VRIJESCHOOL – Rekenen – 4e klas (1)

.

REKENEN EN WISKUNDE

Rekenen tussen het negende en twaalfde jaar

In de gevoelsmatige periode van de gevoelsfase, die ongeveer samenvalt met de vierde en vijfde klas, zijn de fantasie en de persoonlijke inzet van de kinderen bij het rekenonderwijs van essentieel belang. Bij het thema breuken kunnen deze elementen bijzonder goed tot hun recht komen.

De vierde klasser is in het midden van de tweede levensfase. De tijd dat hij zich vanzelfsprekend één kon voelen met de wereld rondom, is voorbij. Het gevoel van zelfstandigheid is tevens een gevoel van ‘apartheid’. Het blijkt de vierde klasser diep te kunnen bevredigen wanneer hij de kans krijgt zich in te leven in de wereld van de breuken. Het kind krijgt daartoe alle gelegenheid. Pas als de breuken ten volle doorleefd zijn, beginnen wij te werken met abstracte formuleringen van breuken.

Leer- en ontwikkelingsdoelen voor de klassen IV en V

Kwalitatief en kwantitatief inzicht in de wereld van de gehele getallen, de gewone en tiendelige breuken. De vier hoofdbewerkingen binnen dat gebied.
De vaardigheid zich binnen deze getallen rekenend vrij te bewegen.

4e klas

Leerstof
Hoofdrekenen, ook met getallen boven de duizend.
Cijferen wordt aangeleerd (eventueel).*
De breuken met hun vier hoofdbewerkingen.
Schatten.

Werkvormen
Na een ceremoniële start oefent de klas het rekenen in breuken door beweging en doen.

De klas vormt een kring die in tweeën of drieën wordt gesplitst. De kring valt telkens uiteen in een stambreuk en het overblijvende deel, om zich daarna weer te sluiten.

De kinderen maken ook ronde schijven en knippen er een stuk uit. De delen zijn gemakkelijk weer samen te voegen. Altijd gaat de leerkracht met de leerlingen van het geheel naar de breuk en van de breuk terug naar het geheel. 

Het schriftelijk werk is zodanig dat het voor de kinderen binnen dezelfde opgave mogelijk is op veilig terrein te blijven of door te dringen tot een moeilijker gebied.

Hoe gaat het toe?

Op de vrijeschool gaan we bij het rekenen met breuken uit van de stambreuk. We proberen ook in dit vak de mensheidsgeschiedenis te volgen. De Egyptenaren gebruikten vele eeuwen om het rekenen met breuken te ontwikkelen. In de tijdspanne van 3400 v. Chr. tot 1800 v. Chr. gebruikten de Egyptenaren uitsluitend stambreuken en het overblijvende deel:

één derde                                   en de ‘twee delen’ (2/3)
één vierde                                  en de ‘drie delen’ (3/4)
één vijfde                                   en de ‘vier delen’ (4/5)

Voor de Egyptenaar had elke breuk op zichzelf zo sterk een eigen kwaliteitskarakter, dat het voor hem een horreur was om over 2/5 of 3/5 te spreken. Bij hun berekeningen stuitten de rekenkundigen wel op zulke grootheden, maar deze werden onmiddellijk geëlimineerd door ze te herleiden tot stambreuken. Zo bevat de papyrysrol Rhind, 19e eeuw vóór Chr. uitvoerige tabellen voor het herleiden van 2/5, 2/7, 2/9 tot stambreuken. Voorbeelden:

2/5———- ► 1/3 + 1/15

2/7———- ►     1/4 + 1/28

2/9———- ► 1/8 + 1/52 + 1/104

Voor ons is dat vreemd. Wij moderne mensen fronsen onze wenkbrauwen bij die 1/8, 1/52, 1/104 en het verschaft ons een bevredigend gevoel als wij met behulp van gelijknamig maken deze som kunnen herleiden tot de voor ons zo veel gemakkelijker grijpbare breuk 2/13. Dus we gaan precies de andere kant op.

Maar voor een Egyptenaar heeft ééndertiende een kwaliteit, voor hem spreekt zich in die 13 een wezenlijk iets uit. De getallen worden grootheden waar men het diepste respect voor had.

