouden nog steeds te maken hebben met een bijzonder geval wanneer in iedere vierhoek elke twee aangrenzende zijden gelijk waren, wanneer het uit twee paren van gelijke zijden zou bestaan die elkaar raken, dan was het dus een deltoïde.

Om het algemeen te maken, trekken we door het middelpunt van de basis in een willekeurige richting een rechte:

meetkunde-strakosch-7-4die zal iedere cirkel in twee punten snijden. Deze snijpunten en de hoekpunten van de basis vormen in iedere cirkel een koordenvierhoek met vier ongelijke zijden en even zovele verschillende hoeken. Volgen we de veranderingen van de hoeken die op de rechte liggen wanneer we van de grootste cirkel naar binnen gaan. Van de beide hoeken wordt de spitse steeds vlakker, de vlakke steeds spitser. Dan komt de cirkel waarin ze allebei even groot zijn, dan veranderen ze weer in omgekeerde verhouding en de cirkels worden steeds groter.
In die kleinste cirkel echter is de basis een middellijn. De bogen aan weerszijden zijn halve cirkels en de hoeken moeten recht zijn, want bij de minste positieverandering van de basis (door groter worden van de cirkel naar rechts of links) zouden de hoeken opnieuw – zoals beschreven is, ongelijk zijn. We mogen weer zeggen:
Iedere hoek op een halve cirkelboog is een rechte hoek.

 

Meetkunde: alle artikelen

Vrijeschool in beeld: 6e klas meetkunde

 

1148

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Meetkunde (4-6)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz.22 t/m 26

Over de geometrische basisfiguren
Deze zijn: cirkel, gelijkzijdige driehoek, vierkant en de regelmatige vierhoeken. Zoals we hier oefenend waarnemen, kunnen de regelmatige figuren niet alleen maar als ‘speciale gevallen’ worden gezien. In het verdere verloop zal blijken dat zij het juist zijn waaraan je de wetten het eenvoudigst en duidelijkst kunt aflezen die – in erbij behorende afwijkende vormen – dan overal gevonden kunnen worden.

Van tevoren – als een vorm van vervolmaking van het handwerk – zal steeds sprake zijn van een eenvoudige, steeds terugkerende constructie. Het gebruiken van de rechte hoek is daarbij nuttig, waarbij twee basisvragen beantwoord moeten worden.

1.Op een bepaalde plaats op een rechte lijn een loodrechte lijn oprichten:

meetkunde-strakosch-5-1

 

 

 

 

Vanuit het gegeven punt als middelpunt teken je het bovenste deel van de ‘bloem’. Aan weerszijden van dit punt ontstaan twee kleine blaadjes, loodrecht daarop een groot blad, waarvan de middellijn de gezochte loodlijn is.

Op de volgende tekening zie je, dat je uit het gegeven punt als middelpunt een cirkel kunt trekken met een willekeurige straal die wel groot genoeg moet zijn, zodat op de rechte lijn twee snijpunten ontstaan. De doorsnede van deze cirkel neem je dan tussen de passer en vanuit de twee snijpunten trek je twee cirkels. Deze vormen weer een een ‘groot’ blad, de eerste cirkel kan als ‘klein’ blad gezien worden:
meetkunde-strakosch-5-2

 

 

 

 

Als je goed kijkt, zie je dat het erop aankomt dat een of ander punt van de gezochte rechte lijn vanuit twee punten op de gegeven lijn dezelfde afstand heeft, die dus zelf vanaf het gegeven punt even ver verwijderd zijn.

2.Vanuit een gegeven punt op een gegeven rechte lijn een loodlijn neerlaten, d.w.z. een lijn trekken die door dat punt gaat en loodrecht op de rechte lijn staat.
Met een  willekeurige  straal maak je een cirkel vanuit dit punt; deze cirkel zal de rechte lijn op twee plaatsen snijden die even ver van het gegeven punt verwijderd zijn:
meetkunde-strakosch-5-3

 

 

 

 

De afstand van die punten tot het gegeven punt is de straal van die cirkel. Vanuit die punten trek je nog twee cirkels. Die gaan door het gegeven punt en je vindt de loodlijn als je de middellijn van het ‘blad’ trekt dat ontstaan is. De stralen van deze cirkels zijn op de tekening even groot als die van de eerste cirkel, maar ze mogen ook anders zijn, als ze maar even groot zijn. De middellijn van het ontstane blad zal steeds door het gegeven punt gaan en loodrecht op de rechte lijn staan.

3.Een vierkant tekenen waarvan de diagonalen zijn gegeven.
meetkunde-strakosch-5-4

 

 

 

De dubbelgetrokken horizontale lijn is de gegeven diagonaal waarvan de eindpunten twee hoekpunten van het vierkant vormen. Vanuit deze als middelpunten trekt je twee cirkels met de gegeven diagonaal als straal. De middellijn van het ontstane grote blad deelt de diagonaal middendoor en staat er loodrecht op. Vormt daarmee de tweede diagonaal. Met het punt van de twee zich snijdende diagonalen als middelpunt en de halve diagonaal als straal, trek je een cirkel die de vertikale diagonaal op twee plaatsen snijdt. Dat zijn de twee andere punten van het vierkant.

4.Een gegeven hoek doormidden delen, d.w.z. een rechte lijn trekken die met de beide benen een even grote hoek vormt.
meetkunde-strakosch-5-5

 

 

 

 

Dit is in deze tekening met cirkels uitgewerkt. Links wordt een hoek van 60º in twee delen van 30º gedeeld; rechts een hoek van 2  x  60º  = 120º  in twee delen van ieder 60º . – In de tekening is het proces goed te zien: (links) met behulp van een cirkel waarvan het middelpunt in het toppunt ligt van de te verdelen hoek, worden op de beide benen van de te delen hoek gelijke stukken afgepast (de straal van de cirkel). Met dezelfde straal worden vanuit de gevonden snijpunten twee cirkels getrokken die elkaar snijden en een groot blad vormen. Het ene punt ligt in het gegeven hoekpunt; het andere daar tegenover. De verbindingslijn is de middellijn van het blad en tegelijkertijd de lijn die de hoek deelt.

Deze tekening laat de gang van zaken zien voor een willekeurige hoek:
meetkunde-strakosch-5-6

 

 

 

 

 

De hoekdeellijn wordt bepaald door de tophoek en het snijpunt van de twee cirkels die het blad vormen. Die moeten wel even groot zijn, maar de straal kan anders zijn dan van de cirkel die op de benen de gelijke afstand heeft, en de middelpunten aangeeft van de andere cirkels. In het algemeen, d.w.z. wanneer de drie cirkels niet allemaal even groot zijn, zal het tweede punt niet in de tophoek liggen, maar ergens op de hoekdeellijn en dan wel binnen de hoek wanneer de cirkel die het blad vormt kleiner is dan de eerste en erbuiten wanneer het omgekeerde het geval is. Omdat echter één punt van de hoekdeellijn altijd in de punt van de te delen hoek moet liggen en een rechte lijn door twee punten moet gaan, is het voldoende, om slechts één snijpunt van die twee cirkels die het ‘blad’ vormen, te vinden.

Wanneer je echter alleen het hoogst nodige van de constructie wil tekenen, dan zijn de sterker benadrukte cirkelstukjes genoeg. – Iemand zou kunnen zeggen: waarom dan eerst die constructie van deze tekening:
meetkunde-strakosch-5-1

 

 

 
het kan toch simpeler?
Bij het puur technisch tekenen komt het – waar hier sterk naar gestreefd wordt – op de eenvoud aan. Maar we willen zo werken dat we door het oefenen juist veel leren van de verschijnselen en we de daarin tot uitdrukking komende wetten leren kennen. Want we willen ons, zogezegd, oefenend inleven in de geometrie. Steeds maar naar het simpele kijken, betekent: oogkleppen opzetten, i.p.v. steeds verder en dieper doordringen in de rijke wereld van de meetkundige feiten en de geheimzinnige en belangrijke wetten doorgronden. De mooiste constructie is, die ons de meeste samenhangen tot bewustzijn brengt. Wanneer je er steeds naar streeft, de blik op het geheel niet te verliezen, wordt later de praktische toepassing – je zou kunnen zeggen – een peulenschil. Bij het eenvoudiger maken, blijven we ons bewust van de samenhang. We hebben niet simpelweg een regel van buiten geleerd, die we weer snel vergeten; we hebben dan veel meer de samenhang innerlijk paraat, we kunnen dus uit het overzicht steeds opnieuw het detail halen. De ervaring leert dat degene die op deze manier oefent, in stijgende mate wat geoefend werd in zijn voorstellingsbeleven heeft en in staat is, ‘in het hoofd’ de meetkundige operatie uit te voeren; ja, hij zal daarbij ook op nieuwe ideeën komen en veel zelf vinden dat erbij hoort en pas later wordt besproken. Je leert met dezelfde intentie voorstellen, waarmee je voordien waargenomen hebt en dat is waardevol.

In deze trant nemen we deze oefening:
meetkunde-strakosch-5-7

 

 
We hebben deze aleens gezien (meetkunde 4-2, tek.7) en later komt die nog terug.

In het midden hebben we een lijnstuk (zo noem je ter onderscheiding van een onbegrensde rechte lijn, een door een of twee daarop liggende punten begrensd deel(stuk) van een (rechte) lijn.(pw.: let op het is de dikke vertikale (korte lijn).
In een rechte hoek daarop staat een gepuncteerde loodrechte lijn die het lijnstuk in het midden snijdt; die noemt men middelloodlijn.

Het woord loodlijn heeft te maken met het schietlood die de richting van de zwaarte aangeeft, namelijk van boven naar beneden. De richting staat ‘loodrecht’ op de oppervlakte dat gevormd wordt door stilstaand water. In de meetkunde wordt echter het begrip ‘loodrecht’ gebruikt, onafhankelijk van de richting van die krachten die ieder object wanneer het wordt losgelaten rechtlijnig naar beneden aanhoudt. Hier wordt alleen gekeken naar het feit van een rechte hoek. Men zegt dat rechte lijnen loodrecht op elkaar staan, wanneer ze een hoek van 90º vormen, een rechte hoek omsluiten en dat totaal onafhankelijk van hun positie. Ga je dus, zoals hierboven van een lijnstuk uit dat van boven naar beneden loopt en wil je de rechte lijn benoemen die door het middelpunt van dit lijnstuk gaat en daarmee een rechte hoek vormt, dan noemt men dat een ‘middelloodlijn’. 
Net zo noemt men in de meetkunde de ‘hoogte van een driehoek’ de kortste afstand, het lood van twee snijpunten op de derde driehoekszijde, dus de rechte lijn die loodrecht op een zijde staat en daarbij door de snijpunten van de beide andere gaat. Ook dat is onafhaneklijk van de positie van de driehoek op het vlak. De zijde waarop de hoogte loodrecht staat, heet haar’ basis’; deze kan dus elke willekeurige lengte hebben. – Staat ze horizontaal dan kan de hoogte zelfs in de oorspronkelijke zin een ‘loodrechte’ lijn of ‘loodlijn’ genoemd worden.

(Terug naar bovenstaande tekening): Een paar punten van de middelloodlijn(en) zijn verbonden met de hoekpunten van het lijnstuk en door het cirkelveld zie je dat ieder punt van de gepuncteerde horizontale lijn even ver verwijderd is van de eindpunten van het lijnstuk. – Dit feit kun je ook zo uitspreken, wanneer je allereerst de daardoor ontstane gelijbenige driehoeken op het oog hebt:
richt men op een gegeven basis alle mogelijke gelijkbenige driehoeken op, dan liggen alle tophoeken steeds op de middelloodlijn op de basis. Of: de middelloodlijn op de basis is de ‘meetkundige plaats‘ voor de tophoeken van alle op haar opgerichte gelijkbenige driehoeken.

De van de tophoek naar de eindpunten van de basis gaande rechte lijnen vormen een bepaalde hoek die kleiner wordt naarmate de tophoek zich verwijdert van de basis. Daarbij worden de steeds gelijkblijvende basishoeken groter. – In de tekening zie je naast het ‘grote’ blad, waarvan de lengteas de basis is, een zich steeds herhalende rij van ‘grote’ bladeren. De spitsen ervan liggen op twee rechte lijnen die steeds even ver van elkaar verwijderd blijven, hoe ver je ook het cirkelveld (in beide richtingen) uitbreidt: zulke rechte lijnen noemt men parallellen en zegt dat deze elkaar pas snijden in het ‘oneidige’. Aan de tekening kun je aflezen dat de middelloodlijnen op de basis ook parallel zijn aan deze beide rechte lijnen; verder, dat de zijden  (verbindingslijnen tussen de tophoek en eindpunt op de basis) de eerstgenoemde parallel steeds dichter naderen, naarmate de tophoek zich verder verwijdert naar het oneindige. Dat gebeurt wanneer ieder been zich om het eigen eindpunt op de basis draait. Hierbij wordt de hoek die ze insluiten, steeds groter en wanneer zij parallel gaan lopen, wordt deze recht = 90º (de rechte lijnen gaan dan door de spitsen van de boven- en onderrij van de ‘grote’ bladeren).
Je kan een hoek beschouwen als de mate waarin twee rechte lijnen samenlopen of uit elkaar bewegen, al naar gelang in welke richting je je op de rechten beweegt, naar het kruispunt of daar vandaan. Wanneer twee rechte lijnen samen lopen, noch uit elkaar gaan, dan is er geen hoek tussen hen; je kunt zeggen: de hoek die ze omsluiten is gelijk aan nul, ze zijn parallel.
Bij een driehoek met de hoogte ∞ (dat is het teken voor ‘oneindig’) zijn dus de basishoeken allebei recht, de tophoek is = 0: de som van alle drie de hoeken = 2  x  90º =  180º. Daaraan verandert niets, ook al heeft de hoogte een eindige lengte, want iedere basishoek wordt om de helft van de tophoek kleiner, als de met zwarte dubbelboogjes aangegeven hoeken gelijk zijn. omdat namelijk hun benen dezelfde richting hebben, parallel zijn.

De som van de binnenhoeken van een driehoek zijn steeds 2 R = 180º
Hiermee wordt op een feit gewezen en een oefening gegeven die later vruchtbaar blijkt te zijn.

