Tagarchief: 7e klas meetkunde

VRIJESCHOOL – 6e klas – meetkunde (5)

.

VOORBEREIDENDE MEETKUNDE

Gedurende de kinderleeftijd moeten rekenen en meetkunde zo gegeven worden, dat ze bij de leeftijd van het kind passen.
Rudolf Steiner heeft het over een levendigheid in het doen en laten van de mens die daaruit kan ontstaan.
De symmetrie is daarbij heel belangrijk.
De tekeningen die hieronder volgen zijn bedoeld als een kunstzinnig, geen intellectualistisch begin.
Van hier naar het bewijs van de stelling van Pythagoras in de 7e klas, is nog een lange weg. [1]  [2]

Deze bijdrage over de driehoeken is gedacht voor de 4e tot de 6e klas als waarnemende meetkunde.

Onder de vele verschillende driehoeksvormen bevinden er zich een paar die door hun symmetrie en hun ‘karakter’ bijzondere aandacht verdienen. Een nadere kennismaking met deze eenvoudige geometrische figuren is buitengewoon stimulerend.

Eerst noemen we de gelijkzijdige driehoek, het is de oerdriehoek. Behalve de drie zijden zijn ook de drie hoeken gelijk (60º).
De hoogtelijnen, bisectrices, middelloodlijnen en zwaartelijnen zijn allemaal even groot en gaan alle door één punt dat we ‘middenpunt’noemen. Die is tegelijkertijd zwaartepunt, middelpunt van de ingeschreven cirkel en van de omgeschreven cirkel. De lijnen zijn symmetrie-assen:

De halve gelijkzijdige driehoek is rechthoekig, heeft dus een hypotenusa en twee rechthoekszijden. Door het halveren is de symmetrie verloren gegaan. Het verschijnsel links – rechts treedt op. Naast de rechte hoek is de hoek van 30º ontstaan. We gebruiken deze driehoek van hout of kunststof om te tekenen. Er zijn twee soorten, met een linker en een rechter helft die je niet op elkaar kan leggen zonder ze om te draaien. Een halve gelijkzijdige driehoek is meer dan alleen maar een helft:

De gelijkbenige rechthoekige driehoek kan ook als een een half vierkant worden beschouwd. Die is eveneens rechthoekig, heeft echter twee even lange zijden; daardoor is die eveneens nog gelijkbenig. Er is een hoek van 45º, de driehoek heeft een symmetrie-as. Ook deze driehoek gebruiken we als tekendriehoek:
Tot slot moet het paar ‘gouden driehoeken‘ worden genoemd. Het gaat om de driehoeken waarvan de zijden in de verhouding van de ‘gulden snede’ staan. Omdat we een lange en een korte zijde hebben, kunnen we daarmee twee verschillende driehoeken maken: één met twee lange en een korte zijde en één met een lange en twee korte zijden:

 

De eerste noemen we de ‘scherpe gouden driehoek’ en de tweede de ‘stompe gouden driehoek’. Beide zijn gelijkbenig. Er ontstaan hoeken van 36º, 72º en 108º.

Nu moeten deze driehoeken zichzelf karakteriseren. Daartoe proberen we uit een van de driehoeken figuren te maken. Wat er zich aan mogelijkheden voordoet, is verbazingwekkend groot, hier kan er slechts een deel van worden weergegeven.

Uit zes gelijkzijdige driehoeken ontstaat een zeshoek:

Dit is de basisfiguur
We klappen de driehoeken een voor een naar buiten om en krijgen de zesster:

Klappen we ieder tweede punt weer naar binnen, dan ontstaat er een vergrote gelijkzijdige driehoek:

De randen zijn drie keer zo lang, het vlak is negen keer zo groot.
Wanneer we in de onderste rij de buitendriehoeken naar binnen en de binnendriehoek naar buiten omklappen, ontstaat er een grote ruit:

Hoe de zesster uit de basisfiguur door een gelijktijdig draaiende en verschuivende beweging van alle driehoeken ontstaat, wordt aan de vindingrijkheid van de lezer overgelaten.