Het kan nooit de bedoeling zijn de papyrusrol Rhind als uitgangspunt voor een rekenmethode te nemen. Wij willen niet terug. Maar het maakt wel verschil of de onderwijzer en de onderwijzeres met eerbied tegenover de breuken staan. De breuk is een culturele verworvenheid van de mensheid. Een lange weg van wijsheid naar uiterlijke kennis. Al onze kinderen zijn in de wieg gelegd om deel te hebben aan onze abstract-intellectuele wereld. De vraag is echter, hoe leidt men een kind op weg naar het begripsmatige omgaan met getallen en bewerkingen zonder dat zij van hun werkelijkheid vervreemden.

De eerste breukenperiode
Het is januari, de school is net begonnen na de kerstvakantie.
Als iedereen binnen is, is de spanning al aanwezig. Ze weten: nu krijgen we breuken!

(N.B. Een rekenperiode gaat het best in de koude tijd van het jaar, als alle krachten wat verinnerlijkt zijn. Daarnaast vormt de ‘breuk’ een typisch heilzaam vierdeklasonderwerp, samen met o.a. de canon, het ‘gebroken’ lied, en de kruising van lijnen bij het vormtekenen, het zgn. vlechtwerk.)

Met een plechtstatige ernst haalt de leerkracht uit zijn tas een zijden shawl — een mes — een appel. Met omstandig ritueel wordt de appel gepoetst tot hij glimt. Dan neemt de leerkracht het mes en voor de ogen van de kinderen snijdt hij de appel langzaam middendoor.

Dit zonder één woord te zeggen.

Het mes wordt neergelegd en in iedere hand neemt de meester een helft. Dan de twee helften in één hand, goed laten zien, de shawl eroverheen en onder de shawl de helften tegen elkaar gedrukt. Als het goed lukt, plakken de helften weer samen en de appel is weer heel. Onthul de appel dan weer.

Hetzelfde ritueel nu nog eens.
Nu krijgen we vier partjes. Ook deze worden te zamen geplakt. Nog steeds wordt er geen woord gesproken. Men moet dit mooi uitspelen, en tevoren thuis oefenen, want vier partjes in één hand vereist enige vaardigheid.

En ten slotte het moeilijkst. Acht partjes!
Dit lukt niet met één hand maar met twee handen laat men, als een geopende bloem de partjes zien en plakt ze weer te zamen.

Dit ritueel maakt een diepe indruk op alle leerlingen.

Vervolgens wordt er gesproken over een helft, een halve, een hele, over kwarten, enz. Men tekent op het bord; twee halve appels = één hele.

In het nieuwe schrift worden mooie tekeningen gemaakt. Die eerste week staat voornamelijk in het teken van het doen.

Men laat de kinderen zelf appels meenemen en een mes. Zelf snijden, ‘sommetjes’ opgeven, die ze moeten doen. ‘Pak eens een halve appel, hoeveel kwarten zijn dit, hoeveel achtsten zijn dit,

neem een kwart, hoeveel moet eraf om een achtste te krijgen, enz. (de opgaven weer volgens de temperamenten).’

Men vraagt een paar moeders om pannenkoeken te bakken en die om negen uur te brengen. Dan wordt er gesneden en verdeeld, weer bij elkaar gelegd enz. Samen rekenen: ‘Geef je buurman 3/8 pannenkoek. Je krijgt 3/4 terug.’

(Geroep dat dit oneerlijk is; heel goed, want iedereen weet nu dat 3/8 minder is dan 3/4.) En aan het eind:

‘Stop 2/8 pannenkoek in je mond;
stop 2/4 pannenkoek in je mond;
stop nu 4/4 pannenkoek in je mond!’
Rekenen kan erg leuk zijn.

In de kersttijd hebben veel groentewinkels wel een zak met walnoten staan. De meeste walnoten zijn in tweeën verdeeld door een ribbel. Na enig zoeken vindt men echter ook walnoten die in drieën gedeeld zijn. Dat krijgen ze als huiswerk op; ga naar de groenteman en zoek zo’n walnoot. Spannend, en tegelijk een goede wilsoefening.

bb 82  1

(Enkele leerlingen uit mijn klas, nu de zevende, hebben hem nog steeds.)