In de tekening (boven) zijn rechts en links van de vertikale lijn punten van de horizontale middelloodlijnen met de beide eindpunten van de vertikale lijn verbonden. Zulke punten die van daaraf gelijke afstanden hebben wat je aan de kleine blaadjes makkelijk kan zien, zijn met de eindpunten van de vertikale lijn door lijnen verbonden die op dezelfde manier uitgetrokken zijn (gepuncteerd, gestippeld enz). Zo ontstaan geheel gesloten figuren, zgn. ruiten of rhomben (enkelvoud: rombe) Je kunt ze bestempelen als bestaand uit ieder twee gelijkzijdige driehoeken die allemaal de vertikale lijn als gemeenschappelijke basis hebben. Maar je kunt ook vierhoeken maken die uit twee paar even lange rechten bestaan, waarbij de rechten van ieder paar verschillend zijn; de tophoeken van de beide driehoeken waaruit ieder figuur bestaat, liggen op de middelloodlijn, maar niet op gelijke afstand van de vertikale lijn zoals bij de ruiten het geval is. Zulke vierhoekn zijn deltoïden of vliegers. De laatste naam komt van de verwantschap met de vlieger die de kinderen zo graag oplaten.

Ruiten en deltoïden hebben de belangrijke eigenschap dat hun diagonalen steeds loodrecht op elkaar staan. Bij de ruiten halveren de diagonalen elkaar over en weer, bij de deltoïden wordt alleen die diagonaal gehalveerd die de hoeken verbindt waarin de ongelijke zijden bij elkaar komen. – Uiteindelijk kun je ook vierhoeken uit zulke driehoeken met verschillende hoogte vormen die op dezelfde vertikale lijn liggen:
meetkunde-strakosch-5-12

 

 

 

 
Je kunt ze ingestulpte deltoïden noemen. De diagonaal die gehalveerd wordt, ligt buten de figuur. Om het snijpunt te bepalen, moet je de andere diagonaal langer maken.

.

Meetkunde: alle artikelen

Vrijeschool in beeld: 6e klas meetkunde

 

1140

 

 

 

 

 

 

 

 

 

 

.

 

 

VRIJESCHOOL – Meetkunde (4-4)

.

Ter verduidelijking heb ik in een tekening wat letters aangebracht – het is een deel uit de grotere tekening.

Over het ontstaan van een gelijkzijdige driehoek

Teken eens drie cirkels X. Y, Z die ieder door het middelpunt van de twee andere gaan. Er ontstaan drie grote bladeren: AYZX; YZCX; XYBZ  en door de punten van ieder blad trek je een rechte lijn: a, b en c. Het resultaat is het belangrijke feit dat deze drie rechten elkaar in één punt D snijden. Dat kan niet anders, want dan zouden de drie grote bladeren uit ongelijke boogstukken moeten bestaan. En dan zou echter iedere cirkel onmogelijk door het middelpunt van de beide andere kunnen gaan.

 

meetkunde-strakosch-3-1

 

 

 

 

 

 

 

Voor twee van de drie punten pas je nu toe wat voor deze tekening al werd gezegd, (meetkunde 4-3) wanneer je de cirkelmiddelpunten op de drie rechten steeds verder naar buiten op laat schuiven. Zodra deze middelpunten in het oneindige vallen, worden de ieder door twee punten gaande cirkelbogen tot rechten:

In deze tekening (uit 4-3) is er 1 zo’n rechte lijn ontstaan; hier doet Strakosch
meetkunde-53

het met 2 punten en dan zie je de rechte lijnen – die met de vele steeds vlakker wordende boogjes ontstaan:
meetkunde-strakosch-3
Je.kan echter ook, zoals hieronder, de middelpunten op de drie rechten in plaats van naar buiten, ook naar binnen laten verschuiven, naar het middelpunt van de driehoek toe, het snijpunt van de drie rechten. Daarbij worden de boogstukken tussen elke twee punten meer gebogen. Wanneer tenslotte de drie middelpunten met het snijpunt van de drie rechten samenvallen, dan ontstaat een drievoudige cirkel door de drie punten. (Worden bij het opschuiven naar binnen de drie middelpunten even ver van het snijpunten van de drie rechten genomen, wat vrij staat, dan liggen de snijpunten van de deze cirkels op dezelfde rechten – en wel op het gepuncteerde deel.):
meetkunde-54

Wanneer je de beweging van de middelpunten naar buiten en naar binnen in dezelfde tekning weergeeft, krijg je een cirkel waarin een gelijkzijdige driehoek ingeschreven is, een van de basisfiguren van de geometrie.

Op basis van wat zojuist werd opgemerkt en door de tekeningen hoef je het trekken van rechte lijnen in regelmatige cirkelvelden niet meer als een vreemd, erbij gehaald element te zien..

Ook het vierkant kun je in het cirkelveld intekenen.
In de middencirkel van een ‘bloem’ teken je een zeshoek:

meetkunde-31

 

 

 

 

 

 

 

meetkunde-strakosch-4-1
Op  iedere hoek komen twee grote bladeren bij elkaar waarvan de middelpunten (deels verlengd en gepuncteerd) loodrecht op de zijden van de zeshoek staan die door de aanliggende kleine blaadjes gevormd worden. Ieder door een van de hoekpunten gaande cirkels snijdt op de middellijnen de lengte van zeshoekszijde. De verbindingslijnen van deze punten zijn de vier zijden van de zo ontstane zes vierkanten.

Snijd je de inzet tussen de vierkanten weg en breng je de vierkanten omhoog, dan krijg je een doosje. De vlakken kunnen binnen en buiten (wanneer je de tekening op de achterkant met behulp van de middelpunten nog een keer maakt) met behulp van de cirkels, gekleurd worden. –

Tussen ieder twee vierkanten ligt een klein blad. Snijd je ze langs hun middellijn door en schuif je de zo ontstane tussenruimten over elkaar, dan krijg je een schaal.

Meetkunde: alle artikelen

 

Vrijeschool in beeld: 6e klas meetkunde

1134

 

 

 

 

 

 

 

 

 

 

 

.

 

VRIJESCHOOL – 6e klas – meetkunde (2-3/2)

.

1e week    3e week   4e week

Hier volgt een impressie van de 2e week van de periode meetkunde in klas 6.

Als voorbereiding is het raadzaam Meetkunde [1]   en [2] te bestudere

Vakkenintegratie is belangrijk: de leerlingen kunnen ervaren hoe alles met elkaar samenhangt. En wat ze in het ene vak leren, zien ze in een ander vak, vanuit een ander standpunt, terug.

Een indeling in dagen is nu niet zo makkelijk te geven, want als je bijv. teruggaat naar de 5e klas – Egypte – en je laat na, na het vertellen over hoe de akkers werden gemeten, de ‘godin van de richting’te tekenen – of aan het eind van de 1e dag daar een begin mee maken, wordt de tijdsindeling anders.

De tweede week

Een eerste dag

In klas 5 kwam in de gechiedenisperioden ook Egypte aan de beurt.

In het hier al genoemde boek van Alexander Strakosch besteedt de schrijver ook aandacht aan Egypte:

Wanneer duidelijk is geworden dat je kennelijk ‘stukken grond’ met een stok en een touw kunt bepalen, moet dat ook worden bekeken:

meetkunde-32

En hierin is wel een rechthoekige akker te zien:

meetkunde-33

Dit is een zeer belangrijk ogenblik in de meetkundeperiode: voor het eerst wordt duidelijk dat een meetkundig figuur – hier de rechthoek – ontstaat vanuit de cirkel. We gaan natuurlijk vanaf nu na of dat voor elke andere figuur ook geldt.

We gaan terug naar de eerste week en nemen deze tekening:

meetkunde-23

Daarin tekenen we alle mogelijke lijnen, nadat we ons goed gerealiseerd hebben, dat de lijnen een verbinding vormen tussen punten, zoals bij de rechthoek ontdekt werd.

meetkunde-34

De kinderen zien in ieder geval driehoeken en ja, ook deze figuur ontstaat in de cirkel; en ‘déze figuur’, waarmee ze de ontstane ruit bedoelen.

Maar ‘deze figuur’ is niet echt handig als mogelijkheid om iets in een meetkundige tekening aan te duiden.
En daar hebben de mensen iets voor bedacht. Een afspraak die over de hele wereld geldt: punten geven we een letter uit het alfabet en we schrijven die met een hoofdletter.

meetkunde-35

Wanneer je naar die punten kijkt, blijken het hoekpunten te zijn, maar D bijv. is ook middelpunt van een cirkel.

Meestal gebruiken we voor het middelpunt de letter M, maar het is niet verplicht.

Het telkens moeten opschrijven: ‘teken een cirkel met een middelpunt M’ zijn wel veel woorden en daarom werken de mensen liever met symbolen en dat gaan wij ook voortaaan doen, dus zo:

ꙩ M

En nu we toch weer bij de cirkel stilstaan en aan het benoemen zijn, willen we ook weten hoe we de lijn noemen die de grootte van de cirkel bepaalt.

Wanneer de leerlingen ‘middellijn’ zeggen, is dit niet fout, maar hoe ontstaat dan die middellijn. Met een bepaald stukje lijn tussen de passer.

Dat bepaalde stukje lijn noemen de mensen een lijnstuk: van A naar B; of van D naar E. En omdat we het woord ‘naar’ niet echt nodig hebben, laten we dat weg: lijnstuk AB en/of DE enz.

In bovenstaande tekening kunnen we nu alle lijnstukken benoemen.

En we zien nu dat lijnstuk AD; DC; DB; DE; AB; BF even groot zijn, want het zijn dezelfde lijnstukken die we tussen de passer hadden toen we met de 1e cirkel begonnen.

Toen we in de 1e week deze tekening maakten:

meetkunde-10

was het woord ‘stralen’ al eens gevallen en ja, al deze lijnen zijn stralen.

Het Latijnse woord voor straal  = radius en de =r= staat symbool voor dit lijnstuk.

Dus als er dit staat:

Ꙩ M  r=5, dan weet je dat je een cirkel M – dit is het middelpunt – moet tekenen met een straal van 5 cm.

Ook de middellijn kunnen nu nog anders benoemen: 2 x de straal of wel 2  x   r. Dus 2r.

Uiteraard is het goed om te kinderen zelf de omschrijvingen te laten vinden! Zoals al eerder gezegd: ze zijn soms sprekender dan de officieel gangbare; maar de laatste leren we.

Een tweede dag
Voor je weer verder gaat met de lesstof, is het iedere dag belangrijk te herhalen wat er eerder werd geleerd. De ontstane begrippen, symbolen. Of in het algemeen: wat hebben we tot nog toe geleerd.

We gaan ook weer naar de ‘bloem’ kijken en tekenen Ꙩ M   r=5    r = MA

meetkunde-38

r blijft 5 en we tekenen nu vanuit A  Ꙩ A. De snijpunten waar deze cirkel de omtrek van Ꙩ M  raakt, noemen we B en C. Je ziet meteen dat AC een straal is van  Ꙩ A en AB eveneens.

meetkunde-39

We kunnen nu al de conclusie trekken dat MA=AB=AC

Met dezelfde passergrootte trekken we vanuit B    Ꙩ  B:
Het snijpunt op de omtrek van Ꙩ  M   noemen we D

meetkunde-40

En: BD = MA= AB (= AC, die ik hier niet teken om duidelijker te laten zien hoe de figuur verder groeit)

Weer verder met vanuit D: Ꙩ  D

meetkunde-41

We vinden op de omtrek van Ꙩ  M een nieuw snijpunt dat we E noemen.

Je kunt de letters omkeren, wanneer je vanuit de andere richting benoemt, wat je zeker moet doen om te laten zien dat het niet per se op één manier hoeft:

ED = DB =BA = AM

Vanuit E doen we het nog eens: snijpunt F

meetkunde-42

MA = AB = BD = DE = EF

En nog eens vanuit F: het snijpunt C staat er al!

meetkunde-43

CF = FE = ED = DB = BA = AM

Wanneer we dan nog C als middelpunt van de Ꙩ  C nemen:

meetkunde-44

zijn we rond en kunnen we concluderen dat AB =BD=DE=EF=FC=CA=AM

Dat betekent dat al deze lijnstukken evengroot zijn. Dat we hier 6 even grote stralen hebben en als we naar cirkel M kijken, hebben op die cirkelboog 6 punten gekregen die evenver van elkaar moeten liggen, omdat de afstand die tussen deze punten ligt dezelfde lijn is: straal MA.

Daarmee hebben we bewezen dat de straal van een cirkel 6 x op de omtrek past, m.a.w. we kunnen nu een cirkelboog in 6 gelijke delen verdelen.

Ook zien we in, dat we niet steeds de volledige cirkel hoeven te tekenen, maar alleen de punten die we nodig hebben.

meetkunde-45

De kinderen moeten er goed van doordrongen zijn, dat we, telkens als we iets willen construeren en we deze kleine boogjes zetten, we eigenlijk cirkels tekenen die we niet echt nodig hebben, maar die, als we ze wel volledig tekenen ons laten zien waarom het juist is wat we doen: het bewijs is er in te lezen!

Nu we de cirkel geometrisch juist in 6-en kunnen verdelen, levert dat weer nieuwe mogelijkheden op:

We zijn in staat een zeshoek én een zesster te construeren – het nieuwe woord dat we voortaan zullen gebruiken, mét het woord ‘constructie’.

En als we de cirkel(s) niet echt nodig hebben, tekenen we die uiterst dun, zodat we de overbodige lijnen later kunnen verwijderen:

meetkunde-46

Uiteraard levert dat weer vele schoonheidsvormen op:

6e-klas-meetkunde-2d

VRIJESCHOOL in beeld: 6e klas meetkunde onder nummer 2

Na een best inspannende manier van voorstellen om tot bovenstaande bewijzen te komen, is het fijn als er in het kunstzinnige toepassen weer een andere kwaliteit wordt aangesproken dan het denken: de wil in de exacte uitvoering van bijv. de zesster  en het gevoel in het zoeken van mooie kleurcombinaties.
Daarmee wordt dan dag 2 afgesloten.