De halve gelijkzijdige driehoek biedt ons meer mogelijkheden. Twee gelijke (linker of rechter) laten twee verschillende parallellogrammen of een rechthoek ontstaan:

Van verschillende kunnen we een stompe driehoek maken of een vliegerfiguur:

De derde mogelijkheid geeft de gelijkzijdige driehoek aan ons terug. Vier gelijke helften doen een vierkant ontstaan, waarin een tweede, kleinere, uitgespaard is:

We klappen de driehoeken naar buiten om en hebben dan weer een gelijke (niet in meetkundige zin!) figuur voor ons:

Uit drie paren ontstaat een grote gelijkzijdige driehoek:

Wanneer we alle driehoeken omklappen, hebben we een zeshoek voor ons waarin de oorspronkelijke driehoek uitgespaard is:

Zes gelijke driehoeken vormen twee zeshoeken in elkaar:

en twaalf gelijke driehoeken zowaar een twaalfhoek:

Een opdracht:
Uit zes gelijke driehoeken een zesster maken. Hierbij ontstaat een beweeglijke figuur die wat het middelpunt betreft symmetrisch is.

De gelijkbenige rechthoekige driehoek stelt een beetje teleur: die heeft niet zo’n grote vormenrijkdom te bieden. 2, 4, 8, 16, enz. laten zich tot een vierkant voegen. Maar ook achthoeken!:

De lezer moet zelf de twee verschillende achtsterren vinden waarin de afgebeelde achthoek veranderd kan worden.

Een vrolijke combinatie vertoont 18:

Nu wat betreft het ‘gouden driehoekspaar‘.
Door ze passend bij elkaar te zetten, herhalen ze zich zelf afwisselend in een steeds groter wordende vorm. In afb. 19 is met de scherpe driehoek links begonnen, daarbij een stompe geeft een vergrote stompe. De middelste, schuin op de punt staande scherpe driehoek daarbij, leidt tot een grotere scherpe, die net zo staat als de begindriehoek. Nog een stompe en een scherpe erbij en we krijgen die in afb. 19 getoonde grote stomphoekige driehoek. Daarmee kun je willekeurig verder gaan:

Hoe zou de afbeelding afgemaakt moeten worden om de eerst volgende grotere rechthoekige gouden driehoek te maken?

Een scherpe en twee stompe vormen een vijfhoek:

Van vijf scherpe driehoeken kunnen we het pentagram leggen:

Maar ook vijf stompe driehoeken laten dit rijke teken verschijnen, dit keer als binnenvorm:

Klappen we alle driehoeken naar buiten om, zien we twee vijfhoeken:

Dat betekent niet dat de scherpe driehoek op zich geen vijfhoek zou kunnen doen ontstaan:

Kenners zullen de positie van de driehoeken in afb. 25 in de voorstelling zo metamorfoseren dat enerzijds de vijfhoek van afb. 24 en anderzijds het pentagram van afb. 21 ontstaat:

De mooie ‘tienhoekkrans’ van tien stomphoekige driehoeken is het slot van deze ‘tentoonstelling’.

Natuurlijk kunnen tien scherpe driehoeken ook een tienhoek vormen en ook een tienster.

Als we het samenvatten:
De gelijkzijdige driehoek doet de zeshoek en de zesster ontstaan; ze is verwant met de getallen 3 en 6. Je kan er vierhoeken mee maken, maar geen vierkant; ook geen rechthoek.
Links en rechts van de halve gelijkzijdige driehoek zorgt voor beweeglijkheid. Door de rechte hoek kunnen ook de rechthoek en het vierkant ontstaan. De relatie met de getallen 3 en 6 blijft natuurlijk bestaan, nieuw is de twaalfhoek. We vinden dus verwantschap met de getallen 3, 4, 6 en 12.
De verwantschap van de gelijkbenige rechthoekige driehoek met de getallen 4 en 8 is duidelijk.
De ‘gouden driehoeken‘ verrassen ons door het ontstaan van het pentagram. Er is verwantschap met de getallen 5 en 10.

Waar haal je nu die driehoeken? Je kan ze van karton maken, bijv. Om ze voor de klas te kunnen laten zien, kan je ze met gekleurd karton en klittenband op het bord ‘plakken’.
.

Walter Kraul, Erziehungskunst jrg. 34 -04-1970
.

[1] Die wordt soms ook in klas 6 behandeld.

[2] Onder meetkunde alle artikelen vind je de reeks 2-3/1  t/m 2-3/4 als mogelijke weg naar dit doel.
.

