VRIJESCHOOL – Meetkunde (4-2)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 16 t/m 19

Over het regelmatige cirkelveld
De bol kunnen we als een soort oervorm in de hele natuur vinden; van de planeten tot in de cellen waaruit alle levende wezens bestaan. Alle vruchten en zaden neigen min of meer tot een ronde vorm en in het mineralenrijk neemt ieder deeltje kwik een bolle vorm aan. Doe je bijv. een druppel olie in een daarbij passend mengsel van water en alcohol, dan zweeft deze daarin als een bol, net zoals iedere in evenwicht zich bevindende druppel. Zelfs een wond in onze huid wordt naarmate deze weer geneest ronder van vorm, ook als deze aanvankelijk nog lang was door een snee of een schram.

Wanneer een lichaam in trilling wordt gebracht, begint deze bij een bepaald trillingsgetal te klinken en van hem uit gaan geluidsgolven. Deze gaan gelijkmatig naar alle kanten en vormen een zgn. bolvormige golf. Dat staat los van de vorm van het lichaam dat tot klinken is gebracht, wanneer we een punt bekijken dat ver genoeg van de geluidsbron vandaan is. Een ronddraaiende staaf, een bel waarop is geslagen worden het middelpunt van een bolvormige golf.
Een ander voorbeeld is nog de zeepbel. Dat allemaal wijst op een onstoffelijk element dat overal de neiging heeft bollen te creëren.
In de mathematica hebben we alleen met de vorm van de bol te maken. Wanneer je probeert een heel precieze beschrijving te geven die ieder ander lichaam wat zijn vorm betreft, uitsluit – een zgn. definitie – dan kun je er niet omheen op een belangrijk punt te wijzen dat niet op de oppervlakte van de bol ligt, maar erbinnen. Dit punt ligt zodanig dat het van alle punten op het oppervlak van de bol even ver af ligt.
Dus wanneer je in een willeleurige richting een rechte lijn door het middelpunt lopend denkt, dan zijn de beide delen tot aan de punten die samenvallen met de oppervlakte van de kogel, dus tot de zgn. snijpunten, in alle gevallen, even groot. Het totaal van alle door een middelpunt gaande stralen ( rechte lijnen zonder einde) noemt men een stralenbundel. Wanneer je alle door een middelpunt gaande stralen bekijkt, kun je zeggen: de kogelvorm snijdt van alle door het middelpunt van een kogel gaande stralenbundel precies even grote stukken ( rechte lijnen van een bepaalde grootte) af. –

Het stuk tussen het middelpunt en de twee snijpunten van een en dezelfde straal heet doorsnede.

Het stuk tussen het middelpunt en één van de snijpunten (je kunt ook zeggen: een willekeurig punt op het oppervlak) heet ‘halfdoorsnede’ (omdat deze half zo lang is) of met een dikwijls gebruikt Latijns woord ‘radius’ – de straal.

Je kan de kogel echter ook door een geheel vlak doorsneden denken en wel zo dat de snede steeds door het middelpunt gaat. Er zijn oneindig veel van deze vlakken die door het middelpunt gaan, een zgn. vlakkenwaaier/bundel. Iedere doorsnijding door het middelpunt snijdt de kogel in twee gelijke halve kogels. Daarbij zal ieder snijvlak iedere keer een cirkel zijn en uit wat hierboven is gezegd, zal makkelijk in te zien zijn,  dat al die cirkels even groot zijn. Dan begrijp je de zin, de definitie, van de grote Oud-Griekse mathematicus Archmedes: “Wanneer alle doorsneden van een lichaam door het middelpunt cirkels zijn, dan is het lichaam een kogel.

We tekenen met de passer ergens op het papier een cirkel. Dan zetten we de punt van de passer op een willekeurig punt van de omtrek en tekenen een nieuwe cirkel, zonder de opening van de passer te veranderen. De nieuwe cirkel zal de eerste op twee punten snijden, die evenver van het middelpunt liggen. In een van de twee punten zetten we weer een cirkel – met dezelfde passeropening -. Daardoor ontstaat weer een nieuw snijpunt en we stellen vast dat dit andere snijpunt samenvalt met het middelpunt van de vorige cirkel. Als we verder gaan, komen wij weer bij het eerste cirkelmiddelpunt uit, waarbij in totaal zes cirkels getrokken zijn, waarvan het middelpunt op de oorspronkelijke cirkel ligt.
Nu stellen we vast:

1.Met dezelfde passeropening kun je op de omtrek van een cirkel zes andere zo neerzetten dat een zevende weer precies op de eerste zou vallen:

meetkunde-31

 

 

tek 2

.
2. De omtrek van de cirkel wordt door de zes middelpunten in zes gelijke delen verdeeld. (Dat deel van de cirkelomtrek noemt men een boog). Dit basisfeit is zo gewoon geworden, dat bijna niemand de diepe betekenis ervan nauwelijks nog bewust is.
Maar stel je eens voor dat de straal niet precies zes maal op de omtrek afgezet kan worden, of niet zou passen; dat er dus een stuk over zou blijven, dat zelfs geen bepaald deel ervan zou zijn – of zelfs dat hij vijf of zeven keer erop zou passen. Dan zou de gehele meetkunde, de hele wereld een andere ordening hebben. Daaraan moet je ook eens denken, zodat je niet vergeet je te verbazen, dat volgens Goethe toch ‘het betere deel van de mensheid’ is. –

Sinds oude tijden moet de cirkelomtrek in 360 delen verdeeeld worden, die men graden noemt. Een boog van een zesde deel van de omtrek meet dus 60° (graden).
Deze indeling werd in de oudste tijden afgeleid van de jaaromloop van de zon. De gradenmaat was oorspronkelijk nog ruimtelijk in de tijd, in de meetkunde is deze alleen nog ruimtelijk.

We hebben dus door de zojuist uitgevoerde constructie een deling in zes delen gekregen. Een andere die in het praktische leven bijzonder belangrijk is, is die in vier gelijke delen van ieder 90°; zo’n hoek heet een rechte hoek en wordt in de meetkunde aangeduid met R.

3.De zes cirkels waarvan het middelpunten gelijkmatig verdeeld op de omtrek van de cirkel liggen, gaan alle door hetzelfde middelpunt. (zie tek. 2)

4.De cirkels snijden elkaar over en weer en er ontstaat een zesbladige vorm = ongeveer zoals die boven het hoofd van de ‘godin van de richting hangt'[1] – de bruine blaadjes:

6e-klas-meetkunde-1a

 

 

 

 

tek. 3

5.Elke twee van de zes cirkels snijden elkaar zo, dat de een door het middelpunt van de ander gaat. Op deze manier ontstaan zes grote bladeren, velden, eveneens om het middelpunt van de eerste cirkel gegroepeerd. De grootste breedte van elk is gelijk aan de straal die alle cirkels gemeenschappelijk hebben (velden in oranje, groen en violet in tekening boven).

6.Laat je van de zes cirkels twee die tegenover elkaar staan weg, dan zie je dat steeds een groot veld met een klein een rechte hoek vormt. Trek je door de punten van de velden rechte lijnen, dan zullen deze loodrecht op elkaar staan:

meetkunde-47

 

 

 

tek. 6

 

7a) Teken je drie cirkels zo, dat ieder door het middelpunt van de ander gaat , dan ontstaan drie grote velden:

meetkunde-29

 

 

 

 

tek 5

7b) Laat je iedere tweede cirkel weg, dan ontstaan maar drie kleine velden, waarvan de drie toppen de cirkel in drie gelijke bogen verdelen van ieder 120°:

meetkunde-30

 

 

 

 

tek 4

Om meer te weten te komen van onze ‘bloem’- de kinderen gaven hem zelfs de naam ‘wonderbloem’- nemen we de kleur als hulp, waarbij we drie basiskleuren nemen: geel (kadmium), rood (karmijn) en blauw (Pruisisch).*

Een blik op de tekeningen hierboven leert, hoe daarbij door het over elkaar kleuren (van te voren goed laten drogen!) de mengkleuren: groen, oranje en violet ontstaan en in het midden een mengkleur uit alle drie. (Om echt zuivere kleuren te krijgen, beginnen we steeds met dat deel van de cirkel te kleuren, dat wit is en dan gaan we – met niet te veel verf op de penseel – over de vlkakken die al eerder gekleurd werden.