Een derde dag
Nu we een tijdlang aan de cirkel hebben gewerkt, is het misschien een mooi tegengesteld onderwerp: de rechte lijn.
Als voorbereiding zou je nu meetkunde 4-3 kunnen bestuderen.
Omdat het goed is er telkens aan te denken, hoe kun je met de leerlingen ‘levend’ denken, welke weg kun je gaan om van levende begrippen – en hoe minder subjectief die zijn, des te meer zijn het ‘ideeën’, geestelijke realiteiten, in een zekere verstarring te komen, dus bij het begrip dat weinig ruimte meer laat: de definitie.
Zo zou je hier – zie Strakosch – ook van een cirkel uit kunnen gaan en – in gedachten – de middellijn langer kunnen denken . Wat gebeurt er dan met de cirkelboog. Deze komt dus steeds lager te liggen, totdat hij samenvalt met de middellijn. Je kunt even een uitstapje maken naar ronde of bijna ronde voorwerpen in je omgeving en deze op soortgelijke manier veranderen. Hilariteit! Ook als je de omgekeerde weg bewandelt en een rechte lijn probeert ‘naar een halve boog te denken’. Hoe wonderlijk en vreemd zou de wereld eruit zien, als dit ook met de materie zou kunnen. (Het principe van de lachspiegel!)

Nu laten we deze oefening even rusten.
We nemen de passer en tekenen Ꙩ,  r=willekeurig (maar niet te groot). We trekken de straal. Iets verder naast het middelpunt zetten we de passerpunt op de straal en in het verlengde van de straal, met dezelfde straalgrootte, zetten we een klein boogje ( dat is dus weer een heel klein gedeelte van een cirkel. Dat herhalen we een aantal keren.

meetkunde-55
Nu kunnen we weer een voorstellingsoefening doen: Denk je eens in dat we de passerpunt op de straal bijna op het middelpunt hadden gezet en zoals boven, een cirkelboogje getrokken en dat vele keren achter elkaar. Wat zie je buiten de cirkel in het verlengde van de straal ontstaan: heel veel dicht bij elkaar liggende kleine boogjes. Als je die boogjes nog kleiner denkt, krijg je het kleinst denkbare boogje: een punt. En als je die punten heel dicht tegen elkaar aan denkt, heb je een……lijn.
En daarom wordt er van de lijn gezegd dat het een verzameling van punten is.

meetkunde-56

We hebben de lijn dus leren kennen als ‘een spoor van een beweging’, onzichtbaar totdat er concreet – op aarde, op papier enz. – een stukje ervan zichtbaar wordt; en nu als een verzameling punten.

meetkunde-57Dit is een lijn

meetkunde-58Het zichtbaar geworden stuk: een lijnstuk. Een begrensd stuk, vandaar dat het afgebakend dient te worden:

meetkunde-59

strikt genomen kunnen we dus niet zomaar over ‘een lijn’ spreken als we die in de meetkunde nodig hebben. We moeten eigenlijk steeds ‘lijnstuk’ zeggen. Maar in het dagelijks spraakgebruik zeggen we toch meestal: een lijn van 5 cm bijv.

Wanneer je dit consequent verder denkt is een halve lijn dus dit:

meetkunde-60

Niet dat de leerlingen dat allemaal hoeven te weten (maar er zijn er altijd bij die deze wetenschap prachtig vinden, dus waarom niet), het is wél goed dat ze kennis maken met een wereld waarin het om exact formuleren gaat, om goede afspraken die voor iedereen gelden.

Uiteraard komt de vraag: wat is dan de helft van een lijn, dus in het spraakgebruik: een halve lijn – meetkundig gezegd: een half, de helft van een lijnstuk.
En als je dit niet met liniaal mag meten – of kunt meten – dan moet deze geconstrueerd kunnen worden. Hoe?
Je raadt het al: terug naar de cirkel(s).

meetkunde-35

De driehoeken ABC en ADC zijn op precies gelijke manier getekend. Als je ABC omklapt met AGC als vouwlijn, vallen ze precies over elkaar: ze zijn dus gelijk. Dat geldt ook voor ABD en CBD. Als je die omvouwt met BGD als vouwlijn, vallen ze ook precies over elkaar. Dat geldt dan ook voor ABG en BGC.
Daaruit volgt dat AG = GC en BG=GD.

Omdat we ‘daaruit volgt’ nog vaak nodig hebben, leren we alvast het geometrische teken daarvoor: →

M.a.w. we hebben het lijnstuk AC precies in het midden gedeeld in G.

We trekken een lijnstuk AB van bijv. 5 cm. Deze nemen we als straal en maken vanuit A en B 2 cirkels met de snijpunten C en D. We trekken CD die AB snijdt in G. G is het midden van AB.

meetkunde-61

Nu gaan we de overtollige lijnen weglaten:

meetkunde-62

Alleen de kleine omcirkelboogjes zijn nodig en punt G.

Het is goed om dit zo (lang) te oefenen (tot)dat ieder kind het moeiteloos kan. En ook weet waarom het goed is.
Dat hoort dus bij het herhalen, de volgende morgen: wat hebben we gisteren geleerd.
Nu komt het zeker aan op juist en in volgorde van handelen te formuleren.
Natuurlijk worden ook alle begrippen en symbolen iedere keer herhaald.

Nu we een lijnstuk kunnen delen, nemen de mogelijkheden om dit kunstzinnig toe te passen enorm toe. Want de 6-ster en de 6-hoek kunnen nu 12-ster en 12-hoek worden, met al die variaties waarvan we hier maar een klein deel zien:
(voor meer achtergrond: meetkunde 4-5)

VRIJESCHOOL in beeld: 6e klas meetkunde –  (onder nr. 4)

.
6e-klas-meetkunde-23

Een vierde dag
De geleerde constructie van gisteren wordt, nadat deze door de kinderen mondeling beschreven is, in het periodeschrift bij de constructies nauwkeurig schriftelijk beschreven. Dit kan bijv. ook een opdracht zijn voor thuis.

Het zal niet moeilijk zijn in te zien, dat je met het delen van een lijnstuk – zie boven – wanneer je G gevonden hebt – tegelijk eigenlijk een loodrechte lijn in G hebt opgericht. Loodrecht omdat G van driehoek ABG net zo groot is als hoek G van driehoek CBG, dus moet de lijn precies loodrecht staan.

Van hieruit proberen we nu een loodlijn op te richten op een willekeurig punt G op lijnstuk AB:

meetkunde-63

Gegeven: lijnstuk AB = 5cm
Punt G willekeurig
Gevraagd: loodlijn in G

Je zorgt ervoor dat G in het midden komt te liggen door GB als straal te nemen en deze af te zetten op GA, snijpunt C. Nu ben je bij het uitgangspunt van de constructie om een lijn doormidden te delen. Je neemt de opening tussen de passer iets groter en cirkelt boven G om vanuit C en B. Snijpunt D. Vanuit G naar D getrokken is de gevraagde lijn de loodlijn. Je kunt hem ook doortrekken naar E als je vanuit C en B omcirkeld hebt.

Een nieuw symbool: staat loodrecht op:   ⊥

Bij de constructie van een lijnstuk halveren, een loodlijn oprichten op een gegeven punt op een willekeurig(e) lijn(stuk, ‘hoort’ eigenlijk nog de construcite vanuit een gegeven punt boven (of onder) een willekeurig(e) lijn(stuk een loodlijn neerlaten, dan wel oprichten. ‘Hoort’ omdat ze bijna hetzelfde zijn.

Voor het lijnstuk onder de gegeven punt, nemen we nu eerst maar wat het meest natuurlijk lijkt: een horizontale.

Rond deze vorm kun je het nog over de heemkundeperiode in de 3e klas hebben, waarin de huizenbouw aan de orde kwam. Bij alle gereedschappen is zeker ook het schietlood behandeld en is het ‘lood’ in loodrecht weer wat duidelijker.

Gegeven:
willekeurig punt X en lijn a
Gevraagd: vanuit X een loodlijn op a

meetkunde-64

Neem een straal tussen de passer zo groot dat omcirkelen vanuit X op a twee snijpunten geeft: A  en   B.
Cirkel vanuit deze punten onder lijn a zo om dat de boogjes elkaar snijden: Y
Trek vanuit X met een liniaal het lijnstuk X tot op lijnstuk AB: C
XC is de gevraagde lijn.
Het is goed om zo precies te zijn, dat – hoewel XC en CX even groot zijn, tóch XC te zeggen, omdat de vraag is: vanuit punt X
C is dus ook het punt wanneer we vanuit Y een loodlijn op a construeren.

Om nog even bij de loodlijnen te blijven en ons te realiseren dat we de constructies eigenlijk maken met behulp van cirkels waarvan echter alleen maar kleine (om)cirkelboogjes worden gebruikt, is dit bijv. een mooie kunstzinnige verwerking:

Vanuit (het denkbeeldige) A en B is op XY steeds met een kleiner wordende straal omcirkeld. Zou je de straal bijv. steeds 1 cm kleiner willen maken, dan moet je die grootte vanaf een liniaal overnemen.

6e-klas-meetkunde-29

Een vijfde dag
Het herhalen neemt elke dag wel een bepaalde begintijd in.
Soms moet er ook gelegenheid zijn om dingen af te maken.
vooral de kunstzinnige tekeningen. Die kunnen ook wel als huiswerk thuis afgemaakt worden.

Inmiddels kunnen de leerlingen zessterren- en hoeken tekenen; daarin driehoeken; twaalfsterren- en hoeken met daarin ook weer driehoeken en vierkanten enz.
Omgekeerd is het ook een hele opgave om een kunstzinnige tekening zo te doorzien, dat je weet hoe die tot stand is gekomen.

Hoe is deze gemaakt?

6e-klas-meetkunde-31

Vanuit de waarneming de volgorde van handelen proberen te zien.
1)  de grote cirkel
2) zesmaal de straal afzetten op de cirkelboog
3) het midden bepalen van 1 zo’n boogje
4) vandaaruit weer zes keer afzetten op de cirkelboog: er zijn nu twaalf punten
5) De punten zo verbinden dat je er telkens twee overslaat
6) Het staande vierkant helemaal tekenen
7) Het vierkant daaronder: alleen de lijnen die zichtbaar zijn
8) Het onderste vierkant: alleen de lijnen die zichtbaar zijn.

Uiteraard maken de kinderen er zelf ook een, met andere kleuren; of halen bijv. als laatste de cirkel weg, waardoor er een puntiger karakter ontstaat.

Je kunt ervoor zorgen dat je een aantal van bovenstaande vormen – oplopend in moeilijkheidsgraad – klaar hebt liggen, die de leerlingen kunnen uitzoeken en meenemen naar hun plaats om de constructie ervan te vinden en uit te voeren.

cirkel; liniaal; lineair; willekeurig; onwillekeurig; omtrek; middellijn; middelpunt, verticaal, horizontaal, diagonaal; vlak; snijden; straal; snijpunt; constructie, construeren; zesster; zeshoek (hexagram, hexagoon); cirkelboog; verzameling; lijn; lijnstuk; loodlijn;

symbolen:
Ꙩ             cirkel met middelpunt
cirkel met middelpunt M
r              radius = straal
2r           2x de radius = de middellijn
→           daaruit volgt
⊥            staat loodrecht op

suggesties voor de periode:

1e week
3e week
4e week

6e klas: alle artikelen (waarbij de meetkunde-artikelen)

meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

.

1130

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

VRIJESCHOOL – Meetkunde (4-5)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 21 t/m 22

Over de bloem met de twaalf blaadjes

meetkunde-strakosch-4-2

Tussen twee kleine blaadjes* ontspringt een groot blad als direct vervolg van de bogen die de kleine blaadjes insluiten. De punten van de grote blaadjes liggen weer op een cirkel waarvan de straal even groot is als de lengte van het grote blad.**

Trek je door de grote alsmede door de kleine blaadjes een rechte lijn van punt naar punt, ontstaan er om het gemeenschappelijke middelpunt twaalf gelijke hoeken van ieder 360° : 12 = 30°  (tekening hierboven)

De punten als een rondje waar de cirkel de zes assen van de grote blaadjes snijdt, halveren ieder de boog tussen de punt van de kleine blaadjes. Wanneer je vanuit die punten met een gelijke straal cirkels trekt, ontstaan opnieuw zes blaadjes; in totaal krijg je dus een ‘bloem’ met twaalf blaadjes:

meetkunde-strakosch-4-6

Je kan echter niet een heel blad met ‘bloemen van twaalf blaadjes vullen; want bij ieder ring van cirkels die je rond de begincirkel tekent, verschuiven de middelpunten ieder met de breedte van een klein blad, zoals je kan ervaren bij het maken van deze tekening.

Daarvoor in de plaas biedt de bloem met de twaalf blaadjes de gelegenheid een nieuwe wetmatigheid in te zien. Terwijl zich bij de zes-bloem steeds gelijkzijdige driehoeken vormden of figuren die daaruit te vormen zijn (zeshoeken, ruiten) kan je hier ook vierkanten ontdekken. De volgende drie tekeningen laten een serie voorbeelden zien waarmee de hoeveelheid nog lang niet uitgeput is en de liefhebber rijkelijk gelegenheid biedt om ze zelf uit te werken. Daarbij moet je er echter op letten, dat de verlengde zijden van de vierkanten, ruiten of zeshoeken op de snijpunten van cirkels of in het midden van de driehoeken liggen. Je vindt steeds aanknopingspunten in de omgeving, je hebt een goede controle voor een precieze tekening en leert steeds meer de wetmatigheden kennen.

meetkunde-strakosch-4-3

 

meetkunde-strakosch-4-4

 

meetkunde-strakosch-4-5

 

*kijk naar de bovenste twee cirkels De twee kleine blaadjes met de stippellijn erdoorheen zijn ‘de kleine blaadjes’ en het ‘grote blad’ is het blad waarin deze twee kleinere liggen met ook nog een grotere ronde punt.
**Dat zie ik niet. Strakosch merkt over die lijn op: deze lengte, preciezer gezegd de lengte van zijn middellijn is √3, wanneer de lengte van het kleine blad als eenheid wordt genomen. √3 is echter ook de lengte van de ruimtediaognaal van een kubus met een lengte van 1. Zo zit in deze eenvoudigste constructie in het plattevlak een belangrijke wetmatigheid van de ruimte verborgen.

