VRIJESCHOOL – Meetkunde (4-3)

.

Alexander Strakosch: ‘Geometrie durch übende Anschauung’
blz. 19 t/m 20

Over het ontstaan van de rechte lijn

Na wat over de cirkel als oervorm is gezegd, zou het als een soort inbreuk beschouwd kunnen worden, wanneer je rechte lijnen in het cirkelveld zou willen tekenen.
Daarom zal er aan een paar oefeningen getoond worden, hoe er in een cirkelveld lijnen kunnen ontstaan en wel zo, als zogenaamde grensgevallen van cirkels. Hiervoor moet je het feit helder hebben dat een cirkelboog, d.w.z. een deelstuk van de cirkelomtrrek des te vlakker wordt, naarmate de doorsnede van de betreffende cirkel langer wordt. Stel je dan voor dat het middelpunt steeds verder in de verte verdwijnt. De doorsnede kan uiteindelijk zo lang worden dat voor het oog en zelfs bij meting het boogstuk geen duidelijke afwijking meer vertoont t.o.v. een rechte lijn.  Zolang echter de doorsnede – ook al is deze nog zo groot – een meetbare grootte heeft, dus mathematisch gesproken: meetbaar _ eindig, zolang is een boog van zo’n cirkel, mathematisch gezien, nog geen rechte lijn. Dat wordt deze pas op het ogenblik dat het middelpunt in het ‘oneindige’ verdwijnt en de doorsnede dus geen begrensde lengte meer heeft, maar een die boven al het meten en voorstellen uitgaat, dus ‘oneindig’. Je kunt een rechte lijn dus opvatten als een boogstuk van een cirkel, waarvan het middelpunt in het oneidige licht.

Maar een rechte lijn kan ook ontstaan als een rij punten die bij een bepaalde plaats horen, de zgn. ‘geometrische plaats’:

meetkunde-52

 

Om twee willekeurige punten als middelpunt trek je cirkels en wel met zo dat iedere twee dezelfde straal hebben. Iedere twee van die even grote cirkels snijden elkaar in twee snijpunten en al deze snijpunten liggen op een rechte lijn.

meetkunde-53

Hier zijn twee willekeurige punten genomen als middelpunt waaromheen twee cirkels zijn getrokken. Door hun snijpunten is – zoals hierboven – een rechte ontstaan (met puntjes getekend) Door de middelpunten die we net genomen hebben, kun je cirkelbundels trekken; de middelpunten van de cirkels liggen op de rechte met de puntjes. Hoe verder die middelpunten in beide richtingen uit elkaar gaan, des te vlakker worden de boogstukken tussen de beide punten. Wanneer de middelpunten aan beide kanten in het oneindige verdwijnen, dan worden de boogstukken tussen de beide punten rechte lijnen, die op elkaar liggen, een dubbele rechte vormen; want door beide punten kun je nu maar een rechte lijn trekken. (Dit behoort tot de grondbeginselen, de zgn. axioma’s van de geometrie, die ogenschijnlijk hun geldigheid vertonen en geen bewijs nodig hebben).

In de tekening is zo gewerkt dat van de ‘bloem’ de middencirkel en de drie onderste getekend zijn. (De eerste is wat benadrukt). Zo ontstaat een groot blad, waardoorheen de rechte met de punten vastgelegd is en een kleine waarbij de dubbele rechte door hun toppunten loopt*. (De bedoeling van dit boek is dat de vriend van de meetkunde zich niet tevreden stelt alleen naar de tekeningen te kijken, maar deze vaak en vanuit verschillende standpunten zelf uitvoert)

Wanneer je de bladeren met als vouwlijn de lijn met de puntjes omgevouwen denkt, dan zullen alle lijnen boven precies op dezelfde lijnen onder komen te liggen. Zo’n rechte lijn heet een symmetrie-as. Wanneer je goed kijkt zul je moeten bevestigen dat ook de dikke lijn door de twee punten een symmetrie-as is. Uit deze dubbele symmetrie wordt duidelijk dat alle vier hoeken die rond het snijpunt van deze beide rechte lijnen liggen, even groot moeten zijn; dan moeten het rechte hoeken zijn. Je komt weer bij het feit dat een klein blad loodrecht op daarbij behorende grote blad zal staan.

* van de onderste cirkels is dit toppunt beneden

.

Vrijeschool in beeld: 6e klas meetkunde

Meetkunde: alle artikelen

 

1123

 

 

 

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit /  Bijwerken )

Google photo

Je reageert onder je Google account. Log uit /  Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit /  Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit /  Bijwerken )

Verbinden met %s

Deze site gebruikt Akismet om spam te bestrijden. Ontdek hoe de data van je reactie verwerkt wordt.