Als iedereen zo’n noot heeft, kunnen we de derden in gaan voeren. Eerst noten tekenen, en tenslotte wordt het wat schematischer.

bb 82 2
Ook zijn er in deze tijd van het jaar veel mandarijnen te koop. Mee laten nemen en op school openen. Vaak zitten er negen partjes in.

Leuk huiswerk: Vraag thuis of jullie soep eten. Hoeveel happen soep moet je nemen voor je bord leeg is?

In de tweede week de schrijfwijze. Nu wordt ingevoerd: ½ 1/3 enz.

Kleine sommetjes, steeds verwijzen naar het concrete, dat ze zo vaak, en met zoveel plezier geoefend hebben. Altijd eerst tekenen, zodat ze het zien. De kinderen geven zelf wel aan, wanneer ze het tekenen los willen laten.

Tenslotte toewerken naar het abstracte. Een hele sprong voor sommigen, voor anderen minder. Ook zijn er leerlingen, waarvan je het gevoel hebt, dat ze er nog niet helemaal aan toe zijn. Toch hebben ze bij het concrete werk goed meegedaan. Men kan dan met dat abstraheren nog best even wachten, tot een en ander bezonken is. Ook het feit, dat men als leerkracht met de klas meegaat werkt hier zeer in het voordeel van deze leerlingen, want men kan eventueel in de vijfde klas deze stof in deze overgang nog eens aanbieden.

De stambreuk
bb 82 3

Bedenk zoveel sommen als je wilt.

Deze opgave is bijzonder geschikt om het kwalitatieve beleven van de breuken te versterken. De oefening zoals hierboven aangegeven staat in de melancholische vorm.

bb 83

De laatste dag van de rekenperiode was het ‘breukenfeest’. We hadden ons er steeds op verheugd. Moeders hadden pannenkoeken gebakken en zelfs enkele taarten. We zaten aan lange tafels. Het ging er vrolijk toe. Maar het snijden — er was zoveel dat ieder minstens eenmaal een hele pannenkoek kon verdelen— ging uiterst nauwkeurig. Na een uurtje waren er nog een paar losse stukken pannenkoek over op één schaal.

‘Wat wil jij nog, Piet?’
‘Wat heb je daar?’
‘Een kwart en een twaalfde’
‘Geef me dan die twaalfde maar. Hij is niet gróter maar wel mooier dan de kwart!’

Reciteren
Ook in de vierde klas is rekenen nog het vak van spanning en ontspanning, van doen, van ritmen klappen en lopen, het akoestisch vak met spreekkoren, vraag- en antwoordgroepen, het rekenland dat wij nu eens met verbazing betreden, dan weer samen stormenderhand veroveren. Vooruit:

1/2 x 1/5 = 1/10
1/3 x 1/5 = 1/15
1/4 x 1/5 = 1/20

En terug:
1/12 x 1/5 = 1/60
1/11 x 1/5 = 1/55

etc, alles in koor

Het is zaak terug te komen op de elementaire vaardigheden. Breuken rekenen en de tafels niet kennen, dat moet spaak lopen. Maar wel de vorm variëren, anders laten de leerlingen, die ze wél kennen, het al gauw afweten. Schakel een bolleboos in, zet hem voor de klas en hij zegt:

1/45 is:                      de klas: 1/9   x   1/5
1/25 is:                      de klas: 1/5   x   1/5

Om goed ritmisch te vragen en te laten antwoorden, leuk af te wisselen, dat is ook voor de beste rekenaar een hele kunst. Wij leraren kunnen ons uitstapjes permitteren:

1/60 is:               de klas: 1/12   x   1/5

1/65 iiss:            de klas: 1/13   x   1/5

1/500 iiisss:      bedenktijd voor de langzamen en spanning voor de vluggen om het precies op tijd te mogen uit kraaien. Klas: één-hon-derd-ste-maal-één – vi jf-de!