 

Vrijeschool in beeld: 6e klas meetkunde

Meetkunde: alle artikelen

 

1129

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Meetkunde (4-3)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 19 t/m 20

Over het ontstaan van de rechte lijn

Na wat over de cirkel als oervorm is gezegd, zou het als een soort inbreuk beschouwd kunnen worden, wanneer je rechte lijnen in het cirkelveld zou willen tekenen.
Daarom zal er aan een paar oefeningen getoond worden, hoe er in een cirkelveld lijnen kunnen ontstaan en wel zo, als zogenaamde grensgevallen van cirkels. Hiervoor moet je het feit helder hebben dat een cirkelboog, d.w.z. een deelstuk van de cirkelomtrrek des te vlakker wordt, naarmate de doorsnede van de betreffende cirkel langer wordt. Stel je dan voor dat het middelpunt steeds verder in de verte verdwijnt. De doorsnede kan uiteindelijk zo lang worden dat voor het oog en zelfs bij meting het boogstuk geen duidelijke afwijking meer vertoont t.o.v. een rechte lijn.  Zolang echter de doorsnede – ook al is deze nog zo groot – een meetbare grootte heeft, dus mathematisch gesproken: meetbaar _ eindig, zolang is een boog van zo’n cirkel, mathematisch gezien, nog geen rechte lijn. Dat wordt deze pas op het ogenblik dat het middelpunt in het ‘oneindige’ verdwijnt en de doorsnede dus geen begrensde lengte meer heeft, maar een die boven al het meten en voorstellen uitgaat, dus ‘oneindig’. Je kunt een rechte lijn dus opvatten als een boogstuk van een cirkel, waarvan het middelpunt in het oneidige licht.

Maar een rechte lijn kan ook ontstaan als een rij punten die bij een bepaalde plaats horen, de zgn. ‘geometrische plaats’:

meetkunde-52

 

Om twee willekeurige punten als middelpunt trek je cirkels en wel met zo dat iedere twee dezelfde straal hebben. Iedere twee van die even grote cirkels snijden elkaar in twee snijpunten en al deze snijpunten liggen op een rechte lijn.

meetkunde-53

Hier zijn twee willekeurige punten genomen als middelpunt waaromheen twee cirkels zijn getrokken. Door hun snijpunten is – zoals hierboven – een rechte ontstaan (met puntjes getekend) Door de middelpunten die we net genomen hebben, kun je cirkelbundels trekken; de middelpunten van de cirkels liggen op de rechte met de puntjes. Hoe verder die middelpunten in beide richtingen uit elkaar gaan, des te vlakker worden de boogstukken tussen de beide punten. Wanneer de middelpunten aan beide kanten in het oneindige verdwijnen, dan worden de boogstukken tussen de beide punten rechte lijnen, die op elkaar liggen, een dubbele rechte vormen; want door beide punten kun je nu maar een rechte lijn trekken. (Dit behoort tot de grondbeginselen, de zgn. axioma’s van de geometrie, die ogenschijnlijk hun geldigheid vertonen en geen bewijs nodig hebben).

In de tekening is zo gewerkt dat van de ‘bloem’ de middencirkel en de drie onderste getekend zijn. (De eerste is wat benadrukt). Zo ontstaat een groot blad, waardoorheen de rechte met de punten vastgelegd is en een kleine waarbij de dubbele rechte door hun toppunten loopt*. (De bedoeling van dit boek is dat de vriend van de meetkunde zich niet tevreden stelt alleen naar de tekeningen te kijken, maar deze vaak en vanuit verschillende standpunten zelf uitvoert)

Wanneer je de bladeren met als vouwlijn de lijn met de puntjes omgevouwen denkt, dan zullen alle lijnen boven precies op dezelfde lijnen onder komen te liggen. Zo’n rechte lijn heet een symmetrie-as. Wanneer je goed kijkt zul je moeten bevestigen dat ook de dikke lijn door de twee punten een symmetrie-as is. Uit deze dubbele symmetrie wordt duidelijk dat alle vier hoeken die rond het snijpunt van deze beide rechte lijnen liggen, even groot moeten zijn; dan moeten het rechte hoeken zijn. Je komt weer bij het feit dat een klein blad loodrecht op daarbij behorende grote blad zal staan.

* van de onderste cirkels is dit toppunt beneden

.

Vrijeschool in beeld: 6e klas meetkunde

Meetkunde: alle artikelen

 

1123

 

 

 

VRIJESCHOOL – Meetkunde (4-2)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 16 t/m 19

Over het regelmatige cirkelveld
De bol kunnen we als een soort oervorm in de hele natuur vinden; van de planeten tot in de cellen waaruit alle levende wezens bestaan. Alle vruchten en zaden neigen min of meer tot een ronde vorm en in het mineralenrijk neemt ieder deeltje kwik een bolle vorm aan. Doe je bijv. een druppel olie in een daarbij passend mengsel van water en alcohol, dan zweeft deze daarin als een bol, net zoals iedere in evenwicht zich bevindende druppel. Zelfs een wond in onze huid wordt naarmate deze weer geneest ronder van vorm, ook als deze aanvankelijk nog lang was door een snee of een schram.

Wanneer een lichaam in trilling wordt gebracht, begint deze bij een bepaald trillingsgetal te klinken en van hem uit gaan geluidsgolven. Deze gaan gelijkmatig naar alle kanten en vormen een zgn. bolvormige golf. Dat staat los van de vorm van het lichaam dat tot klinken is gebracht, wanneer we een punt bekijken dat ver genoeg van de geluidsbron vandaan is. Een ronddraaiende staaf, een bel waarop is geslagen worden het middelpunt van een bolvormige golf.
Een ander voorbeeld is nog de zeepbel. Dat allemaal wijst op een onstoffelijk element dat overal de neiging heeft bollen te creëren.
In de mathematica hebben we alleen met de vorm van de bol te maken. Wanneer je probeert een heel precieze beschrijving te geven die ieder ander lichaam wat zijn vorm betreft, uitsluit – een zgn. definitie – dan kun je er niet omheen op een belangrijk punt te wijzen dat niet op de oppervlakte van de bol ligt, maar erbinnen. Dit punt ligt zodanig dat het van alle punten op het oppervlak van de bol even ver af ligt.
Dus wanneer je in een willeleurige richting een rechte lijn door het middelpunt lopend denkt, dan zijn de beide delen tot aan de punten die samenvallen met de oppervlakte van de kogel, dus tot de zgn. snijpunten, in alle gevallen, even groot. Het totaal van alle door een middelpunt gaande stralen ( rechte lijnen zonder einde) noemt men een stralenbundel. Wanneer je alle door een middelpunt gaande stralen bekijkt, kun je zeggen: de kogelvorm snijdt van alle door het middelpunt van een kogel gaande stralenbundel precies even grote stukken ( rechte lijnen van een bepaalde grootte) af. –

Het stuk tussen het middelpunt en de twee snijpunten van een en dezelfde straal heet doorsnede.

Het stuk tussen het middelpunt en één van de snijpunten (je kunt ook zeggen: een willekeurig punt op het oppervlak) heet ‘halfdoorsnede’ (omdat deze half zo lang is) of met een dikwijls gebruikt Latijns woord ‘radius’ – de straal.

Je kan de kogel echter ook door een geheel vlak doorsneden denken en wel zo dat de snede steeds door het middelpunt gaat. Er zijn oneindig veel van deze vlakken die door het middelpunt gaan, een zgn. vlakkenwaaier/bundel. Iedere doorsnijding door het middelpunt snijdt de kogel in twee gelijke halve kogels. Daarbij zal ieder snijvlak iedere keer een cirkel zijn en uit wat hierboven is gezegd, zal makkelijk in te zien zijn,  dat al die cirkels even groot zijn. Dan begrijp je de zin, de definitie, van de grote Oud-Griekse mathematicus Archmedes: “Wanneer alle doorsneden van een lichaam door het middelpunt cirkels zijn, dan is het lichaam een kogel.

We tekenen met de passer ergens op het papier een cirkel. Dan zetten we de punt van de passer op een willekeurig punt van de omtrek en tekenen een nieuwe cirkel, zonder de opening van de passer te veranderen. De nieuwe cirkel zal de eerste op twee punten snijden, die evenver van het middelpunt liggen. In een van de twee punten zetten we weer een cirkel – met dezelfde passeropening -. Daardoor ontstaat weer een nieuw snijpunt en we stellen vast dat dit andere snijpunt samenvalt met het middelpunt van de vorige cirkel. Als we verder gaan, komen wij weer bij het eerste cirkelmiddelpunt uit, waarbij in totaal zes cirkels getrokken zijn, waarvan het middelpunt op de oorspronkelijke cirkel ligt.
Nu stellen we vast:

1.Met dezelfde passeropening kun je op de omtrek van een cirkel zes andere zo neerzetten dat een zevende weer precies op de eerste zou vallen:

meetkunde-31

 

 

tek 2

.
2. De omtrek van de cirkel wordt door de zes middelpunten in zes gelijke delen verdeeld. (Dat deel van de cirkelomtrek noemt men een boog). Dit basisfeit is zo gewoon geworden, dat bijna niemand de diepe betekenis ervan nauwelijks nog bewust is.
Maar stel je eens voor dat de straal niet precies zes maal op de omtrek afgezet kan worden, of niet zou passen; dat er dus een stuk over zou blijven, dat zelfs geen bepaald deel ervan zou zijn – of zelfs dat hij vijf of zeven keer erop zou passen. Dan zou de gehele meetkunde, de hele wereld een andere ordening hebben. Daaraan moet je ook eens denken, zodat je niet vergeet je te verbazen, dat volgens Goethe toch ‘het betere deel van de mensheid’ is. –

Sinds oude tijden moet de cirkelomtrek in 360 delen verdeeeld worden, die men graden noemt. Een boog van een zesde deel van de omtrek meet dus 60° (graden).
Deze indeling werd in de oudste tijden afgeleid van de jaaromloop van de zon. De gradenmaat was oorspronkelijk nog ruimtelijk in de tijd, in de meetkunde is deze alleen nog ruimtelijk.

We hebben dus door de zojuist uitgevoerde constructie een deling in zes delen gekregen. Een andere die in het praktische leven bijzonder belangrijk is, is die in vier gelijke delen van ieder 90°; zo’n hoek heet een rechte hoek en wordt in de meetkunde aangeduid met R.

3.De zes cirkels waarvan het middelpunten gelijkmatig verdeeld op de omtrek van de cirkel liggen, gaan alle door hetzelfde middelpunt. (zie tek. 2)

4.De cirkels snijden elkaar over en weer en er ontstaat een zesbladige vorm = ongeveer zoals die boven het hoofd van de ‘godin van de richting hangt'[1] – de bruine blaadjes:

6e-klas-meetkunde-1a

 

 

 

 

tek. 3

5.Elke twee van de zes cirkels snijden elkaar zo, dat de een door het middelpunt van de ander gaat. Op deze manier ontstaan zes grote bladeren, velden, eveneens om het middelpunt van de eerste cirkel gegroepeerd. De grootste breedte van elk is gelijk aan de straal die alle cirkels gemeenschappelijk hebben (velden in oranje, groen en violet in tekening boven).

6.Laat je van de zes cirkels twee die tegenover elkaar staan weg, dan zie je dat steeds een groot veld met een klein een rechte hoek vormt. Trek je door de punten van de velden rechte lijnen, dan zullen deze loodrecht op elkaar staan:

meetkunde-47

 

 

 

tek. 6

 

7a) Teken je drie cirkels zo, dat ieder door het middelpunt van de ander gaat , dan ontstaan drie grote velden:

meetkunde-29

 

 

 

 

tek 5

7b) Laat je iedere tweede cirkel weg, dan ontstaan maar drie kleine velden, waarvan de drie toppen de cirkel in drie gelijke bogen verdelen van ieder 120°:

meetkunde-30

 

 

 

 

tek 4

Om meer te weten te komen van onze ‘bloem’- de kinderen gaven hem zelfs de naam ‘wonderbloem’- nemen we de kleur als hulp, waarbij we drie basiskleuren nemen: geel (kadmium), rood (karmijn) en blauw (Pruisisch).*

Een blik op de tekeningen hierboven leert, hoe daarbij door het over elkaar kleuren (van te voren goed laten drogen!) de mengkleuren: groen, oranje en violet ontstaan en in het midden een mengkleur uit alle drie. (Om echt zuivere kleuren te krijgen, beginnen we steeds met dat deel van de cirkel te kleuren, dat wit is en dan gaan we – met niet te veel verf op de penseel – over de vlkakken die al eerder gekleurd werden.

Al deze tekeningen laten zien dat je door steeds weer andere kleurpatronen tot een bijna grenzenloze hoeveelheid vormen komt. We vergissen ons als we zouden menen dat een uitvoerig bezig zijn op deze manier als een beetje spelen wordt gezien of als tijdverdrijf. Dat is in tweeërlei opzicht niet het geval. We ontwikkelen een grotere vaardigheid in het nauwkeurig tekenen en in het kleurgebruik, vooral het eerste is onmisbaar  voor ieder die serieus met meetkunde bezig wil zijn. Maar we ontdekken ook steeds weer nieuwe mogelijkheden tot vormgeving; we halen er steeds meer uit als we ons in vrijheid op het trerrein van de wetmatigheid begeven. Dat heeft een diepe betekenis voor het leven; hier wordt het een innerlijke aangelegenheid en zoals je wellicht spoedig merkt, een kracht die harmonisch is, omdat de bron schoonheid is.
Dat geldt nog in hogere mate voor deze oefeningen:

meetkunde-48
tek 7

meetkunde-49

 

 

 

 

 

tek 8

meetkunde-50

 

 

 

 

 

 

 

tek 9

meetkunde-51

 

 

 

 

 

 

 

tek 10

 

Dit versterkt ook het voorstellingsvermogen  en later zullen we in staat zijn ons voorstellend – dus zonder te tekenen – bezig te houden met geometrische waarnemingen en opgaven; bij het tekenend werken zullen we zogezegd meer zien dan dat er op papier staat.

.
meetkunde-30

 

 

 

In tekening 4 worden de drie cirkels waarvan het middelpunt op de in het midden liggende cirkel ligt, in de basiskleuren geel, blauw en rood gekleurd; daarbij ontstaan drie kleine velden in de mengvormen: groen, violet en oranje.

Kleur je in tekening 5 elke cirkel met de primaire kleur, dan ontstaat naast de drie mengkleuren in het midden, waar alle drie de kleuren elkaar overlappen, bruin.

Het is een goede voorbereiding tek. 8 meerdere keren te doen (met zelfgekozen kleuren) en iedere keer de kleuren zo te ordenen dat de rechts en links van het grote veld in het midden liggende helften m.b.t. het grote veld symmetrisch zijn.