De schrijver van het artikel heeft uit gekleurd hout een ‘vierhoek-vijfhoek- en zeshoeklegspel’ uitgebracht. De verschillende afmetingen van gelijkvormige driehoeken in de legspellen geven nog meer vormenrijkdom dan de hier getoonde voorbeelden.
Bij de genoemde uitgeverij zijn ze op dit ogenblik (02-01-2018) niet voorradig.
.

Meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas meetkunde

.

1401

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – 6e/7e klas – meetkunde (2-4)

.

meetkunde klas 6 en 7

Een artikel in de Branding over meetkunde dat was de vraag die de redactie me stelde. Na nauwelijks deze vraag met ‘ja’ te hebben beantwoord, zag ik me voor de volgende moeilijkheid geplaatst: hoe kun je het wezenlijke van meetkunde dat zich tenslotte uitdrukt in lijnen en vlakken die tezamen de vormenwereld zichtbaar maken, beschrijven in woorden?
Om dit dilemma zoveel mogelijk op te lossen zal ik na een inleiding de vormen grotendeels zelf laten spreken en de woorden slechts als aanvulling gebruiken en om een overzicht te geven, hoe de meetkunde in de lessituatie in klas ó en 7 gestalte krijgt.

In de ontwikkeling van de mens van geboorte tot volwassenheid zijn 3 fasen te onderscheiden:

– van 0 – 7 jaar: baby-peuter-kleuterfase
– van 7 ~ 11 jaar; lagere schoolkind
– van 14 – 21 jaar: puberteit en adolecentie

In elke fase is er sprake van een samengaan van het willen, het voelen en het denken. Hoe deze drie zich in elke fase t.a.v. elkaar verhouden voert in het bestek van dit artikel te ver; enkel het volgende gegeven is van belang:

Bij de leeftijd van 0 tot 7 ligt het accent op het willen. Van 7 tot 14 ligt het accent op het voelen.
En bij de fase van 14 tot 21 ligt het accent op het denken.

Deze driegeleding van willen, voelen, denken is ook per fase een gegeven. Zo zit het benedenbouwkind in de lagere klassen nog sterk in de beweging (het willen) – denk aan het klappen en stampen van tafels, versjes etc. Vanaf ongeveer klas 6/7 groeit het kind langzaam naar de puberteit toe en ontstaat het vermogen tot o.a. het causale en abstracte denken. Het leerplan op de vrijeschool neemt de ontwikkeling van het kind als uitgangspunt. Zo komen dan in klas 6 en klas 7 voor het eerst een aantal vakken aan de orde waarbij een appèi op het causale en abstracte denken wordt gedaan zoals: natuurkunde, scheikunde, sterrenkunde, algebra en natuurlijk meetkunde.

Het verkennen, en op papier zetten van de vormenwereld begint al bij de peuter. De eerste dag in de 1e klas leert het kind twee oervormen: de rechte en de kromme.

meetkunde-6e

Vanaf deze dag zal het vormtekenen een dagelijkse of wekelijkse activiteit zijn. Een deel van de vormtekenlessen zullen bestaan uit geometrische vormen, die meerdere malen in één beweging worden getekend.

meetkunde-6e-2

 

In klas 6 gaan vele vormen die het kind al eens getekend heeft wederom getekend worden. Nu echter niet met de vrije hand als voordien, maar m.b.v. passer en lineaal.

De intentie van de meetkundeperiode kan het best als volgt omschreven worden;

“Exactheid, schoonheid en maat. Dat is waar het in de meetkunde om gaat”

Nadat de kinderen een gesprek te hebben gevoerd waar meetkunde overal in het praktische leven is toegepast, zijn de kinderen enthousiast en aangesproken in de wil om aan de slag te gaan met die fonkelnieuwe passer, of die passer die nog een erfstuk blijkt te zijn van de grootvader van moeder…

Zoals met vormtekenen veelal het geval was, zo zal men in beginsel ook elke vorm die op papier zal verschijnen eerst in het groot in de beweging doen; met de hele klas, een groepje of individueel.

