Tagarchief: meetkunde klas 8

VRIJESCHOOL – 8e -12e klas – meetkunde

.

Dit is een overzicht van onderwerpen die in de verschillende klassen van de bovenbouw aan de orde komen.
Of wellicht kwamen. Het is mij niet bekend hoeveel mogelijkheden de middelbare vrijescholen nog hebben om, door exameneisen, het vrijeschoolleerplan nog te kunnen uitvoeren.

MEETKUNDE KLAS  8 T/M 12

8e klas

In 7 weken periodeonderwijs kan heel wat gedaan worden. Meestal worden deze 7 weken verdeeld in 2 periodes van resp. 3 weken, bijv, één in de herfst en één in de lente voor zover dit roostertechnisch mogelijk is.

In de eerste periode komen de bekende meetkundige figuren aan de orde zoals vierkant, rechthoek, parallellogram, ruit, vlieger, trapezium waarvan de oppervlakte nu berekenbaar is zo ook van de driehoek.

De oppervlakte van een rechthoek is lengte x breedte.

Wat is nu de oppervlakte van een driehoek? Deze blijkt de helft van de basis x hoogte te zijn:

Hebben twee driehoeken dus dezelfde basis en dezelfde hoogte maar voor de rest zijn ze verschillend, dan is toch hun oppervlakte gelijk:

 

Verder komen aan de orde het meetkundig vermenigvuldigen van een figuur ten opzichte van een punt. Gelijkvormigheid van figuren vloeit hier als vanzelf uit voort:

Een begin wordt gemaakt met de ruimtelijke meetkunde door de vijf platonische lichamen knippend en plakkend van papier te maken.

In de tweede periode staan de “puntverzamelingen” centraal. Dit houdt het volgende in. Tot nu toe is een lijn een lijn, een cirkel een cirkel. Nu komt het moment om een lijn als een verzameling punten te zien die op een rij liggen. Zo is de cirkel te beschouwen als een verzameling punten die alle even ver van één centraal punt af liggen. Ais je alle punten neemt die even ver van een lijn L als van een punt P liggen dan krijg je een kromme die we de parabool noemen:

Alle punten die even ver van een centraal punt P liggen, vormen een cirkel

 

 

 

 

 

 

Alle punten die even ver van een punt P als van een lijn l af liggen vormen een parabool.

Op soortgelijke wijze kun je nu komen tot geheel nieuwe meetkundige figuren, nl. de ellips, de hyperbool, de cassinische curven met name de lemniscaat en de cirkels van appollonius. Dit alles wordt door de leerlingen met grote nauwgezetheid geconstrueerd.

Cassinische curven i.h.b. de lemniscaat

9e klas

Zoals in de periode Nederlands de tegenstelling sentimentaliteit – rationaliteit behandeld wordt zo wordt in de meetkunde het thema cirkel-lijn aangeroerd.

De omtrek van een cirkel blijkt 3 à 4 keer zo lang te zijn als zijn straal. Bij nadere bestudering blijkt het 3,14 keer zo lang te zijn. Maar ook dit getal blijkt niet nauwkeurig. Uit de geschiedenis is bekend dat reeds de oude Egyptenaren en de Grieken zochten naar dit getal, (het zgn. getal pi =  π). Het aantal decimalen waarin men kon vastleggen werd steeds groter totdat in onze tijd de computer in staat is tot op 1,  2 miljoen decimalen te berekenen. Met dit getal kunnen we ook de oppervlakte van een cirkel uitrekenen.

Verder maken we in deze periode kennis met begrippen als middelpuntshoeken, omtrekshoeken, booggraden, de stelling van Thales enz. dit alles in het kader van de cirkelmeetkunde:

Alle hoeken waarvan het hoekpunt op de omtrek van de cirkel ligt, zgn. omtrekshoeken, zijn alle even groot, omdat ze dezelfde cirkelboog snijden.

De platte meetkunde wordt nu verlaten en de ruimte-meetkunde, de stereometrie, wordt betreden. In de 8e hebben we de platonische lichamen geknipt en geplakt; nu worden ze getekend alsmede uitslagen ervan gemaakt. Onderlinge samenhangen worden ontdekt en samengevat in de stelling van Euler. Het begrip dualiteit krijgt inhoud. Ook de ontdekking van Keppler in de 15e eeuw dat ons planetenstelsel opgebouwd is volgens platonische lichamen wordt behandeld.