Tek. 8, 9 en 10 zijn voorbeelden die een aansporing willen zijn voor de eigen activiteit.
De beoefenaar wordt aangeraden veel meer kleurcombinaties voor het cirkelveld te vinden.

In tek. 9 verschijnen in de mengkleuren aaneengesloten grote en kleine velden die een soort trap vormen. De cirkels in de primaire kleuren zijn louter in parallelle rijen aangelegd.

Net zo in tek. 10, alleen zijn hier de rijen meer over elkaar geschoven en er verschijnen in bruin parallelle rijen kleine velden.

In tek. 8 staan de cirkels in de primaire kleuren in een driehoekopstelling!

Ook in dit opzicht zijn er nog vele nieuwe mogelijkheden.

Het is stimulerend en voor kinderen aan te bevelen, i.p.v. de cirkels helemaal met kleur te vullen, alleen de kleine velden op verschillende manieren te kleuren.** Daarbij ontstaan driehoeken, zeshoeken en zessterren. De laatste ontstaan uit ieder twee zich doordringende gelijkzijdige driehoeken, waarvan de zijden elkaar over en weer in drie gelijke stukken delen.

[1] godin van de richting (Meetkunde 4-1, door Strakosch als tek.1 genummerd)

 

*Strakosch schildert hier klaarblijkelijk. Dat is met de kleinere cirkels die je in het periodenschrift gebruikt, bijna niet te doen. Je moet bijv. over heel fijne penseeltjes beschikken; maar echt precies wordt het nooit en dat is toch de charme van de gekleurde figuren: dat het er exact uitziet.
Dus bleef ik bij het kleurpotlood.

**Kinderen kunnen veel als je het langzaam opbouwt.
Vrijeschool in beeld: 6e klas meetkunde

Meetkunde: alle artikelen

 

1119

 

 

 

 

 

 

 

 

 

.

 

VRIJESCHOOL – 6e klas – meetkunde (4-1)

.

In zijn ‘Geometrie durch übende Anschauung‘ [1] vertelt Alexander Strakosch over het begin van de meetkunde in de cultuur.

Hij gaat daarvoor terug naar het Oude Egypte. Omdat je daarover met de kinderen in de 5e klas hebt gesproken in de geschiedenisperiode***, kun je daar nu op terugkomen.
Omgekeerd kun je in die periode aankondigen, dat je in de 6e klas meer over Egypte zal vertellen tijdens de meetkundeperiode.

Strakosch:
Het begin van het bezigzijn met geometrie vindt plaats in de Oud-Egyptische cultuur (ca 3000 – 800 v.C.)  Over het algemeen hadden de mensen toen nog helemaal niet de denkcapaciteit van tegenwoordig verworven; die begon pas met de cultuurfase die op de Egyptische volgde: het Grieks-Romeinse cultuurtijdperk.
In het Oude Egypte verstonden alleen de priesters door hun speciale opvoeding de kunst zich met mathematica bezig te houden. Terwijl in de vrijwel tegelijk bloeiende Babylonische, Assyrische en Chaldeïsche rijken meer de rekenkunst, de zgn. arithmetica beoefend werd, ontwikkelde zich met name in Egypte de geometrie, maar niet zozeer in de zin van een theorie als wel veel meer als praktische activiteit. Je zou kunnen zeggen: meetkunde werd bedreven.

Deze activiteit vond op twee terreinen plaats: bij de bouw en aanleg van tempels en andere cultische gebouwen, bijv. de piramiden en ook bij het uitmeten van akkers.

De Egyptenaren waren een volk van landbouwers en als zodanig waren zij in de gelukkige omstandigheid dat ze zich geen zorgen hoefden te maken over de bemesting, De geweldige rivier de Nijl,*** die helemaal van zuid naar noord door het land stroomde, trad met de allergrootste regelmaat ieder jaar buiten haar oevers, wanneer het groenachtige sterrenbeeld de hond, Sirius, ’s avonds weer in het oosten opkwam. Wekenlang bedekte de troebele vloed van de Nijl het hele land; wanneer hij zich dan weer in zijn normale loop terugtrok, was alles met een laag van de vruchtbaarste klei bedekt en de bemesting op de meest intensieve en te vertrouwen manier gedaan. Je kunt begrijpen dat de Egyptenaren hun land ‘een geschenk van de Nijl’ noemden – maar de rivier zelf was in hun ogen een geschenk van de goden.

Het grondbezit was in die tijd zo verdeeld, dat een bepaald deel van de koning was, een ander gedeelte van de priesters, een derde en laatste deel voor de soldaten. Het zgn. lagere volk moest het veldwerk verrichten; dat gebeurde ook veelvuldig door slaven uit de volkeren die overwonnen waren.

Wanneer de overstroming echter ten einde was, kon je geen begrenzing van de akkers meer zien – het slib had al het akkerland gelijkmatig bedekt. Zodra het opgedroogd was, moesten de akkers weer opnieuw uitgemeten worden. Dat gebeurde door de priesters die in de tempelscholen waren opgeleid; zij alleen beheersten de kunst van het landmeten.

Waar hadden ze die kennis vandaan? Hoe meer deze oude tijd wordt bestudeerd, met des te grotere verbazing staat men voor de diepe en omvattende wijsheid die de toenmalige priester-wijzen zich op de meest verschillende gebieden eigen hadden gemaakt: niet alleen sterren- en meetkunde, maar ook geneeskunst en scheikunde. Maar het was geen bedachte wetenschap. Men verdiepte zich bijv. met grote aandacht en eerbied in de loop van de sterren en hierbij was het de geschoolden van die tijd mogelijk door een innerlijk ervaren van dergelijke waarnemingen de wetten van de hemel te onderzoeken en het leven daarnaar in te richten.
De verbinding met de scheppende hemelsmachten werd in de tempel verzorgd en men wist – zoals men het toen tot uidrukking bracht – in welk gesternte deze of gene godheid woonde. Opdat deze nu zijn krachten in de voor hen opgerichte tempel het beste zou kunnen zenden en daar ook in zou kunnen verblijven, moest de tempel in de richting van die bepaalde ster staan, zodat op het jaarfeest van de betreffende god de ster bij het opgaan precies in de tempelas stond en het altaar bescheen.

Het is makkelijk in te zien, dat hier al een grondige kennis van de loop der sterren en van de meetkunde noodzakelijk waren – Wanneer er dus een tempel gebouwd moest worden, kwamen uit het heiligdom van de ‘godin van de richting” , die de mensen de richting leerde, de zgn ‘touwspanners”; de naam komt van hun activiteit als landmeter, als veldmeter. Tekenbord, papier uit het merg van de papyrusstruik, de passer in zijn huidige vorm waren onbekend. De dunne bladzijden van papyrus, vervaardigd uit het merg van de papyrus werden gebruikt om te schrijven, niet voor meetkundige tekeningen. Als tekenvlak diende de geëgaliseerde bouwplaats of de eveneens vlakke akkers; alle meetkundige activiteit werd direct op het veld uitgevoerd. Als werktuigen gebruikte men stokken en touw, dit zonder knopen en ook met knopen op regelmatige afstanden van elkaar om lengten te meten, maar ook om hoeken uit te zetten.

De basisvorm van de hele meetkunde is de cirkel, de ronde, bij zichzelf terugkerende lijn waarop alle punten van zijn omtrek, dus de eigenlijke lijn vanuit het middelpunt precies dezelfde afstand hebben. Tegenwoordig zou je misschien bedenken dat dus een steen, aan een touw vastgebonden en in beweging gebracht, een cirkelvormige lijn zou beschrijven. De Oude Egyptenaar zag dat anders. Hij zag in het bewegen van de sterren aan de hemel de uidrukking van de hoogste goddelijke wijsheid en harmonie en wanneer hij op aarde een cirkel moest tekenen, kon hij zich deze activiteit niet anders voorstellen dan met hulp van de ‘godin van de richting’.
Een voorstelling uit die tijd laat ons een dergelijk iets zien:

meetkunde-36

 

 

 

 

 

 

 

 

 

 

 

 

nog een afbeelding: zie onder

We zien twee figuren: een mannelijk figuur met de kenmerken van de priester en koning – en de vrouwelijke gestalte van de godin. Boven haar hoofd zien we een geometrisch figuur, een soort bloem. Beiden gestalten houden in de ene hand een rechtop staande staf en in de andere hand een stok die gebruikt wordt om de staf  met een paar slagen in de grond te slaan. Omdat het gaat om een gewijde handeling, moeten de slagen in een bepaalde, voorgeschreven maat uitgevoerd worden. Rondom de beide staven is een touw zonder einde; de staven worden zo gehouden dat het touw steeds strak gespannen staat.
Bij het uitzetten van de tempelas en van het grondplan werd de godin door een van haar priesters vertegenwoordigd, m.n. de touwspanner. Wanneer de cirkel getrokken moest worden, werd de ene staf in de aarde geslagen en in loodrechte stand vastgehouden. Wie de andere staf vasthield, deed dat ook en liep om de staande staf heen, zo dat het touw steeds gelijkmatig en gespannen bleef en de onderkant een cirkel op de grond trok.

(wat nu volgt is voor de periode meetkunde niet van direct belang, maar geeft wel motieven waarom meetkunde zoals in de 6e klas op de door mij beschreven manier wordt gegeven)

In onze tijd is onderzocht dat de Oud-Egyptische tempels zulke grondoppervlakten hadden en ook verticale projecties, waarbij alle belangrijke punten door het maken van cirkels en het trekken van lijnen door bepaalde snijpunten ontstaan. Het gereedschap dat afgebeeld is, was dus voldoende om de schetsen te tekenen. De lengtes werden van tevoren niet berekend, maar waren het gevolg van vaste punten en snijpunten van de uitgevoerde constructie – zoals de Ouden over het algemeen tekenden en niet berekenden.

Het begin van vlakkenberekening is al wel in het Oude Egypte te vinden.
Een geometrie die meet en rekent hebben de Grieken ontwikkeld op basis van het ondertussen verworven vermogen om zelfstandig te kunnen denken. Hier vinden we ook voor het eerst ‘het bewijs’, namelijk een gedachtegang die laat zien dat een duidelijke formule altijd en onvoorwaardelijk juist moet zijn.

Wanneer we tegenwoordig een cirkel tekenen, denken we er niet aan om een godin aan te roepen die buiten ons om manifest is of haar plaatsvervanger te hulp te roepen. De passer in zijn huidige vorm maakt het ons mogelijk, het met een hand zelf te doen. Dat kan gebeuren doordat de beide staven – dienovereenkomstig aangepast – in een verbinding bij elkaar komen -. We zoeken ook niet meer in de sterren naar de richting voor ons doen  – zoals Schiller zegt -: ‘In je borst zijn de sterren van je lot’.*
De geometrie zelf ontvangen we niet meer als een openbaring van buitenaf; we maken haar ons veel meer eigen met de heldere hedendaagse bewustzijnskrachten en de activiteit die door deze schrijfregels opgeroepen wordt, dient ook dit doel.

De mathematica in het algemeen wordt als een zuivere denkwetenschap gezien, maar in het deelgebied van de geometrie wordt toch ook nog de voorstellingskracht aangesproken en door dit oefenen sterker gemaakt. Dat is voor onze tijd belangrijk. Uit de geschiedenis weten we dat in de bloeitijd van de Griekse cultuur met name de mathematica de basis van de vorming was. Toen wilde men zich een denken verwerven dat in overeenstemming was met universele wetten. In de meetkunde die door de Egyptische priesters a.h.w. uit de hemel was gehaald, zag men een symbool van die wetten. Grote geesten als Pythagoras en Plato*** hebben zich jaren van hun leven aan de studie van de Egyptische geometrie en de rekenkunde uit Babylon en Chaldea gewijd.

De mensheid heeft door de voorbije eeuwen sinds die tijd in de hoogste mate het denken ontwikkeld, maar ze is daarbij wel in een zekere starheid terecht gekomen. De mensen hebben hun gedachten, maar ze vragen zich helaas te weinig af, waar deze vandaan komen, of ze werkelijk wel van hen zijn. Maar ze denken zelf helemaal niet eens zoveel, het denken is onbeweeglijk geworden en dat denken dringt niet op een levende manier tot het wereldse door. De mens stelt zich a.h.w. afzijdig van de wereld op en vormt gedachten die in hun te grote vaststaande vorm en starheid niet goed in overeenstemming zijn met de steeds doorgaande ontwikkelingen in het leven. Daarom komen we van de ene crisis in de andere.

We kunnen echter in de meetkunde weer een fundamenteel vormingselement vinden, wanneer we deze a.h.w. juist tegenovergesteld bekijken dan de Ouden. De mathematica heeft namelijk in het bijzonder sinds de 18e en 19e eeuw grote stappen voorwaarts gezet; in de geometrie is men tot geheel nieuwe gezichtspunten gekomen, waarvan men in de Griekse tijd niets wist. Toen had men in de eerste plaats een metende geometrie; men berekende lengtes, vlakken en lichamen. De moderne meetkunde echter gaat uit van algemene voor de gehele ruimte geldende wetmatigheden die zich openbaren in de wederzijdse positie van de eenvoudige elementen, zoals cirkel en rechte lijn.

Tot nog toe heeft men op de keeper beschouwd de leerlingen op onze scholen kennis laten maken met de geometrie naar de Oud-Griekse methode; zo wordt bijv. in Engeland tegenwoordig** nog vaak volgens een precieze vertaling van de Oud-Griekse leerboeken van Euklides lesgegeven.

Hier zal de methode van Euklides niet vervangen worden door de projectieve meetkunde, maar je kunt tot een andere manier van behandelen komen, wanneer de laatste min of meer door de elementaire geometrie heen klinkt.

Hier volgend willen we het wagen wat in de geometrie verschijnt eerst eens te leren kennen, wanneer we het stap voor stap laten ontstaan door wat we oefenend doen. We komen daarbij tot wetmatigheden waarvan de algemene geldigheid langs de gewone manier bewezen kan worden. – Door de projectieve meetkunde telt het element van de waarneming in de geometrie weer mee en wij willen dat benutten en het daarmee verzorgen. Op deze manier komen deze mathematische dingen weer in beweging en daarmee ons denken. Dit beperkt zich dan niet meer tot het trekken van logische conclusies, wat altijd volgens strenge, maar daardoor ook starre wetten moet gebeuren. In de huidige geometrie komen we echter tot wetmatigheden die net zo streng zijn, bovendien echter nog doortrokken zijn van beweging. We leren ons in een gebied van verheven wetmatigheden vrij te bewegen. Dat is mogelijk doordat we het denken dat in ons star is geworden weer beweeglijk en levendig beginnen te maken en het met de wil te doordringen wanneer we het op deze manier gebruiken. Zo’n denken kan ons ook een juiste plaats in het leven geven, waar we moeten leren wetmatige gegevens te respecteren en ons daarbij toch vrij te ontwikkelen. –

Zo beoefend kan mathematica weer, maar nu voor deze tijd, een element worden dat als basis van een algemene vorming gezien mag worden.