De cirkel
Teken met grote bewegingen in de lucht of op de grond; een exacte cirkel vormen met de hele klas (een sociale oefening bij uitstek! )

Waar komen cirkelvormen voor? De aardbol, de schedel, een voetbal, een gloeilamp etc, etc. zullen als antwoorden van de kinderen komen. En dan uiteindelijk de eerste cirkel in het schrift; een lijn even dik of dun met de passer op bladzijde een – tongpuntje tussen de tanden! Vanaf nu heet dit geen “rondje” meer, maar een cirkel met al zijn andere namen erbij.

meetkunde-6e-3

Dan het eerste meetkundewonder!

De straal (afstand tussen de benen van de passer) blijkt precies 6x rond de omtrek van de cirkel afgezet te kunnen worden. De 6 punten kunnen dan op verschillende manieren met elkaar verbonden worden

meetkunde-6e-4

Vanuit deze mogelijkheid volgen dan een reeks tekeningen, waarbij het kleuraspect nog een zeer grote rol speelt voor de schoonheidsbeleving van het kind. Elk kind kiest eigen kleurcombinaties,- verhoudingen en hanteert de mogelijkheden hierin van de licht-donker effecten.

Voorbeelden vanuit de 6-deling:

meetkunde-6e-5

Dan komen er verschillende soorten hoeken aan bod. Ook weer om je heen kijken on hoeken benoemen of d© hoeken vormen met b.v, je lichaam (hoofd-romp, houding boven-benedenarin) of hoeken gevormd met meerdere kinderen samen.

Na de hoeken 2 constructies:
-het delen van een hoek (bissectrice)
-het oprichten en neerlaten van een loodlijn

Vanuit deze nieuw geleerde constructies zijn er weer talloze nieuwe figuren mogelijk. Zo kan men komen van de 6~deling naar een veelvoud hiervan:

meetkunde-6e-6

Als volgende is de mogelijkheid de driehoek te bekijken. Opdracht voor de kinderen voor thuis kan dan luiden: probeer eens uit hoeveel verschillende soorten driehoeken er zijn.

Bij het behandelen en het gebruik van de geodriehoek of de gradenboog greep ik terug op de geschiedenisperiode in de 5e klas. In deze periode wordt o.a. verteld over de Egyptische cultuurperiode en het ontstaan van de meetkunde aldaar. Het Egyptische jaar telde 5 heilige dagen en 360 overige dagen; de zon stond dan weer op hetzelfde punt.

Vandaar het volgende gegeven:

meetkunde-6e-7

Ook de termen complement, supplement en applement komen nu aan bod.

Nu kan er dan ook volop met gradenboog of geodriehoek worden gewerkt. Verder komen nog aan bod zaken als snijdende lijnen, parallelle lijnen, tegenoverliggende hoeken, verwisselende hoeken etc.

Als afsluiting in klas 6 wordt de 5-hoekconstructie geleerd. Tekeningen die vanuit deze constructie afgeleid kunnen worden volgen hierna. Ook kan gesproken.worden over de gulden snedeverhouding die in deze constructie te vinden is en terugkomt op vele wijzen in de menselijke gestalte.

meetkunde-6e-8

In klas 7 wordt het variëren en uitproberen van allerlei vormen nóg verder uitpewerkt. Het benoemen’en construeren van allerlei mogelijke meetkundefenomenen zal dan echter een groter accent krijgen.

Opgave waarin bepaalde constructies worden gegeven met daarbij een vraag zijn dan aan de orde.

Bijvoorbeeld:
1)gegeven: lijnstuk AB = 5 cm
lijnstuk BC 6 cm
LA of X = 90°

gevraagd:
a) teken een driehoek ABC
b) hoeveel graden zijn B en. X

2) Bewijs dat de 3 hoeiken van een driehoek samen. 180 zijn. etc.

Verder komen zaken als congruentie, rotatie en merkwaardige lijnen aan de orde.

Voorbeeld van een soort merkwaardige lijn in dichtvorm:

We zullen eens proberen
Een lijn te constueren
Die vanuit een hoekpunt gaat
En loodrecht op de tegenoverliggende zijde staat
Deze hoeken zijn dus beiden recht
90º dat is goed gezegd
Deze lijn heet: hoogtelijn
Het geeft de hoogte aan
Maar dat zal duidelijk zijn

Ook de bissectrice en de zwaartelijn komen zo aan de orde.

De berekening van omtrek en oppervlakte van o.a de cirkel, de driehoek, het parallellogram, de trapezoïde etc. worden in dit jaar behandeld.