Al deze tekeningen laten zien dat je door steeds weer andere kleurpatronen tot een bijna grenzenloze hoeveelheid vormen komt. We vergissen ons als we zouden menen dat een uitvoerig bezig zijn op deze manier als een beetje spelen wordt gezien of als tijdverdrijf. Dat is in tweeërlei opzicht niet het geval. We ontwikkelen een grotere vaardigheid in het nauwkeurig tekenen en in het kleurgebruik, vooral het eerste is onmisbaar  voor ieder die serieus met meetkunde bezig wil zijn. Maar we ontdekken ook steeds weer nieuwe mogelijkheden tot vormgeving; we halen er steeds meer uit als we ons in vrijheid op het trerrein van de wetmatigheid begeven. Dat heeft een diepe betekenis voor het leven; hier wordt het een innerlijke aangelegenheid en zoals je wellicht spoedig merkt, een kracht die harmonisch is, omdat de bron schoonheid is.
Dat geldt nog in hogere mate voor deze oefeningen:

meetkunde-48
tek 7

meetkunde-49

 

 

 

 

 

tek 8

meetkunde-50

 

 

 

 

 

 

 

tek 9

meetkunde-51

 

 

 

 

 

 

 

tek 10

 

Dit versterkt ook het voorstellingsvermogen  en later zullen we in staat zijn ons voorstellend – dus zonder te tekenen – bezig te houden met geometrische waarnemingen en opgaven; bij het tekenend werken zullen we zogezegd meer zien dan dat er op papier staat.

.
meetkunde-30

 

 

 

In tekening 4 worden de drie cirkels waarvan het middelpunt op de in het midden liggende cirkel ligt, in de basiskleuren geel, blauw en rood gekleurd; daarbij ontstaan drie kleine velden in de mengvormen: groen, violet en oranje.

Kleur je in tekening 5 elke cirkel met de primaire kleur, dan ontstaat naast de drie mengkleuren in het midden, waar alle drie de kleuren elkaar overlappen, bruin.

Het is een goede voorbereiding tek. 8 meerdere keren te doen (met zelfgekozen kleuren) en iedere keer de kleuren zo te ordenen dat de rechts en links van het grote veld in het midden liggende helften m.b.t. het grote veld symmetrisch zijn.

Tek. 8, 9 en 10 zijn voorbeelden die een aansporing willen zijn voor de eigen activiteit.
De beoefenaar wordt aangeraden veel meer kleurcombinaties voor het cirkelveld te vinden.

In tek. 9 verschijnen in de mengkleuren aaneengesloten grote en kleine velden die een soort trap vormen. De cirkels in de primaire kleuren zijn louter in parallelle rijen aangelegd.

Net zo in tek. 10, alleen zijn hier de rijen meer over elkaar geschoven en er verschijnen in bruin parallelle rijen kleine velden.

In tek. 8 staan de cirkels in de primaire kleuren in een driehoekopstelling!

Ook in dit opzicht zijn er nog vele nieuwe mogelijkheden.

Het is stimulerend en voor kinderen aan te bevelen, i.p.v. de cirkels helemaal met kleur te vullen, alleen de kleine velden op verschillende manieren te kleuren.** Daarbij ontstaan driehoeken, zeshoeken en zessterren. De laatste ontstaan uit ieder twee zich doordringende gelijkzijdige driehoeken, waarvan de zijden elkaar over en weer in drie gelijke stukken delen.

[1] godin van de richting (Meetkunde 4-1, door Strakosch als tek.1 genummerd)

 

*Strakosch schildert hier klaarblijkelijk. Dat is met de kleinere cirkels die je in het periodenschrift gebruikt, bijna niet te doen. Je moet bijv. over heel fijne penseeltjes beschikken; maar echt precies wordt het nooit en dat is toch de charme van de gekleurde figuren: dat het er exact uitziet.
Dus bleef ik bij het kleurpotlood.

**Kinderen kunnen veel als je het langzaam opbouwt.
Vrijeschool in beeld: 6e klas meetkunde

Meetkunde: alle artikelen

 

1119

 

 

 

 

 

 

 

 

 

.

 

Advertenties

3 Reacties op “VRIJESCHOOL – Meetkunde (4-2)

  1. Pingback: VRIJESCHOOL – 6e klas – meetkunde (2-3/2 wordt vervolgd) | VRIJESCHOOL

  2. Pingback: VRIJESCHOOL – Meetkunde – alle artikelen | VRIJESCHOOL

  3. Pingback: VRIJESCHOOL – Meetkunde (4-6) | VRIJESCHOOL

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit /  Bijwerken )

Google+ photo

Je reageert onder je Google+ account. Log uit /  Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit /  Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit /  Bijwerken )

Verbinden met %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.