Kubus en achtvlak zijn onderling duaal, d.w.z. dat de kubus evenveel zijdevlakken als de oktaeder hoekpunten heeft en omgekeerd.

10e klas

De stereometrie wordt nu verder verkend. Lichamen met platte vlakken, kubus, blok, piramide, prisma laten we doorsneden worden door willekeurige platte vlakken. De doorsnijdingen kunnen we nauwkeurig construeren. Punt, lijn en vlak zijn de elementen waarmee we de fysieke ruimte ai denkende doordringen, parallel aan de natuurkunde waarin de fysische processen met name de mechanica nu denkend verkend worden. Ook de periode landmeten sluit hier goed op aan. Op de aarde staand van je omgeving een nauwkeurige plattegrond maken luidt hierbij de opdracht. Technische hulpmiddelen zijn meetlint en theodoliet (hoekmeter). Wiskundige hulpmiddelen zijn hierbij de goniometrie en de trigonometrie de z.g. driehoeksmeetkunde. Deze is in de algebraperiode en in de vaklessen flink geoefend om nu toegepast te kunnen worden.

Constructie ter bepaling van de doorsnijding van het scheve prisma door een vlak dat door de grondlijn en door P gaat.

We meten de hoeken A1, A2, B1 en B2 en de afstand tussen A en B en met de cosinusregel en de sinusregel zijn we in staat de afstanden tot het torentje en de antenne alsook de onderlinge afstand tussen beide te berekenen. Rekenmachientje toegestaan, waarna op schaal de plattegrond gemaakt kan worden.

11e klas

In de 11e klas wordt het assenkruis ingevoerd, ofwel het coördinatenstelsel, uitgevonden door de Fransman Descartes. Lijn, parabool, hyperbool, cirkel, figuren die we in de 8e klas als puntverzameling hebben leren kermen, zijn nu te vangen in een algebraïsch verband tussen 2 coördinaten, een formule. Algebra en meetkunde ontmoeten elkaar hier en het oplossen van vergelijkingen, ontbinden in faktoren, merkwaardige producten waarmee de leerlingen jarenlang gepijnigd zijn in de vaklessen, blijken hier zichtbaar gemaakt te kunnen worden en uiterst nuttig te zijn.

parabool                                                                                                      lijn

Y= X  – 4                                                                                               Y = X + 2

 

 

 

Snijpunten van parabool en lijn vinden we door gelijkstelling:
x2 – 4 = x + 2
verder uitwerken:

 

x2 – x – 6 = 0
(x + 2) (x – 3) = 0
x = 2           x = 3
↓                 ↓

y = 0          y = 5

Dus punt A ( -2,0)  en B (3,5) zijn de snijpunten van parabool en lijn.

Dezelfde bovengenoemde figuren komen ook weer te voorschijn als de kegelsneden behandeld worden. Daarmee wordt het volgende bedoeld.

Als we een kegel laten snijden door een plat vlak dan is de doorsnijding van dit vlak met de kegel een meetkundig figuur, welk figuur hangt af van de stand van het vlak t.o.v. de kegel. Hiermee wordt de “Griekse” meetkunde afgesloten

Verder is het streven om in deze klas een begin te maken met de projectieve meetkunde*

Omdat hier nog ervaring mee moet worden opgedaan, gaan we hier niet verder op in.

De 12e klas

De 12e klas zet als het goed is een kroon op een ontwikkeling die 12 jaar duurt. Van een meetkunde periode is echter niet meer sprake, wel van een
bouwkundeperiode, waarin veel meetkundige vaardigheid toegepast wordt.

De opdracht luidt namelijk: ontwerp je eigen huis.

Wel degelijk is er een wiskunde-periode dit jaar, doch deze weken worden gebruikt om ingewijd te worden in de geheimen van het differentiëren en integreren.

L. Bronkhorst, Karel de Grote College, Nijmegen, datum onbekend

.

Meetkunde: alle artikelen

.

VRIJESCHOOL  in beeld: meetkunde klas 6

.

1624

 

 

 

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Meetkunde (1)

.

In zijn ‘Rudolf Steiners Lehrplan für die Waldorfschulen’ [1] heeft E.A. Karl Stockmeyer een samenvatting gegeven van het hoe en waarom van de elementaire meetkunde.