*’In deiner Brust sind deines Schicksals Sterne’

meetkunde-37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

De godin Sesjat met griffel en schrijfpalet.
Bij de bouw vqn de tempel bepaalt zij of een van haar priestres met een meetstrik het grondoppervlak; hierdoor is ze ook ‘godin van de bouwlieden’. Haar belangrijkste taak is het aantal jaren dat de koning als regeringsjaren toebedeeld krijgt op te wchrijven en de jubilea. Haar niet nader te verklaren hoofdversiering lijkt op een zevenstralige ster met een beugel (of een maansikkel) daarboven, dikwijls bekroond met valkenveren. In haar hand houdt zij meestal een bladnerf van een palm; over haar kleed draagt zij vaak een pantervel.
(Lexicon der Götter und Symbole der alten Ägypter – Manfred Lurker)

[1] Geometrie durch übende Anschauung, A.Strakosch – Mellinger Verlag Stuttgart 1962l
(Niet vertaald: Geometrie door het waarnemend te beoefenen)

**Dit boek werd in 1962 uitgegeven

***links door mij aangegeven

Meetkunde: alle artikelen

 

1117

 

 

VRIJESCHOOL – 6e klas – meetkunde (2-3/1)

.

Hier volgt een impressie van een periode meetkunde in de 6e klas.

2e week    3e week   4e week

eerste week

Wie ‘meetkunde’ zegt, bedoelt meestal o.a. het tekenen van cirkels, driehoeken en andere meetkundige figuren; het leren van de eigenschappen daarvan om met deze eigenschappen te kunnen bewijzen.

Tekenen van vormen die in de meetkunde terug te vinden zijn, doen de kinderen al zo gauw ze in de 1e klas zitten, wanneer ze op hun eerste schooldag al bewuster kennis maken met de ‘rechte’ en de ‘ronde’.
Die worden dan in allerlei vormcombinaties geoefend en worden ook toegepast bij het schrijven in hoofdletters*.

Maar ook de kleuter gebruikt, soms letterlijk met verve, de rechte en de ronde wanneer hij z’n ‘oer’zon tekent: de cirkel en de stralen(!).

In de pedagogische voordrachten is er ook sprake van meetkunde tussen het 9e en het 11e, 12e jaar. Zie: Meetkunde(1)

Maar in de 6e klas gaat het nog om meer. Vanaf de geboorte al, natuurlijk, maakt het denken een ontwikkeling door. Voor de kleuter en de 1e-klasser bijv. is dit nog een (zeer) beeldend denken. De ‘onmogelijkheden’ in de sprookjes zijn met zijn manier van denken mogelijk. Dat verandert bij het ouder worden: de sprookjes worden ‘kinderachtig’, terwijl er een groot verlangen blijft de soms eveneens ‘fantastisch’ klinkende verhalen uit de mythologieën te horen.

Hand in hand met de ontwikkeling van het denken gaat o.a. ook het krijgen, hebben of houden van een eigen mening. De kinderen ‘vinden’ ergens iets van. Waarom? ‘Nou, gewoon, daarom!’ Echt verwoorden is nog heel moeilijk. Ze vinden het ‘leuk’ of  ‘stom’.
Je zou dit gerust een ‘subjectief standpunt’ mogen noemen.
En subjectieve standpunten houdt de mens zijn hele leven! Vandaar de vele meningsverschillen.
Maar er komt ook een ogenblik in het leven dat er naast dit subjectieve voelen en denken nog een ander vermogen ontstaat: je te verplaatsen in het standpunt van de ander, of het andere. Je eigen mening los te laten; tot andere inzichten te komen. Denken, dat losser komt te staan van je eigen beleving; dat in dat opzicht minder beleefbaar, minder concreet wordt, dus abstracter.

En dat vermogen krijgt de mens met de puberteit. Maar dan worden ook de gevoelens veel heftiger: ‘storm en drang’!

En dus is het goed om aan de vooravond van nog meer subjectiviteit ook de ontwikkeling van het van nature gegeven vermogen om te objectiveren ter hand te nemen.

Vanaf dit 11e,12e jaar laat Steiner al die vakken beginnen waarin deze objectiviteit gevraagd wordt; waar oorzaak en gevolg heersen, dat de kinderen door hun groeiende vermogen tot inzicht, nu ook gaan ‘snappen’.

Wij allemaal hebben over van alles en nog wat een mening; we doen dingen op een bepaalde manier. Waarom? Vaak weten we dat niet eens (meer).

Wie (’s avonds?) zichzelf nog eens in een soort ‘terugblik’ bekijkt en op de plaats van een kind in zijn klas gaat zitten en vandaar naar de meester of juf die jij bent, kijkt, zal veel aan zichzelf leren opmerken. Veel heen en weer lopen voor de klas (waarom eigenlijk); half op je bureau gaan zitten (daar is een bureau niet voor) (waarom eigenlijk) zal zich veel meer bewust worden van hoe hij of zij voor de klas staat (of zit) – in veel meer dan letterlijke zin -.
Om tot de conclusie te kunnen komen dat je niet eens echt weet waarom je dingen wel of niet doet. Of dat je bij nader zoeken tot de conclusie komt, zoals ik, dat ik een aantal dingen deed, omdat ik die ooit van mijn meester zag, toen ik als kind bij hem in de klas zat!

Daarmee neem je een bepaalde plaats in. Je hebt een standpunt. Je staat ergens (voor). En meestal blijft het daarbij. De verharding van standpunten duidt daarop. Er wordt zelfs gesproken over ‘ingraven’.

Hoe vaak gebeurt het niet dat een ander ons voorhoudt hoe we, wat we deden, ‘beter zo kunnen doen’. Waarom? Omdat die ander dat vindt! De manier waarop jij het doet is minstens net zo goed, maar anders. En om zover te komen dat je dat andere als net zo waardevol kunt zien als jouw opvatting, kost heel veel moeite; meestal komt het er niet van – in dat ver-plaatsen – in de ander: dus een ander standpunt in te nemen.

Rudolf Steiner:
‘Wanneer een boom van verschillende kanten wordt gefotografeerd, is het nog steeds dezelfde boom, maar de foto’s zien er heel verschillend uit; zo kan ook ieder mens zijn eigen mening hebben – afhankelijk van het standpunt waarop hij zich plaatst.’ [1]

Toen ik een meetkundeperiode in de 6e klas moest geven, vond ik in bovenstaand citaat een inspiratie tot een bepaalde manier om de eerste les mee te beginnen.

De eerste dag van de periode
Ik vroeg twee kinderen, los van elkaar, naar buiten te gaan, de een naar de voorkant van de school, de ander naar de achterkant en gaf ze de opdracht mee zoveel mogelijk details te kunnen geven. Als ze weer terug waren in de klas, mochten ze wél de details noemen, maar niet het woord ‘voor- of achterkant’ ‘van de school’ enz. gebruiken, niets wat direct naar het schoolgebwouw verwees. Eenmaal terug in de klas vertelde de een, toen de ander, wat ze hadden waargenomen. Prachtig stonden twee verschillende beschrijvingen – eigenlijk twee standpunten – tegenover elkaar. Het duurde enige tijd voordat een leerling en even later ook andere een vermoeden kregen dat hier sprake was van het schoolgebouw. Uiteindelijk konden we de verschillen goed aanduiden, maar moesten ook tot de conclusie komen, dat het over een en hetzelfde gebouw ging!  En dat dus de ene opvatting niet meer of minder waar(d) was, dan de andere.

Daarover kun je dan met een klas heel goed spreken en als dit onderwerp eenmaal bewuster door de leerlingen wordt doorzien, kunnen ze ook ‘zomaar’ eigen door- of meegemaakte ervaringen weergeven.

Met dit gegeven gingen we naar de gymzaal en daar vroeg ik de kinderen in een kring te gaan staan, maar wel een die precies rond was. Daar stonden de kinderen dan ‘op hun standpunt’; maar aangezien de kring geen cirkel vormde, moesten er nog wat verplaatsingen plaatsvinden. ‘Jij moet naar voren’; ‘nee, jij moet naar achter’; ‘ja, maar dan staat hij niet goed!’ Enz.

“Maar hoe weet je dat,’ bracht ik er tegenin, ‘wie bepaalt dat?’ ‘Wie zou ons kunnen helpen?……Of wat?’ ‘Meten!’, riep een kind. ‘Ja, met een touw!’, een ander.
En inderdaad: het touw als objectief ding, bracht de oplossing. Iemand hield het vast op het middelpunt, een ander aan het uiteinde en waar dit verscheen moesten de leerlingen hun standpunt innemen: een prachtige cirkel – precies rond dus – was ontstaan. Zonder meningsverschil van ‘jij moet vooruit, nee jij achteruit!

En in het touw zagen de kinderen gemakkelijk de passer die voor de objectieve rondheid van de cirkel garant staat.

Terug in de klas begonnen we cirkels te tekenen. Nog niet met de passer, maar ‘uit de hand’. En zo rond mogelijk, natuurlijk.

Dat valt nog niet mee:

meetkunde-5.
Heel vaak komen de kinderen met herinneringen aan ‘vroeger’, toen ze in de kleuterklas of later ‘een zon’ of iets anders rond, tekenden.

De passer moet er natuurlijk aan te pas komen.

Goed gereedschap is ook hier het halve werk. Mijn ervaring is dat je het beste zelf de passers kunt aanschaffen en deze door de kinderen laat gebruiken. Sommige scholen laten de ouders voor de passers betalen. Alles heeft z’n voor en tegen; als de passer kwalitatief maar goed is.
Uiteraard heb je passerpotloodstift bij de hand en ieder kind moet een klein stukje schuurpapier hebben (korrel 80 of 100) om steeds voor een scherpe punt te kunnen zorgen. Het afgeschuurde vlakje bevindt zich aan de buitenkant van het passerbeen.

meetkunde-16

 

 

 

 

In zijn boek ‘Geometrie durch übende Anschauung’ [4] zegt de auteur Alexander Strakosch over het gebruik van de passer:
‘Bij het tekenen van een cirkel, neem je de passer bij de kop, het deel boven het punt waar de benen samenkomen. De kop houd je zo loodrecht mogelijk, tussen duim en wijsvinger van de (rechter)hand. Dan zet je de punt op het papier en draai je eerst een rondje boven het papier – tegen de wijzer van de klok in. Dan op het papier en draai je in één beweging de hele cirkel. De potloodpunt moet deze vorm hebben (zie boven). Het schuinmaken gebeurt met schuurpapier. De niet-geschuurde kant wijst naar binnen. Daardoor wordt bereikt dat bij het stomper worden van de punt de aan de binnenkant getekende lijn toch nog op dezelfde afstand blijft. Tijdens het tekenen moet de passer zo loodrecht mogelijk blijven. Moet de punt op een bepaalde plaats komen te staan, gebeurt dit met de linkerhand en de rechter houdt de passer vast.’

(Ik heb zelf een passer die je moet vasthouden aan een klein staafje dat je eraf kunt schroeven. Als ik de cirkel naar links teken, gaat dat staafje los (omdat je het naar rechts vastdraait). Tegen de wijzers van de klok gaat dan dus niet.)

Als je de eerste dag niet meer aan de passer toekomt, kan het teleurstellend zijn voor de kinderen, wanneer ze zelf de passer – op de 1e dag van de meetkundeperiode – bij zich hebben; waneer je hem uitdeelt, heb je altijd de mogelijkheid om met de belofte ‘morgen de passer’, iets in de kinderen op te roepen van ‘ha, morgen…’

Als dan de passer op tafel ligt, nadat er van alles over is verteld (benen, waar vast te houden, hoe te draaien, hoe lang de punt, waar afgeschuurd, enz), komen er echte cirkels.
Het kleuren gebeurt meer om alles ‘mooi’ af te werken. (Hier bijna letterlijk: af te ronden).

Ze kunnen eerst los van elkaar staan, later elkaar overlappen.

Hier is steeds sprake van ‘willekeurig’.
.

meetkunde-6.
Je kunt natuurlijk je eigen methode ontwerpen – je eigen weg om er te komen.

Ik geef hier een bepaalde werkwijze aan, die zeker niet DE werkwijze is, maar ‘een’, dat is zo mooi aan het vrijeschoolonderwijs: dat je, je baserend op de uitgangspunten – de menskundige – langs je eigen weg kunt streven om het gegeven doel te bereiken.

Een tweede dag
Je zou nu verder kunnen gaan met de cirkel, maar je zou ook naar de tegenstelling, de rechte lijn kunnen gaan. Zodat je a.h.w. – 6 jaar later – nog eens met de rechte en de ronde bezig bent (wat kinderen zich meestal goed herinneren. Het gevoel kan ontstaan dat we in de 1e klas iets deden, wat nu in de 6e terugkomt – anders, want wij zijn anders geworden. Maar ook: de lesstof hangt op deze school met elkaar samen.)

Het is goed om iedere dag, vóór je weer verder gaat, te herhalen, wat er de vorige dag is gedaan. Je kunt de leerlingen dat bewust maken: een soort ‘huiswerk’ met de opdracht: morgen kunnen vertellen wat we gedaan en/of geleerd hebben. Je kunt ze dat zelfs in een schrift(je) laten opschrijven.
(Hier staat over de manier van herhalen een uitleg)
Wat je, aan welk kind, vraagt, kun je nog nader laten afhangen van hoe het kind is.
In GA 302 behandelt Rudolf Steiner verschillende typen kinderen. Hij geeft daarbij ook aan, hoe je deze, door het op een bepaalde manier gebruiken van leerstof, kunt helpen bij hun ontwikkeling.
(Het voert hier nu te ver om er dieper op in te gaan en op deze blog is daar nog geen aandacht aan besteed. In  ‘De menseljke ziel – en de twee stromen uit het tweede hoofdstuk van de ‘Allgemeine Menschenkunde’ heeft Kim Lapré dat gedaan. [2])

Willekeurige lijnen:

meetkunde-7

Vanaf een middelpunt:

meetkunde-8

Ook naar een middelpunt toe.
Dan is het zaak de ogen op dat middelpunt te laten rusten en naar dat punt te blijven kijken, terwijl je de lijn trekt. Vergelijkbaar met het boogschieten: naar de roos kijken; of op de evenwichtsbalk: niet naar de balk kijken, maar naar je eindpunt.

meetkunde-9

Vanuit een middelpunt: even lange lijnen en naar een middelpunt toe: Dat valt uit de hand niet mee: we hebben de passer nodig.

meetkunde-10

Deze tekening werd door de kinderen herkend als ‘wat we in de gymzaal deden’.

