VRIJESCHOOL – 6e klas – meetkunde (4-1)

.

In zijn ‘Geometrie durch übende Anschauung‘ [1] vertelt Alexander Strakosch over het begin van de meetkunde in de cultuur.

Hij gaat daarvoor terug naar het Oude Egypte. Omdat je daarover met de kinderen in de 5e klas hebt gesproken in de geschiedenisperiode***, kun je daar nu op terugkomen.
Omgekeerd kun je in die periode aankondigen, dat je in de 6e klas meer over Egypte zal vertellen tijdens de meetkundeperiode.

Strakosch:
Het begin van het bezigzijn met geometrie vindt plaats in de Oud-Egyptische cultuur (ca 3000 – 800 v.C.)  Over het algemeen hadden de mensen toen nog helemaal niet de denkcapaciteit van tegenwoordig verworven; die begon pas met de cultuurfase die op de Egyptische volgde: het Grieks-Romeinse cultuurtijdperk.
In het Oude Egypte verstonden alleen de priesters door hun speciale opvoeding de kunst zich met mathematica bezig te houden. Terwijl in de vrijwel tegelijk bloeiende Babylonische, Assyrische en Chaldeïsche rijken meer de rekenkunst, de zgn. arithmetica beoefend werd, ontwikkelde zich met name in Egypte de geometrie, maar niet zozeer in de zin van een theorie als wel veel meer als praktische activiteit. Je zou kunnen zeggen: meetkunde werd bedreven.

Deze activiteit vond op twee terreinen plaats: bij de bouw en aanleg van tempels en andere cultische gebouwen, bijv. de piramiden en ook bij het uitmeten van akkers.

De Egyptenaren waren een volk van landbouwers en als zodanig waren zij in de gelukkige omstandigheid dat ze zich geen zorgen hoefden te maken over de bemesting, De geweldige rivier de Nijl,*** die helemaal van zuid naar noord door het land stroomde, trad met de allergrootste regelmaat ieder jaar buiten haar oevers, wanneer het groenachtige sterrenbeeld de hond, Sirius, ’s avonds weer in het oosten opkwam. Wekenlang bedekte de troebele vloed van de Nijl het hele land; wanneer hij zich dan weer in zijn normale loop terugtrok, was alles met een laag van de vruchtbaarste klei bedekt en de bemesting op de meest intensieve en te vertrouwen manier gedaan. Je kunt begrijpen dat de Egyptenaren hun land ‘een geschenk van de Nijl’ noemden – maar de rivier zelf was in hun ogen een geschenk van de goden.

Het grondbezit was in die tijd zo verdeeld, dat een bepaald deel van de koning was, een ander gedeelte van de priesters, een derde en laatste deel voor de soldaten. Het zgn. lagere volk moest het veldwerk verrichten; dat gebeurde ook veelvuldig door slaven uit de volkeren die overwonnen waren.

Wanneer de overstroming echter ten einde was, kon je geen begrenzing van de akkers meer zien – het slib had al het akkerland gelijkmatig bedekt. Zodra het opgedroogd was, moesten de akkers weer opnieuw uitgemeten worden. Dat gebeurde door de priesters die in de tempelscholen waren opgeleid; zij alleen beheersten de kunst van het landmeten.

Waar hadden ze die kennis vandaan? Hoe meer deze oude tijd wordt bestudeerd, met des te grotere verbazing staat men voor de diepe en omvattende wijsheid die de toenmalige priester-wijzen zich op de meest verschillende gebieden eigen hadden gemaakt: niet alleen sterren- en meetkunde, maar ook geneeskunst en scheikunde. Maar het was geen bedachte wetenschap. Men verdiepte zich bijv. met grote aandacht en eerbied in de loop van de sterren en hierbij was het de geschoolden van die tijd mogelijk door een innerlijk ervaren van dergelijke waarnemingen de wetten van de hemel te onderzoeken en het leven daarnaar in te richten.
De verbinding met de scheppende hemelsmachten werd in de tempel verzorgd en men wist – zoals men het toen tot uidrukking bracht – in welk gesternte deze of gene godheid woonde. Opdat deze nu zijn krachten in de voor hen opgerichte tempel het beste zou kunnen zenden en daar ook in zou kunnen verblijven, moest de tempel in de richting van die bepaalde ster staan, zodat op het jaarfeest van de betreffende god de ster bij het opgaan precies in de tempelas stond en het altaar bescheen.

Het is makkelijk in te zien, dat hier al een grondige kennis van de loop der sterren en van de meetkunde noodzakelijk waren – Wanneer er dus een tempel gebouwd moest worden, kwamen uit het heiligdom van de ‘godin van de richting” , die de mensen de richting leerde, de zgn ‘touwspanners”; de naam komt van hun activiteit als landmeter, als veldmeter. Tekenbord, papier uit het merg van de papyrusstruik, de passer in zijn huidige vorm waren onbekend. De dunne bladzijden van papyrus, vervaardigd uit het merg van de papyrus werden gebruikt om te schrijven, niet voor meetkundige tekeningen. Als tekenvlak diende de geëgaliseerde bouwplaats of de eveneens vlakke akkers; alle meetkundige activiteit werd direct op het veld uitgevoerd. Als werktuigen gebruikte men stokken en touw, dit zonder knopen en ook met knopen op regelmatige afstanden van elkaar om lengten te meten, maar ook om hoeken uit te zetten.

