VRIJESCHOOL – 6e klas – meetkunde (5)

.

VOORBEREIDENDE MEETKUNDE

Gedurende de kinderleeftijd moeten rekenen en meetkunde zo gegeven worden, dat ze bij de leeftijd van het kind passen.
Rudolf Steiner heeft het over een levendigheid in het doen en laten van de mens die daaruit kan ontstaan.
De symmetrie is daarbij heel belangrijk.
De tekeningen die hieronder volgen zijn bedoeld als een kunstzinnig, geen intellectualistisch begin.
Van hier naar het bewijs van de stelling van Pythagoras in de 7e klas, is nog een lange weg. [1]  [2]

Deze bijdrage over de driehoeken is gedacht voor de 4e tot de 6e klas als waarnemende meetkunde.

Onder de vele verschillende driehoeksvormen bevinden er zich een paar die door hun symmetrie en hun ‘karakter’ bijzondere aandacht verdienen. Een nadere kennismaking met deze eenvoudige geometrische figuren is buitengewoon stimulerend.

Eerst noemen we de gelijkzijdige driehoek, het is de oerdriehoek. Behalve de drie zijden zijn ook de drie hoeken gelijk (60º).
De hoogtelijnen, bisectrices, middelloodlijnen en zwaartelijnen zijn allemaal even groot en gaan alle door één punt dat we ‘middenpunt’noemen. Die is tegelijkertijd zwaartepunt, middelpunt van de ingeschreven cirkel en van de omgeschreven cirkel. De lijnen zijn symmetrie-assen:

De halve gelijkzijdige driehoek is rechthoekig, heeft dus een hypotenusa en twee rechthoekszijden. Door het halveren is de symmetrie verloren gegaan. Het verschijnsel links – rechts treedt op. Naast de rechte hoek is de hoek van 30º ontstaan. We gebruiken deze driehoek van hout of kunststof om te tekenen. Er zijn twee soorten, met een linker en een rechter helft die je niet op elkaar kan leggen zonder ze om te draaien. Een halve gelijkzijdige driehoek is meer dan alleen maar een helft:

De gelijkbenige rechthoekige driehoek kan ook als een een half vierkant worden beschouwd. Die is eveneens rechthoekig, heeft echter twee even lange zijden; daardoor is die eveneens nog gelijkbenig. Er is een hoek van 45º, de driehoek heeft een symmetrie-as. Ook deze driehoek gebruiken we als tekendriehoek:
Tot slot moet het paar ‘gouden driehoeken‘ worden genoemd. Het gaat om de driehoeken waarvan de zijden in de verhouding van de ‘gulden snede’ staan. Omdat we een lange en een korte zijde hebben, kunnen we daarmee twee verschillende driehoeken maken: één met twee lange en een korte zijde en één met een lange en twee korte zijden:

 

De eerste noemen we de ‘scherpe gouden driehoek’ en de tweede de ‘stompe gouden driehoek’. Beide zijn gelijkbenig. Er ontstaan hoeken van 36º, 72º en 108º.

Nu moeten deze driehoeken zichzelf karakteriseren. Daartoe proberen we uit een van de driehoeken figuren te maken. Wat er zich aan mogelijkheden voordoet, is verbazingwekkend groot, hier kan er slechts een deel van worden weergegeven.

Uit zes gelijkzijdige driehoeken ontstaat een zeshoek:

Dit is de basisfiguur
We klappen de driehoeken een voor een naar buiten om en krijgen de zesster:

Klappen we ieder tweede punt weer naar binnen, dan ontstaat er een vergrote gelijkzijdige driehoek:

De randen zijn drie keer zo lang, het vlak is negen keer zo groot.
Wanneer we in de onderste rij de buitendriehoeken naar binnen en de binnendriehoek naar buiten omklappen, ontstaat er een grote ruit:

Hoe de zesster uit de basisfiguur door een gelijktijdig draaiende en verschuivende beweging van alle driehoeken ontstaat, wordt aan de vindingrijkheid van de lezer overgelaten.

De halve gelijkzijdige driehoek biedt ons meer mogelijkheden. Twee gelijke (linker of rechter) laten twee verschillende parallellogrammen of een rechthoek ontstaan:

Van verschillende kunnen we een stompe driehoek maken of een vliegerfiguur:

De derde mogelijkheid geeft de gelijkzijdige driehoek aan ons terug. Vier gelijke helften doen een vierkant ontstaan, waarin een tweede, kleinere, uitgespaard is:

We klappen de driehoeken naar buiten om en hebben dan weer een gelijke (niet in meetkundige zin!) figuur voor ons:

Uit drie paren ontstaat een grote gelijkzijdige driehoek:

Wanneer we alle driehoeken omklappen, hebben we een zeshoek voor ons waarin de oorspronkelijke driehoek uitgespaard is:

Zes gelijke driehoeken vormen twee zeshoeken in elkaar:

en twaalf gelijke driehoeken zowaar een twaalfhoek:

Een opdracht:
Uit zes gelijke driehoeken een zesster maken. Hierbij ontstaat een beweeglijke figuur die wat het middelpunt betreft symmetrisch is.