Naast de passer is ook de liniaal een onmisbaar gereedschap.
Hij maakt een rechte lijn, zoals de evenaar, de linie. (Zo onthoudt je ook dat het is linIaal en niet linEaal – dat heeft de afleiding lineair!)
Ook deze moet nog even opnieuw (die is tenslotte al behandeld in de 4e klas) in de aandacht komen, waar het gaat om: waar is het begin: meestal niet aan het fysieke begin, maar even verderop, bij de 0.

En niet alles hoeft met kleur:

meetkunde-11

Als de opdracht was: vanuit het middelpunt naar de rand, dan zijn sommige lijnen niet precies genoeg; bij de omgekeerde opdracht, trouwens, ook niet. Dat moet dus nog mooier = preciezer!

Het begrip ‘onwillekeurig’ – geen eigen willekeur – kan hier zijn intrede doen. Je bent niet vrij meer om ‘zomaar’ lijnen te trekken: vanaf of naar het middelpunt toe, ligt vast. Wáár je ze tekent: dat is nog willekeurig.

Zo kun je willekeurige lijnen van rand naar rand tekenen:

meetkunde-12

‘Rand’ ja, het is de rand, maar in de meetkunde waar zoveel lijnen gebruikt worden, krijgen vele lijnen een eigennaam, zoals jullie om te onderscheiden wie wie is, of hier: wat wat is. Hoe zou je deze ‘rand’ kunnen noemen?’
Het is interessant om te zien welke antwoorden er kunnen komen. Soms zijn ze mooier dan de officiële naam. ‘Cirkellrand’, ‘cirkelgrens’, cirkelomlijsting’. Dan is de officiële naam soms wat ontnuchterend.
‘Neem een opening tussen de benen van je passer (ook zo’n uitdrukking vraagt soms enige aandacht…) en kijk – in gedachten – hoe groot die cirkel wordt. Dan teken je hem met de passer. Wat doe je eigenlijk?’ Dan valt het woord ‘omtrekken’, ‘omtrek’ en daar houden we het op. De omtrek van de cirkel. En omdat het ook een lijn is, dus ook: omtrekslijn.

We kunnen achter in het periodescchrift bijv. een woordenlijst aanleggen met de woorden die we leren.**

De lijnen mogen elkaar – weer een nieuw begrip – ook snijden:

meetkunde-13

Wat is de grootst mogelijke lijn in een cirkel?

“We doen wel ‘meetkunde’, maar we gaan de lijnen binnen de cirkel niet met de liniaal meten. Hoe weten we dan, welke de grootste is.’

meetkunde-14

Nu moet er ontdekt worden dat de grootste lijn binnen de cirkel over het middelpunt loopt. Hoe zou zo’n lijn genoemd worden? Dat ligt voor de hand: midden-; middellijn. En het punt waar deze doorheen gaat? Middenpunt; middelpunt.

Vanuit een soort ‘natuurgevoel’ trekken de meeste kinderen de middellijn horizontaal. En op de vraag hoe het nog meer zou kunnen, volgt de verticale. Dat ook diagonale lijnen kunnen, dat is verrassend. ‘Teken maar eens wat middellijnen. Wel exact door het middelpunt, hè!’
Dus: goede puntenslijper voor scherpe punten!

meetkunde-15

Nu zou een (huis)werkopdracht kunnen zijn: hoeveel middellijnen zitten er dan wel niet in een cirkel? Kijk naar je eigen tekening en denk, zie voor je, waar er nog meer passen.
En dan ontdekken de kinderen dat er heeeeeeel veel in kunnen; je kunt ze niet tellen, eigenlijk. Dus ‘DE’ middellijn betaat niet. Er is ‘EEN’ (één of un, dat valt hier samen) middellijn. Hiermee is het begrip ‘middellijn’ beweeglijk geworden, zoals hier het begrip driehoek. Een middellijn, of de(ze) middellijn in deze cirkel, is de geconcretiseerde, ‘stilgezette’ middellijn uit al die ‘bewegende’ (a.h.w. ronddraaiende) middellijnen.

Hier hebben we dus kunnen ‘karakteriseren’ i.p.v. ‘definiëren’.
De definitie komt er aan! Maar eerst het levende beeld: Rudolf Steiner – wegwijzer 15

Uiteraard kun je nog meer tekenvariates bedenken; je kunt ze eerst oefenen op oefenpapier en de kinderen dan de mogelijkheid geven de in hun ogen best geslaagde tekeningen in hun periodeschrift te tekenen.

Een derde dag
Wat betreft de verdeling van de stof over de verschillende dagen, zij opgemerkt dat dit slechts zeer willekeurig is. De ene klas werkt harder dan de andere; valt je periode in de advent- en kersttijd is wellicht het hoofdonderwijs korter door andere activiteiten, enz.

Wanneer het gaat om ‘zich iets voor te stellen’ kun je dit op verschillende manieren benaderen. In de tweede voordracht van de ‘Algemene menskunde’ [3] doet Steiner dit bijv. vanuit het standpunt ‘verleden en toekomst’. Het voorstellingsbeeld van het verleden is het bekende herinneringsbeeld (“Denkend aan Holland, zie ik….”) en het beeld van wat er concreet nog niet is: het fantasiebeeld, de imaginatie. Je voorstellen hoe iets gaat worden, eruit zal gaan zien, is toekomst en derhalve verbonden met de wil. Steiner heeft hierover veel gezegd, al karakteriserend vanuit verschillende standpunten. ‘De wil in het denken brengen’ betekent het denken verlevendigen, vitaliseren. Dat is bijv. wat er bij mediteren kan gebeuren.

Met het oog op dit ‘vooruit denken’ gaf ik de kinderen deze opdracht:

‘Stel je voor, je hebt een schoteltje of een euro, in ieder geval iets wat rond is. Daar precies onder is nog zo’n schoteltje of euro, of wat je hebt. Deze onderste komt langzaam te voorschijn (of de bovenste schuift langzaam weg). Wat zie je dan. Teken dit uit de hand. Het schuift steeds verder: teken verschillende stadia van dit wegschuiven.

Ook dat is niet makkelijk.
Al die jaren dat we vormtekenden, mochten de kinderen in hun tekening die ze gemaakt hadden, verbeteringen in de vorm aanbrengen, a.h.w. vanuit hun eerste poging corrigerend werken. Dat kun je hieronder nog zien:.

meetkunde-17

 

 

 

 

 

 

.

Interessant voor ‘de bewegende voorstelling’ is, dat er door de kinderen allerlei verschillende vormen worden gemaakt:

staand, maar ook liggend (er was bij de opdracht geen richting aangegeven):

meetkunde-18

 

 

 

 

 

meetkunde-19

 

 

 

 

 

 

 

Door ze met elkaar te vergelijken, zie je dat er ‘oneindig’ veel mogelijkheden zijn. Het is a.h.w. net als met de hoeveelheid middellijnen in een cirkel.

(Wanneer kinderen eens sneller klaar zijn met een opdracht, kun je ze altijd stimuleren bovenstaande tekeningen met de hand nóg preciezer uit te voeren).

Als dan duidelijk is geworden dat de schuivende cirkels in allerlei stadia getekend kunnen worden, is het weer tijd voor de passer.

meetkunde-20

 

 
.
Als je de eis gaat stellen dat de cirkels niet naar links of rechts mogen afwijken, klinkt al snel ‘in een rechte lijn’.

Waar komt die lijn dan?

Dat is niet zo moeilijk:

meetkunde-21

 

 

 

 

 

Uiteraard kan deze ook verticaal staan. Maar hoe nog meer?

Ook: diagonaal

meetkunde-22

 

 

 

 

 

 

 

Wanneer de kinderen de opdracht met de diagonaal krijgen, komen er natuurlijk weer net zoveel verschillende tekeningen als er leerlingen zijn. En als we de tekening opzoeken met alle middellijnen, wordt het duidelijk dat op al die middellijnen al die cirkels kunnen. Dat ‘beweeglijk’ denken is een mooie opgave; probeer het zelf eens: de middellijn die als een kompasnaald zich beweegt van noord over oost, zuid en west weer naar noord (of omgekeerd) en op de kompasnaald van boven naar beneden (of omgekeerd) al die zich verschuivende cirkels. Wat een beweging!!

Maar, we gaan de beweging ook weer bevriezen. En heel eenvoudig maken. We nemen maar 2 cirkels die van elkaar verschuiven, zoals we waren begonnen. Nu moeten ze echter in een positie komen die ‘evenwichtig’ is – we kunnen herinneringen ophalen aan de 2e klas toen we voor het eerst symmetrietekeningen oefenden:

vormtekenen-2

 

 

 

 

 

 

vormtekenen-1

 

 

 

 

 

 

[3]

meetkunde-23

 

 

 

 

 

 

 

Kleur wat ze geneenschappelijk hebben. Het is belangrijk dat de kinderen leren zien dat er ‘iets’ is wat behoort bij zowel de ene als de andere cirkel:

meetkunde-24

 

 

 

 

 

Een vierde dag
Uiteraard kun je ook 3 schoteltjes of euro’s op elkaar leggen en deze laten verschuiven. De 3e kan t.o.v. de andere 2 weer allerlei verschillende plaatsen innemen. De voorstellingsoefening kan worden uitgebreid. Laat de kinderen zelf eens beschrijven hoe zij de beweging van al deze cirkels voor zich zien. 

Je kunt nu de werkwijze van ‘met twee cirkels’ ook gaan uitvoeren met 3:

eerst uit de hand:

meetkunde-25

 

 

 

 

 

 

 

Meerdere cirkels erbij:

meetkunde-26

 

 

 

 

 

 

 

En dan weer met de passer. We hebben al geleerd dat het, om het precies te doen, nodig is, lijnen te trekken. En omdat we in de meetkunde alles precies willen doen, gaan we nu, kijkend naar de tekening die je gemaakt hebt uit de hand – die hierboven staat dus – de lijnen denkbeeldig trekken: vóór ons zien.

Die lopen zo:

meetkunde-27

 

 

 

 

 

 

 

Nu gaan we deze tekening niet nog eens maken en dan met de passer; we gaan meteen naar een symmetrie: hoe ziet die eruit?

Kun je je dat weer voorstellen. Waar stopt – in die hele kluwen van bewegende cirkels – die ene vorm. Als je denkt hem te hebben, kun je hem even schetsen en daarna uitvoeren met de passer: meetkunde-28

 

 

 

 

 

Er staat in deze tekening iets wat je niet echt nodig hebt. Zie je dat?

Dat blijken de lijnen te zijn. Hoe kun je dan toch de symmetrie krijgen?

Door het passerpuntje (in het papier) van de ene cirkel te gebruiken voor de andere. Hier ontdekken de kinderen iets wat later aan de orde komt, nl. de cirkels hebben gemeenschappelijke middelpunten (door de even grote straal))

Tekenen en de gemeenschappelijke vlakken kleuren. Dat roept natuurlijk ook het kleuren van de andere vlakken op.

meetkunde-29

 

 

 

 

 

 

 

Ieder kind neemt natuurlijk zijn eigen kleuren, zodat er binnen het vaste gegeven een grote verscheidenheid aan uitvoering uitstaat.

Nu dit eenmaal is gedaan en door de kinderen voor zover ze daartoe in staat zijn, dit hebben kunnen ‘denken’, gaan we verder met 4 cirkels.
Meestal verliet ik hier de procedure die ik vanaf het werken met de 2 cirkels had gevolgd. Je nog méér ‘beweeglijk’ voorstellen, gaat met 4 cirkels bijna niet meer en als het je als leerkracht is gelukt om het de leerlingen met de middellijnen en 2 of 3 verschuivende cirkels te laten uitvoeren, heb je m.i. de kinderen voor het eerst kennis laten maken met ‘beweeglijke begrippen’.

meetkunde-30

 

 

 

 

 

 

Er ontstaat een ‘centrale’ cirkel, waarop de andere worden getekend.
Zo bouw je verder met de 5e  en de laatste, de 6e . De figuur heeft dan 7 cirkels.

Een optimale symmetrie is bereikt:

meetkunde-31

 

 

 

 

 

 

 

Die nu naar eigen fantasie (en schoonheidszin) te mogen kleuren, is voor de meeste kinderen een feest.
Er waren altijd wel kinderen die ze (samen) op het bord wilden maken – met de bordpasser – of deze wilden gebruiken om op de grond op grote vellen papier een grote vorm te maken om die met bordkrijt te kleuren. Zelfs op het schoolplein met stoepkrijt.

Hier staan er verschillende afgebeeld onder nummer 1

Een vijfde dag
Het zou mooi zijn wanneer je bovenstaande lesstof in 1 week zou kunnen behandelen. Wanneer dat niet lukt: geen nood. Je kunt het beter langzamer doen en goed, dan dat je te snel gaat en geen tijd hebt om alles goed te laten aankomen.

Zo’n laatste dag leent zich ook om alles mooi af te werken, af te maken. De ‘bloemen’, zoals de kinderen vaak de tekening met de 7 cirkels noemen, vragen echte aandacht en zorgvuldigheid.

Toen we in de lagere klassen de vormtekeningen ‘in’kleurden, had dat eigenlijk met vormtekenen niet eens zoveel te maken. Voor het maken van de vorm als ‘spoor van een beweging’ had je het inkleuren of ‘versieren’ ook weg kunnen laten.

Bij de zojuist ontstane cirkelvormen is dat niet het geval. De strenge wetmatigheden komen pas echt tot hun recht als ze zichtbaar worden door de kleur. Door hun grotere gecompliceerdheid dan de vormtekeningen, kan het geven van verschillende kleuren ook zichtbaarder maken, waar je naar op zoek bent, of wat je wilt vinden.