Langzaam kan er ook toegewerkt worden naar perspectief en 3-dimensionaliteit als voorbereiding op de platonische lichamen die in klas 8 een centrale plek zullen krijgen.

meetkunde-6e-9

De periode zal eindigen bij de stelling van Pythagoras, zichtbaar gemaakt in:

Tijdens of na de periode krijgen de kinderen opdracht om met alle mogelijkheden en constructies die ze hebben leren kennen zelf een vorm te bedenken en te ontwerpen. Deze worden dan beoordeeld op exactheid, schoonheid en originaliteit.

Peter Giesen, vrijeschool Nijmegen, nadere gegevens onbekend

 

6e klas: alle artikelen (waarbij de meetkunde-artikelen)

meetkunde: alle artikelen

VRIJESCHOOL in beeld: 6e klas- meetkunde: alle beelden

 

1181

 

 

 

 

 

 

 

 

 

.

 

 

VRIJESCHOOL – Meetkunde (1)

.

In zijn ‘Rudolf Steiners Lehrplan für die Waldorfschulen’ [1] heeft E.A. Karl Stockmeyer een samenvatting gegeven van het hoe en waarom van de elementaire meetkunde.

Doelen voor het meetkundeonderwijs:

1e klas:
tekenen voor het leren schrijven

2e en 3e klas:
tekenen van makkelijkere en moeilijkere vormen, puur om de vorm en zonder de relatie tot concrete dingen en voorwerpen, om het bewustzijn voor de ruimte te ontwikkelen als ‘vormingsgebied’. (symmetrie e.d.)

4e en 5e klas:
Meetkundige figuren in het tekenen leren kennen, in het ‘beschrijven’ van hun onderlinge verhoudingen leren begrijpen, dus driehoek, vierkant, cirkel, ellips enz. tot aan de stelling van Pythagoras, op zijn minst wat de gelijkbenige rechthoekige driehoek betreft.

Bij de 4e klas:
Meetkunde: een poging tot formulering:
Nadat in de eerste drie schooljaren eerst getekend is om te leren schrijven; ook geboetseerd puur terwille van de vorm, zonder voorwerpen als voorbeeld, begint op z’n laatst in de 4e klas het tekenen van elementaire meetkundige vormen; de verhoudingen moeten slechts waarnemend gevonden worden.

Bij de 5e klas:
Het waarnemend beschrijven van geometrische vormen wordt voortgezet em geïntensiveerd.

6e t/m 8e klas:
Wat tot nog toe tekenend en beschrijven behandeld werd, moet nu meetkundig ‘bewezen’ begrepen worden. (Tegelijkertijd komt er in het aparte tekenonderwijs de eenvoudige projectie- en schaduwleer)

Bij de 6e klas:
In de meetkunde moet – in overeenstemming met wat voor de 4e klas werd gezegd – een begin worden gemaakt met het bewijzen, ongeveer tot het begrijpen van congruentie van driehoeken en toepassingen ermee. Daarbij zijn de begrippen die in de jaren daarvoor el duidelijk zijn geworden toe te gebruiken, te verhelderen en uit te breiden; in het bijzonder moet de geometrische plaats erbij komen.

Bij de 7e klas:
Voorgesteld wordt in de meetkunde verder te gaan met het kunnen bewijzen, bijv. door de cirkel, het vierkant en de veelhoeken te behandelen. Het begrip ‘meetkundige plaats’moet verder behandeld worden, omdat deze ervoor geschikt is om meetkundige figuren uit het starheid te verlossen en beweeglijk te maken.

Bij de 8e klas:
Naast berekenen van vlakken moeten ook behandeld worden eenvoudige geometrische lichamen te berekenen; de meetkundige plaats nu toepassen op de curven van ellips, hyperbool, casinoïde en de cirkel van Apollonius

Daarnaast maakt Karl Stockmeyer nog een andere indeling:

Er zijn eigenlijk – afgezien van het tekenen om te leren schrijven – drie leerwegen die ieder op zich staan:

1e leerweg:
Vóór het 9e levensjaar wordt het vrije kunstzinnige vormgeven (symmetrie, vormverandering, toenemend in moeilijkheidsgraad, afmaken van een gegeven vorm enz) zonder uiterlijke dingen als voorbeeld te nemen, tekenend, schilderend, boetseren beoefend.