De basisvorm van de hele meetkunde is de cirkel, de ronde, bij zichzelf terugkerende lijn waarop alle punten van zijn omtrek, dus de eigenlijke lijn vanuit het middelpunt precies dezelfde afstand hebben. Tegenwoordig zou je misschien bedenken dat dus een steen, aan een touw vastgebonden en in beweging gebracht, een cirkelvormige lijn zou beschrijven. De Oude Egyptenaar zag dat anders. Hij zag in het bewegen van de sterren aan de hemel de uidrukking van de hoogste goddelijke wijsheid en harmonie en wanneer hij op aarde een cirkel moest tekenen, kon hij zich deze activiteit niet anders voorstellen dan met hulp van de ‘godin van de richting’.
Een voorstelling uit die tijd laat ons een dergelijk iets zien:

meetkunde-36

 

 

 

 

 

 

 

 

 

 

 

 

nog een afbeelding: zie onder

We zien twee figuren: een mannelijk figuur met de kenmerken van de priester en koning – en de vrouwelijke gestalte van de godin. Boven haar hoofd zien we een geometrisch figuur, een soort bloem. Beiden gestalten houden in de ene hand een rechtop staande staf en in de andere hand een stok die gebruikt wordt om de staf  met een paar slagen in de grond te slaan. Omdat het gaat om een gewijde handeling, moeten de slagen in een bepaalde, voorgeschreven maat uitgevoerd worden. Rondom de beide staven is een touw zonder einde; de staven worden zo gehouden dat het touw steeds strak gespannen staat.
Bij het uitzetten van de tempelas en van het grondplan werd de godin door een van haar priesters vertegenwoordigd, m.n. de touwspanner. Wanneer de cirkel getrokken moest worden, werd de ene staf in de aarde geslagen en in loodrechte stand vastgehouden. Wie de andere staf vasthield, deed dat ook en liep om de staande staf heen, zo dat het touw steeds gelijkmatig en gespannen bleef en de onderkant een cirkel op de grond trok.

(wat nu volgt is voor de periode meetkunde niet van direct belang, maar geeft wel motieven waarom meetkunde zoals in de 6e klas op de door mij beschreven manier wordt gegeven)

In onze tijd is onderzocht dat de Oud-Egyptische tempels zulke grondoppervlakten hadden en ook verticale projecties, waarbij alle belangrijke punten door het maken van cirkels en het trekken van lijnen door bepaalde snijpunten ontstaan. Het gereedschap dat afgebeeld is, was dus voldoende om de schetsen te tekenen. De lengtes werden van tevoren niet berekend, maar waren het gevolg van vaste punten en snijpunten van de uitgevoerde constructie – zoals de Ouden over het algemeen tekenden en niet berekenden.

Het begin van vlakkenberekening is al wel in het Oude Egypte te vinden.
Een geometrie die meet en rekent hebben de Grieken ontwikkeld op basis van het ondertussen verworven vermogen om zelfstandig te kunnen denken. Hier vinden we ook voor het eerst ‘het bewijs’, namelijk een gedachtegang die laat zien dat een duidelijke formule altijd en onvoorwaardelijk juist moet zijn.

Wanneer we tegenwoordig een cirkel tekenen, denken we er niet aan om een godin aan te roepen die buiten ons om manifest is of haar plaatsvervanger te hulp te roepen. De passer in zijn huidige vorm maakt het ons mogelijk, het met een hand zelf te doen. Dat kan gebeuren doordat de beide staven – dienovereenkomstig aangepast – in een verbinding bij elkaar komen -. We zoeken ook niet meer in de sterren naar de richting voor ons doen  – zoals Schiller zegt -: ‘In je borst zijn de sterren van je lot’.*
De geometrie zelf ontvangen we niet meer als een openbaring van buitenaf; we maken haar ons veel meer eigen met de heldere hedendaagse bewustzijnskrachten en de activiteit die door deze schrijfregels opgeroepen wordt, dient ook dit doel.

De mathematica in het algemeen wordt als een zuivere denkwetenschap gezien, maar in het deelgebied van de geometrie wordt toch ook nog de voorstellingskracht aangesproken en door dit oefenen sterker gemaakt. Dat is voor onze tijd belangrijk. Uit de geschiedenis weten we dat in de bloeitijd van de Griekse cultuur met name de mathematica de basis van de vorming was. Toen wilde men zich een denken verwerven dat in overeenstemming was met universele wetten. In de meetkunde die door de Egyptische priesters a.h.w. uit de hemel was gehaald, zag men een symbool van die wetten. Grote geesten als Pythagoras en Plato*** hebben zich jaren van hun leven aan de studie van de Egyptische geometrie en de rekenkunde uit Babylon en Chaldea gewijd.