Gelach, gepraat. De leraar schrijft op het bord: 1/2 x 1/3 x 1/4 x 1/5 — neen, daar wordt nu niet over gesproken — dus mond dicht. Dat bedenkt ieder voor zichzelf. Morgen zullen we het daar samen over hebben.

Dan het vereenvoudigen van breuken. Dat kan men uitleggen, nog eens uitleggen, weer een voorbeeld geven. En als de laatsten het gesnapt hebben is het al lang een moeizame zaak geworden. Maar als wij vele kleine deeltjes samenvoegen tot een groot geheel, dan is dat niet een ontdekkingsreis naar onbekende verten. Het begrip van dat aaneengesmede stuk is er al, het moet alleen nader gespecificeerd worden. Wij gaan dus van de eenvoudigste breuk uit:

1/2 is:                    de klas: 2/4
1/2 is:                    de klas: 3/6
1/2 is:                    de klas: 4/8,             goed gescandeerd.

Zo wordt het herleiden ook een akoestische waarheid. De lezer moge zelf proberen in een vlot tempo:

‘ 8/9 is 16/18 is 24/27 is 96/108 Als de rij goed in het gehoor ligt, kan men het tempo opvoeren, een accellerando. Daarin vermijdt men een opjagen tot spanningen, die in de lucht blijven hangen, zich niet kunnen ontladen. Tegen het einde houdt men in naar een rustig, krachtig slot.

Schriftelijk werk

De gereciteerde breukentafels lenen zich bijzonder goed tot opschrijven.

Zij behoeven weinig instructie om goed uitgevoerd te worden. Door de herhaling verbinden de kinderen zich met de stof.

1/2   x   1/5   =
1/3   x   1/5   =
1/4   x   1/5   =
1/2   x   1/6   =
1/3   x   1/6   =
1/2   x   1/7   =

1/2   =   2/4   =   3/6   =
4/9   =   8/18   =   12/27   =

Het is een heel werkstuk zoiets mooi op papier te krijgen. De breukstreep öp het lijntje, de streepjes van het is-gelijk-teken net even boven en er net even onder. We laten met kleur werken. Lukt de notatie, dan hebben zulke tafels en reeksen een feestelijk aanzien!

Berekeningen met breuken binnen de één

Telkens komen we terug op sommen binnen de één, vanwege de schoonheid van de stam!- breuk.
Thuis zelf als voorbereiding tot de les zulke sommen maken, geeft dat plezier dat de volgende dag onder het rekenen de kinderen gaat bezielen. Men komt dan tot kleine en grote ontdekkingen. Ritmische opgaven zijn een weg om in de geheimen der getallenwereld door te dringen.

Von Baravalle geeft de raad de kinderen opgaven te geven met een ritmisch verloop in teller en noemer. Zie bovenstaande opgaven.

bb 84

Men komt dan tot kleine en grote ontdekkingen. Ritmische opgaven zijn een weg om in de geheimen der getallenwereld door te dringen.

Thuis zelf als voorbereiding tot de les zulke sommen maken geeft dat plezier dat de volgende dag onder het rekenen de kinderen gaat bezielen.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985).

*Met cijferen kun je m.i. beginnen, wanneer een opgave met hoofdrekenen niet meer gevonden kan worden. Als je bijv. 5 getallen – 346 + 789 enz moet optellen, lukt het alleen een rekenwonder zonder cijferen, d.i. onder elkaar zetten en optellen.  Het cijferen is voor een deel ook weer hoofdrekenen.
.

4e klas rekenen: alle artikelen

4e klas: alle artikelen

VRIJESCHOOL in beeld: 4e klas

.

524-483

 

 

 

 

 

 

 

 

 

 

 

 

.

Advertenties

Een Reactie op “VRIJESCHOOL – Rekenen – 4e klas (1)

  1. Pingback: VRIJESCHOOL – Rekenen – 4e klas – alle artikelen | VRIJESCHOOL

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit /  Bijwerken )

Google photo

Je reageert onder je Google account. Log uit /  Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit /  Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit /  Bijwerken )

Verbinden met %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.