2e leerweg:
Op z’n laatst rond het 9e levensjaar wordt met een eerste meetkundeweg begonnen, die de gebruikelijke meetkundige vormen omvat en hun verhoudingen, maar die moeten nog geheel een innerlijk waarnemen blijven. Het doel is de stelling van Pythagoras.

3e leerweg:
Die begint pas op het 11e- 12e jaar en moet tot een exacte omgang met mathematische kennis leiden en moet daarom wat er tot dan toe geleerd werd door de waarneming, opnieuw vanuit het elementaire doorgenomen worden.

Sinds lang is het zo dat wie het over de meetkundeperiode(n) heeft, de perioden vanaf de 6e klas bedoelt. Waar het gaat om het bewijzen.

Alles ervoor wordt nu toch veel meer gezien als vormtekenen.

 

[1] E.A.Karl Stockmeyer: Rudolf Steiners Lehrplan für die Waldorfschulen

Nu:  Angaben Rudolf Steiners für den Waldorfschulunterricht

6e klas: meetkunde

7e klas: meetkunde

kringspelen en meetkunde

 

Het artikel zal verder uitgewerkt worden.

 

1110

 

VRIJESCHOOL – Meetkunde – 7e klas (3-1)

.

MEETKUNDE

Meetkunde tussen het twaalfde jaar en de puberteit

Het kind heeft een lange weg afgelegd voor het in deze periode tot eigen abstacties komt. De abstractie staat niet los van wil en gevoel.

Dat het kind nu een sterke eigen binnenwereld ontwikkelt waarop het in de toekomst meer en meer durft te vertrouwen, is het hoofddoel van het wiskunde onderwijs in deze jaren.

7e klas

Meetkunde
Herhaling van het voorgaande. Stelling van Pythagoras. Vermeningvuldiging van figuren. Gelijkvormigheid en congruentie. Verhouding en evenredigheid van lijnstukken.
Eenvoudige bewijzen in verband met congruentie en gelijkvormige driehoeken.

De Vle en VIIe klas zijn sterk toekomstgericht. Dit bepaalt ook het karakter van het vak meetkunde. De tekeningen in de zesde klas waren reeds exact, in de zevende zijn deze van een nog scherpere precisie en blijven ze zwart-wit. De constructies vormen op deze wijze reeds in principe een voorbereiding op het rechtlijnig tekenen met tekenpiank in de negende klas.

Een van de kernstukken van klas VII is de stelling van Pythagoras. Het gaat erom de leerlingen vertrouwd te maken met deze wetmatigheid. Het gaat hierbij om aantonen, niet zozeer om bewijzen. Rudolf Steiner geeft aan dat men kan uitgaan van de gelijkbenige driehoek.

In Seminar Besprechungen geeft hij een algemeen bewijs. Hij zegt dat dit de leerlingen pas echt duidelijk wordt door de bijbehorende tekening in karton te maken en uit te knippen. Het mooie Chinese bewijs kan volgen en tenslotte het bekende Arabische schuifbewijs aanluiten ter oefening.

Er is nu ook een algebraïsche benadering van de meetkunde mogelijk.

Bijvoorbeeld: driehoek ABC. Twee hoeken zijn gegeven. Trek 3 hoogtelijnen. Bereken alle hoeken in deze figuur. Uit de berekening blijkt dat men de 3 hoeken in H, het snijpunt der hoogtelijnen, terugvindt. Dezelfde procedure kan men uitvoeren met de 3 bissectrices. Uit de algemene vorm blijkt dat de hoeken bij I, het snijpunt der bissectrices

7e klas binnenste buiten

 

bb 93 2 1

bb 93 2 2

De gaafheid en schoonheid van deze hoeken blijkt nu pas. Via gewone gradenberekeningen was dit niet mogelijk

Dit wordt besproken: bij de hoogtelijnen zijn zonder meer dezelfde hoeken gehandhaafd. Bij de bissectrices vindt er een harmonisering plaats.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985).

.

meetkunde: alle artikelen

7e klas: alle artikelen
.

VRIJESCHOOL  in beeld: 7e klas: alle beelden

.

534-492

 

 

 

 

 

 

 

 

 

 

 

 

.