Maar door hun strenge symmetrie zichtbaar te maken d.m.v. kleur breng je ook een nieuw element in: dat van het kunstzinnige. De alom geprezen schoonheid van de vormen, wordt nog eens versterkt door -genuanceerd – aangebrachte kleur.

6e-klas-meetkunde-1b

 

 

Dat zou je op de 5e dag, of later, of telkens aan het eind van het hoofdonderwijs kunnen doen:

met wat tot nu toe geleerd is, nieuwe vormen scheppen en kunstzinnig afronden.

De kinderen zullen gemakkelijk snijpunten ontdekken die nog geen middelpunt zijn van een nieuwe cirkel en met dit gegeven kunnen ze ‘eindeloos’ verder.

Is het altijd nodig om de cirkel in z’n geheel te trekken. Wat als je maar een deel doet?

Dat komt in de tweede week aan bod.

Rudolf Steiner wijst met regelmaat op het feit dat het goed is wanneer kinderen ervaren dat de verschillende lesstof met elkaar te maken kan hebben. Omdat die samenhang er in de wereld – in het ‘echt’ is, haal je deze werkelijkheid de klas in en gaan de kinderen voelen dat er samenhang in de wereld is.

Zo zou je terug kunnen gaan naar de 5e klasperiode geschiedenis en wel naar Egypte. Je zal waarschijnlijk verteld hebben over de piramiden; over de bouw
ervan. Wie de grote wiskundigen waren die zo’n kolossaal bouwwerk wisten te ontwerpen.
In het boek van Strakosch vind je in de ‘Inleiding’ verwijzingen naar Egypte.

Deze inleiding is hier vertaald.
.
*Of ze ook gebruikt moeten worden voor het schrijven van de kleine drukletter (in het blokschrift). wordt hier besproken.

[1] De grote Rudolf Steiner citatensite

[2] K.Lapré: ‘De menselijke ziel’ -eigen uitgave -te bestellen via: kimlapre@gmail.com

[3] Over ‘spiegelen

[4] A.Strakosch ‘Geometrie durch übendes Anschauen‘, Mellinger Verlag, Stuttgart

In ‘De filosofie van de vrijheid’ heeft Steiner zeer waardevolle gezichtspunten gegeven over standpunt, waarnemen en denken.
GA 4
vertaald

**cirkel; liniaal; lineair; willekeurig; onwillekeurig; omtrek; middellijn; middelpunt, verticaal, horizontaal, diagonaal; vlak; snijden;

.
suggesties voor de periode:

2e week
3e week
4e week

6e klas: alle artikelen (waarbij de meetkunde-artikelen)

meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

1113

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Meetkunde (1)

.

In zijn ‘Rudolf Steiners Lehrplan für die Waldorfschulen’ [1] heeft E.A. Karl Stockmeyer een samenvatting gegeven van het hoe en waarom van de elementaire meetkunde.

Doelen voor het meetkundeonderwijs:

1e klas:
tekenen voor het leren schrijven

2e en 3e klas:
tekenen van makkelijkere en moeilijkere vormen, puur om de vorm en zonder de relatie tot concrete dingen en voorwerpen, om het bewustzijn voor de ruimte te ontwikkelen als ‘vormingsgebied’. (symmetrie e.d.)

4e en 5e klas:
Meetkundige figuren in het tekenen leren kennen, in het ‘beschrijven’ van hun onderlinge verhoudingen leren begrijpen, dus driehoek, vierkant, cirkel, ellips enz. tot aan de stelling van Pythagoras, op zijn minst wat de gelijkbenige rechthoekige driehoek betreft.

Bij de 4e klas:
Meetkunde: een poging tot formulering:
Nadat in de eerste drie schooljaren eerst getekend is om te leren schrijven; ook geboetseerd puur terwille van de vorm, zonder voorwerpen als voorbeeld, begint op z’n laatst in de 4e klas het tekenen van elementaire meetkundige vormen; de verhoudingen moeten slechts waarnemend gevonden worden.

Bij de 5e klas:
Het waarnemend beschrijven van geometrische vormen wordt voortgezet em geïntensiveerd.

6e t/m 8e klas:
Wat tot nog toe tekenend en beschrijven behandeld werd, moet nu meetkundig ‘bewezen’ begrepen worden. (Tegelijkertijd komt er in het aparte tekenonderwijs de eenvoudige projectie- en schaduwleer)

Bij de 6e klas:
In de meetkunde moet – in overeenstemming met wat voor de 4e klas werd gezegd – een begin worden gemaakt met het bewijzen, ongeveer tot het begrijpen van congruentie van driehoeken en toepassingen ermee. Daarbij zijn de begrippen die in de jaren daarvoor el duidelijk zijn geworden toe te gebruiken, te verhelderen en uit te breiden; in het bijzonder moet de geometrische plaats erbij komen.

Bij de 7e klas:
Voorgesteld wordt in de meetkunde verder te gaan met het kunnen bewijzen, bijv. door de cirkel, het vierkant en de veelhoeken te behandelen. Het begrip ‘meetkundige plaats’moet verder behandeld worden, omdat deze ervoor geschikt is om meetkundige figuren uit het starheid te verlossen en beweeglijk te maken.

Bij de 8e klas:
Naast berekenen van vlakken moeten ook behandeld worden eenvoudige geometrische lichamen te berekenen; de meetkundige plaats nu toepassen op de curven van ellips, hyperbool, casinoïde en de cirkel van Apollonius

Daarnaast maakt Karl Stockmeyer nog een andere indeling:

Er zijn eigenlijk – afgezien van het tekenen om te leren schrijven – drie leerwegen die ieder op zich staan:

1e leerweg:
Vóór het 9e levensjaar wordt het vrije kunstzinnige vormgeven (symmetrie, vormverandering, toenemend in moeilijkheidsgraad, afmaken van een gegeven vorm enz) zonder uiterlijke dingen als voorbeeld te nemen, tekenend, schilderend, boetseren beoefend.

2e leerweg:
Op z’n laatst rond het 9e levensjaar wordt met een eerste meetkundeweg begonnen, die de gebruikelijke meetkundige vormen omvat en hun verhoudingen, maar die moeten nog geheel een innerlijk waarnemen blijven. Het doel is de stelling van Pythagoras.

3e leerweg:
Die begint pas op het 11e- 12e jaar en moet tot een exacte omgang met mathematische kennis leiden en moet daarom wat er tot dan toe geleerd werd door de waarneming, opnieuw vanuit het elementaire doorgenomen worden.

Sinds lang is het zo dat wie het over de meetkundeperiode(n) heeft, de perioden vanaf de 6e klas bedoelt. Waar het gaat om het bewijzen.

Alles ervoor wordt nu toch veel meer gezien als vormtekenen.

 

[1] E.A.Karl Stockmeyer: Rudolf Steiners Lehrplan für die Waldorfschulen

Nu:  Angaben Rudolf Steiners für den Waldorfschulunterricht

6e klas: meetkunde

7e klas: meetkunde

kringspelen en meetkunde

 

Het artikel zal verder uitgewerkt worden.

 

1110

 

VRIJESCHOOL – Meetkunde – 6e klas (2-1)

.

MEETKUNDE

meetkunde tussen het twaalfde jaar en de puberteit

Het kind heeft een lange weg afgelegd voor het in deze periode tot eigen abstracties komt. De abstractie staat niet los van wil en gevoel.
Dat het kind nu een sterke eigen binnenwereld ontwikkelt waarop het in de toekomst meer en meer durft te vertrouwen, is het hoofddoel van het wiskunde-onderwijs in deze jaren.

Zoveel meetkundig kunnen en kennen, dat de meetkunde tot en met de stelling van Pythagoras op papier gebracht en begrepen kan worden.

Meetkunde
Eenvoudige vraagstukjes met graden, minuten en seconden. Hoeken gevormd door snijdende lijnen, door twee evenwijdige lijnen gesneden door een derde.

Soorten van driehoeken uitgaande van de gelijkzijdige driehoek. De grondconstructies. Merkwaardige lijnen in de driehoek.

Constructies van driehoeken uit de elementen en aansluitend de congruente driehoeken. Soorten van vierhoeken en hun eigenschappen.

Werkvormen meetkunde
De hoeken worden niet aangeleerd vanuit het meten maar door het lopen van hoeken en door armbewegingen. ‘Geef een stompe hoek aan’, enz.

Na het bewegen in het groot volgt het ‘ambachtelijke’ tekenen. De grootste zorg wordt besteed aan het zorgvuldig omgaan met passer en liniaal.
Tot nu toe hebben de kinderen uit de vrije hand cirkels, sterren, vierkanten etc. getekend (het zgn. vormtekenen). De leerlingen krijgen de gelegenheid de schoonheid van het ontstane lijnenspel te accentueren door vlakken in te kleuren. Hierbij doen zij allerlei ontdekkingen.
De gelijkzijdige driehoek is het oerbeeld van de driehoek. Door veranderingen van ‘de driehoek’ ontstaan allerlei andere driehoeken.

Vanuit het ideale vierkant ontstaat door deformatie stap voor stap het onregelmatige vierkant. Men kan tenslotte laten zien dat ook bij deze onregelmatige figuren een aantal mooie wetmatigheden ‘gebleven’ zijn: de som der hoeken is nog steeds gelijk en de figuur die ontstaat uit de verbinding van de middens der zijden is altijd een parallellogram!

Meetkunde
In de meetkundeperiode worden elementaire meetkundige begrippen aangeleerd.
Verschillende wetmatigheden betreffende cirkels komen aan bod. Er wordt veel aandacht besteed aan het nauwkeurig werken met passer en liniaal. De figuren, die ontstaan, worden met kleurpotloden ingekleurd; door de kleuren kan eenzelfde figuur toch een heel ander aanzien krijgen.

Een ander onderdeel van deze periode is de behandeling van de driehoek met de bijzondere lijnen, hoogtelijn, zwaartelijn en bissectrice. Om de duidelijkheid te vergroten heb ik hier een spelelement in gebracht. Ik had een gedicht gemaakt met een algemeen gedeelte, drie gedeelten over respectievelijk hoogtelijn, bissectrice en zwaartelijn en een afsluitend deel. Van triplex met een dikte van 1 cm had ik drie driehoeken gemaakt. In de eerste driehoek waren de drie hoogtelijnen aangegeven, die elkaar in één punt treffen. Op één van de hoogtelijnen zaagde ik de driehoek door en bevestigde het weer aan elkaar met een pianoscharnier. In de tweede driehoek waren de drie bissectrices aangegeven. Eén ervan werd weer door een pianoscharnier vervangen. In de derde driehoek waren de zwaartelijnen zichtbaar. Deze driehoek bleef intact; er hoorde een balkje met een scherpe zijde bij.

De klas werd nu in drie groepen verdeeld; elke groep had één van de drie driehoeken. Het eerste gedeelte van het gedicht werd gezamenlijk opgezegd. Dan trad de groep met de driehoek met de hoogtelijnen naar voren en zei het betreffende gedeelte van het gedicht hardop. Op een zeker tijdstip werd dan de driehoek dichtgevouwen langs het scharnier. Als hun gedeelte afgerond was, traden ze weer terug. De tweede groep deed vervolgens enkele stappen voorwaarts, zei hun gedeelte op, vouwde eveneens de driehoek samen en trad weer terug.

De derde groep kinderen zei het deel van het gedicht over de zwaartelijn. Twee kinderen hielden het balkje vast en de driehoek werd er op gelegd, volgens één van de zwaartelijnen. Als dan de driehoek voorzichtig losgelaten werd, bleef hij in evenwicht. De twee kinderen tilden de balk met de driehoek omhoog tot boven hun hoofd. Dan lieten ze het geheel weer zakken: de driehoek werd weggenomen en de kinderen voegden zich bij het geheel. Tot slot volgde de gezamenlijke afsluiting van het gedicht.

MEETKUNDE

Een driehoek heeft drie zijden,
Om elk misverstand te vermijden,
Die zijden zijn alle recht
En een kromme lijn is slecht.
Die lijnen trek je langs een liniaal
Van plastic, hout of metaal.
Een willekeurige driehoek wekt de schijn
Dat de zijden ongelijk van lengte zijn.
En deze indruk is ook goed
als het een willekeurige driehoek wezen moet.
In zo een driehoek trekken wij nu lijnen.
Die ogenschijnlijk zómaar lijnen schijnen.
Maar die lijnen zijn wel heel bijzonder.
Je kunt het zelfs zien als een wonder.
Dat ze door hetzelfde punt gaan.
Daar kun je wel versteld van staan.
Die lijnen hebben speciale eigenschappen.
Dat zullen wij nu gaan verklappen.

1)
We zullen eerst proberen,
een lijn te construeren
Die vanuit een hoekpunt gaat
En loodrecht op de tegenoverliggende zijde staat.
Deze hoeken zijn dus beide recht
90 graden, dat is goed gezegd
Nu kunnen wij de driehoek samenvouwen,
En de hoek blijft recht, daarop kunnen, wij vertrouwen.
Deze lijn heet hoogtelijn
Het geeft de hoogte aan, dat zal duidelijk zijn.

bb blz 91 1

bb blz 91 22)
Nu gaan wij een hoek verdelen
In twee gelijke delen.
Deze lijn heet deellijn
Waarbij de hoek precies verdeeld moet zijn
Bij het vouwen zien we nu exact
Twee zijden van de driehoek liggen in één vlak.
Wij moeten niet uit het oog verliezen
Dat de deellijn ook wel heet: bissectrice.

bb blz 91 4bb blz. 91 33)
In twee stukken delen we deze zijde,
Met liniaal of passer, dan kan allebeide.
Nu trekken wij een lijn
Waarbij de twee helften even zwaar zijn.
Dat kunnen wij het beste leren
Door dit te demonstreren.
Nu hoeven wij niet meer te vergeten
Deze lijn moet zwaartelijn heten.

bb 92 1bb 92 2

Werken we zuiver en accuraat
Dan merken we inderdaad
Met lijnen zuiver en strak
Meetkunde is een leuk vak.

De kinderen van de zesde klas vonden deze activiteit leuk en ze hebben er het nodige plezier aan beleefd.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985).

 

meetkunde: alle artikelen

6e klas: alle artikelen

VRIJESCHOOL  in beeld: 6e klas: alle beelden

.

533-491

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

.