De gelijkbenige rechthoekige driehoek stelt een beetje teleur: die heeft niet zo’n grote vormenrijkdom te bieden. 2, 4, 8, 16, enz. laten zich tot een vierkant voegen. Maar ook achthoeken!:

De lezer moet zelf de twee verschillende achtsterren vinden waarin de afgebeelde achthoek veranderd kan worden.

Een vrolijke combinatie vertoont 18:

Nu wat betreft het ‘gouden driehoekspaar‘.
Door ze passend bij elkaar te zetten, herhalen ze zich zelf afwisselend in een steeds groter wordende vorm. In afb. 19 is met de scherpe driehoek links begonnen, daarbij een stompe geeft een vergrote stompe. De middelste, schuin op de punt staande scherpe driehoek daarbij, leidt tot een grotere scherpe, die net zo staat als de begindriehoek. Nog een stompe en een scherpe erbij en we krijgen die in afb. 19 getoonde grote stomphoekige driehoek. Daarmee kun je willekeurig verder gaan:

Hoe zou de afbeelding afgemaakt moeten worden om de eerst volgende grotere rechthoekige gouden driehoek te maken?

Een scherpe en twee stompe vormen een vijfhoek:

Van vijf scherpe driehoeken kunnen we het pentagram leggen:

Maar ook vijf stompe driehoeken laten dit rijke teken verschijnen, dit keer als binnenvorm:

Klappen we alle driehoeken naar buiten om, zien we twee vijfhoeken:

Dat betekent niet dat de scherpe driehoek op zich geen vijfhoek zou kunnen doen ontstaan:

Kenners zullen de positie van de driehoeken in afb. 25 in de voorstelling zo metamorfoseren dat enerzijds de vijfhoek van afb. 24 en anderzijds het pentagram van afb. 21 ontstaat:

De mooie ‘tienhoekkrans’ van tien stomphoekige driehoeken is het slot van deze ‘tentoonstelling’.

Natuurlijk kunnen tien scherpe driehoeken ook een tienhoek vormen en ook een tienster.

Als we het samenvatten:
De gelijkzijdige driehoek doet de zeshoek en de zesster ontstaan; ze is verwant met de getallen 3 en 6. Je kan er vierhoeken mee maken, maar geen vierkant; ook geen rechthoek.
Links en rechts van de halve gelijkzijdige driehoek zorgt voor beweeglijkheid. Door de rechte hoek kunnen ook de rechthoek en het vierkant ontstaan. De relatie met de getallen 3 en 6 blijft natuurlijk bestaan, nieuw is de twaalfhoek. We vinden dus verwantschap met de getallen 3, 4, 6 en 12.
De verwantschap van de gelijkbenige rechthoekige driehoek met de getallen 4 en 8 is duidelijk.
De ‘gouden driehoeken‘ verrassen ons door het ontstaan van het pentagram. Er is verwantschap met de getallen 5 en 10.

Waar haal je nu die driehoeken? Je kan ze van karton maken, bijv. Om ze voor de klas te kunnen laten zien, kan je ze met gekleurd karton en klittenband op het bord ‘plakken’.
.

Walter Kraul, Erziehungskunst jrg. 34 -04-1970
.

[1] Die wordt soms ook in klas 6 behandeld.

[2] Onder meetkunde alle artikelen vind je de reeks 2-3/1  t/m 2-3/4 als mogelijke weg naar dit doel.
.

De schrijver van het artikel heeft uit gekleurd hout een ‘vierhoek-vijfhoek- en zeshoeklegspel’ uitgebracht. De verschillende afmetingen van gelijkvormige driehoeken in de legspellen geven nog meer vormenrijkdom dan de hier getoonde voorbeelden.
Bij de genoemde uitgeverij zijn ze op dit ogenblik (02-01-2018) niet voorradig.
.

Meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas meetkunde

.

1401

 

 

 

 

 

 

 

 

 

.

Advertenties

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit /  Bijwerken )

Google+ photo

Je reageert onder je Google+ account. Log uit /  Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit /  Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit /  Bijwerken )

Verbinden met %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.