Doelen voor het meetkundeonderwijs:

1e klas:
tekenen voor het leren schrijven

2e en 3e klas:
tekenen van makkelijkere en moeilijkere vormen, puur om de vorm en zonder de relatie tot concrete dingen en voorwerpen, om het bewustzijn voor de ruimte te ontwikkelen als ‘vormingsgebied’. (symmetrie e.d.)

4e en 5e klas:
Meetkundige figuren in het tekenen leren kennen, in het ‘beschrijven’ van hun onderlinge verhoudingen leren begrijpen, dus driehoek, vierkant, cirkel, ellips enz. tot aan de stelling van Pythagoras, op zijn minst wat de gelijkbenige rechthoekige driehoek betreft.

Bij de 4e klas:
Meetkunde: een poging tot formulering:
Nadat in de eerste drie schooljaren eerst getekend is om te leren schrijven; ook geboetseerd puur terwille van de vorm, zonder voorwerpen als voorbeeld, begint op z’n laatst in de 4e klas het tekenen van elementaire meetkundige vormen; de verhoudingen moeten slechts waarnemend gevonden worden.

Bij de 5e klas:
Het waarnemend beschrijven van geometrische vormen wordt voortgezet em geïntensiveerd.

6e t/m 8e klas:
Wat tot nog toe tekenend en beschrijven behandeld werd, moet nu meetkundig ‘bewezen’ begrepen worden. (Tegelijkertijd komt er in het aparte tekenonderwijs de eenvoudige projectie- en schaduwleer)

Bij de 6e klas:
In de meetkunde moet – in overeenstemming met wat voor de 4e klas werd gezegd – een begin worden gemaakt met het bewijzen, ongeveer tot het begrijpen van congruentie van driehoeken en toepassingen ermee. Daarbij zijn de begrippen die in de jaren daarvoor el duidelijk zijn geworden toe te gebruiken, te verhelderen en uit te breiden; in het bijzonder moet de geometrische plaats erbij komen.

Bij de 7e klas:
Voorgesteld wordt in de meetkunde verder te gaan met het kunnen bewijzen, bijv. door de cirkel, het vierkant en de veelhoeken te behandelen. Het begrip ‘meetkundige plaats’moet verder behandeld worden, omdat deze ervoor geschikt is om meetkundige figuren uit het starheid te verlossen en beweeglijk te maken.

Bij de 8e klas:
Naast berekenen van vlakken moeten ook behandeld worden eenvoudige geometrische lichamen te berekenen; de meetkundige plaats nu toepassen op de curven van ellips, hyperbool, casinoïde en de cirkel van Apollonius

Daarnaast maakt Karl Stockmeyer nog een andere indeling:

Er zijn eigenlijk – afgezien van het tekenen om te leren schrijven – drie leerwegen die ieder op zich staan:

1e leerweg:
Vóór het 9e levensjaar wordt het vrije kunstzinnige vormgeven (symmetrie, vormverandering, toenemend in moeilijkheidsgraad, afmaken van een gegeven vorm enz) zonder uiterlijke dingen als voorbeeld te nemen, tekenend, schilderend, boetseren beoefend.

2e leerweg:
Op z’n laatst rond het 9e levensjaar wordt met een eerste meetkundeweg begonnen, die de gebruikelijke meetkundige vormen omvat en hun verhoudingen, maar die moeten nog geheel een innerlijk waarnemen blijven. Het doel is de stelling van Pythagoras.

3e leerweg:
Die begint pas op het 11e- 12e jaar en moet tot een exacte omgang met mathematische kennis leiden en moet daarom wat er tot dan toe geleerd werd door de waarneming, opnieuw vanuit het elementaire doorgenomen worden.

Sinds lang is het zo dat wie het over de meetkundeperiode(n) heeft, de perioden vanaf de 6e klas bedoelt. Waar het gaat om het bewijzen.

Alles ervoor wordt nu toch veel meer gezien als vormtekenen.

 

[1] E.A.Karl Stockmeyer: Rudolf Steiners Lehrplan für die Waldorfschulen

Nu:  Angaben Rudolf Steiners für den Waldorfschulunterricht

6e klas: meetkunde

7e klas: meetkunde

kringspelen en meetkunde

 

Het artikel zal verder uitgewerkt worden.

 

1110