De mensheid heeft door de voorbije eeuwen sinds die tijd in de hoogste mate het denken ontwikkeld, maar ze is daarbij wel in een zekere starheid terecht gekomen. De mensen hebben hun gedachten, maar ze vragen zich helaas te weinig af, waar deze vandaan komen, of ze werkelijk wel van hen zijn. Maar ze denken zelf helemaal niet eens zoveel, het denken is onbeweeglijk geworden en dat denken dringt niet op een levende manier tot het wereldse door. De mens stelt zich a.h.w. afzijdig van de wereld op en vormt gedachten die in hun te grote vaststaande vorm en starheid niet goed in overeenstemming zijn met de steeds doorgaande ontwikkelingen in het leven. Daarom komen we van de ene crisis in de andere.

We kunnen echter in de meetkunde weer een fundamenteel vormingselement vinden, wanneer we deze a.h.w. juist tegenovergesteld bekijken dan de Ouden. De mathematica heeft namelijk in het bijzonder sinds de 18e en 19e eeuw grote stappen voorwaarts gezet; in de geometrie is men tot geheel nieuwe gezichtspunten gekomen, waarvan men in de Griekse tijd niets wist. Toen had men in de eerste plaats een metende geometrie; men berekende lengtes, vlakken en lichamen. De moderne meetkunde echter gaat uit van algemene voor de gehele ruimte geldende wetmatigheden die zich openbaren in de wederzijdse positie van de eenvoudige elementen, zoals cirkel en rechte lijn.

Tot nog toe heeft men op de keeper beschouwd de leerlingen op onze scholen kennis laten maken met de geometrie naar de Oud-Griekse methode; zo wordt bijv. in Engeland tegenwoordig** nog vaak volgens een precieze vertaling van de Oud-Griekse leerboeken van Euklides lesgegeven.

Hier zal de methode van Euklides niet vervangen worden door de projectieve meetkunde, maar je kunt tot een andere manier van behandelen komen, wanneer de laatste min of meer door de elementaire geometrie heen klinkt.

Hier volgend willen we het wagen wat in de geometrie verschijnt eerst eens te leren kennen, wanneer we het stap voor stap laten ontstaan door wat we oefenend doen. We komen daarbij tot wetmatigheden waarvan de algemene geldigheid langs de gewone manier bewezen kan worden. – Door de projectieve meetkunde telt het element van de waarneming in de geometrie weer mee en wij willen dat benutten en het daarmee verzorgen. Op deze manier komen deze mathematische dingen weer in beweging en daarmee ons denken. Dit beperkt zich dan niet meer tot het trekken van logische conclusies, wat altijd volgens strenge, maar daardoor ook starre wetten moet gebeuren. In de huidige geometrie komen we echter tot wetmatigheden die net zo streng zijn, bovendien echter nog doortrokken zijn van beweging. We leren ons in een gebied van verheven wetmatigheden vrij te bewegen. Dat is mogelijk doordat we het denken dat in ons star is geworden weer beweeglijk en levendig beginnen te maken en het met de wil te doordringen wanneer we het op deze manier gebruiken. Zo’n denken kan ons ook een juiste plaats in het leven geven, waar we moeten leren wetmatige gegevens te respecteren en ons daarbij toch vrij te ontwikkelen. –

Zo beoefend kan mathematica weer, maar nu voor deze tijd, een element worden dat als basis van een algemene vorming gezien mag worden.

*’In deiner Brust sind deines Schicksals Sterne’

meetkunde-37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

De godin Sesjat met griffel en schrijfpalet.
Bij de bouw vqn de tempel bepaalt zij of een van haar priestres met een meetstrik het grondoppervlak; hierdoor is ze ook ‘godin van de bouwlieden’. Haar belangrijkste taak is het aantal jaren dat de koning als regeringsjaren toebedeeld krijgt op te wchrijven en de jubilea. Haar niet nader te verklaren hoofdversiering lijkt op een zevenstralige ster met een beugel (of een maansikkel) daarboven, dikwijls bekroond met valkenveren. In haar hand houdt zij meestal een bladnerf van een palm; over haar kleed draagt zij vaak een pantervel.
(Lexicon der Götter und Symbole der alten Ägypter – Manfred Lurker)

[1] Geometrie durch übende Anschauung, A.Strakosch – Mellinger Verlag Stuttgart 1962l
(Niet vertaald: Geometrie door het waarnemend te beoefenen)

**Dit boek werd in 1962 uitgegeven

***links door mij aangegeven

Meetkunde: alle artikelen

 

1117

 

 

Advertenties

4 Reacties op “VRIJESCHOOL – 6e klas – meetkunde (4-1)

  1. Pingback: VRIJESCHOOL – 6e klas – meetkunde (2-3/2 wordt vervolgd) | VRIJESCHOOL

  2. Pingback: VRIJESCHOOL – Meetkunde (4-2) | VRIJESCHOOL

  3. Pingback: VRIJESCHOOL – Meetkunde – alle artikelen | VRIJESCHOOL

  4. Pingback: VRIJESCHOOL – 6e klas – meetkunde (2-3/1) | VRIJESCHOOL

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit / Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit / Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit / Bijwerken )

Google+ photo

Je reageert onder je Google+ account. Log uit / Bijwerken )

Verbinden met %s