Tagarchief: schatten

VRIJESCHOOL – Rekenen (9)

.

methodiek bij de opbouw van het rekenonderwijs

Getallen gaan voor ons boven de directe uiterlijke waarneming uit, doen een beroep op onze innerlijke activiteit. Getallen nemen we nergens meteen waar, zoals rood of groen of een toon of een klank. Alleen door waarnemingen worden ze ons bewust.
Niet alle waarnemingen roepen in ons de behoefte aan getallen en rekenen op.
Wanneer ik een tak van een boom met de bladeren voor me heb, voel ik me niet geroepen, daarom de blaadjes te gaan tellen; en al zou ik het aantal weten, dan is dat toch nog geen kennis die ik per se moet hebben. Als ik een bloem zie, zal ik eerder het aantal bloemblaadjes zien; dat is voor die bloem wel karakteristiek en dat blijft me wel bij. De regelmatig gevormde bouw en het herhaaldelijk de bloeiwijze bekijken, stimuleert het tellen. Iets wat als een geheel alles omvat, is vaak de niet waarneembare impuls die verbonden is met tellen. Zo’n soort band die bij het tellen meedoet, is ook steeds weer bij her rekenen als een wezenlijk element aanwezig.
Aan iedere vergelijking van twee getallen ligt weer een ontstaan van een denkverbinding ten grondslag en bij het zoeken naar de verhoudingsgetallen vindt de exacte bewerking van deze vergelijking plaats.

Het leggen van een verbinding als een noodzakelijk element bij het rekenen, wordt ook duidelijk als je ziet dat je pas dan twee appels en drie peren kan optellen, wanneer je van te voren de verbinding onder het gemeenschappelijke gezichtspunt ‘vruchten’ hebt gelegd. Met het wekken van dit mentale bij elkaar brengen, hangt ook het eerste rekenen samen en dit kan nu of ruimtelijk overzichtelijk worden of in de tijd, door het als volgorde te nemen.

Bij het ruimtelijk vormgeven hoort een groep van inleidende oefeningen die eruit bestaan om een aanvankelijk onoverzichtelijke hoeveelheid dingen door een zinvolle ordening overzichtelijk te maken en daardoor ook makkelijker te tellen.

Als ik bijv. 9 appels heb die zomaar wat bij elkaar liggen en ik leg ze dan zo op deze 9 punten:

                                                          .         .         .
                                                          .         .         .
                                                          .         .         .

dan doen ze zich voor als  3  +  3  +  3 , meteen te overzien. Dergelijke oefeningen die direct de zin voor getallen aanspreken, brengen ons midden in de getallenwereld.
Uit de orde vind je niet alleen het getal 9, bestaand uit    3  +  3  +  3   kennen, maar ook een andere opbouw: als je het vierkant op een punt zet en dan de verschillende plaatsing van de punten volgt

dan krijg je de rij: 9 = 1  + 2  + 3  +  2  +  1
Daarmee ben je al bij een samenhang van getallen aangekomen die verder gaat dan dat ene voorbeeld en op een soortgelijke manier geldt dit ook voor de getallen 16, 25, enz, die ontstaan door het betreffende getal met zichzelf te vermenigvuldigen

Het noteren in de driehoeksvorm ondersteunt het overzicht en de wetmatige opbouw springt meteen in het oog. De verticale rijen zijn natuurlijke getalvolgorden die verschillende beginnen. Volg je de horizontale rijen en kijk je naar de ene en de volgende komt, dan zie je dat iedere volgende rij 2 cijfers meer heeft. In iedere rij komt er een cijfer bij, de rij wordt een cijfer langer; het getal dat in het midden staat, staat in de volgende rij symmetrisch naast het cijfer dat erbij is gekomen.
Daaruit volgt weer dat de optelsom van de rijen opvolgend per rij:

groter wordt, dus de rijen groeien met de oneven getallen; die zijn dan ook weer 

het verschil tussen de kwadraatgetallen.

De andere manier om een verbinding te leggen en een indeling te maken is het accent te leggen op de volgorde in de tijd, zowel bij het tellen, als ook bij de overgang naar het rekenen. Alleen al het feit dat het kind bij het tellen een woordvolgorde spreekt die vastligt, maakt diepe indruk.
In het tellen kan dan een ritmische indeling worden gebracht, wanneer je iedere tweede of derde de nadruk geeft, waarbij de rijen van de tafels van vermenigvuldiging opduiken. Het eruit laten springen van de getallen kan ook door deze luider te spreken en de andere heel zacht, tot fluisteren toe of helemaal niet te zeggen, maar ze in gedachten te volgen of door bepaalde getallen heel langzaam en duidelijk te spreken, de andere weer vlugger.
Met deze tafelrijen heb je een rijke stof om het geheugen te oefenen.

Rudolf Steiner noemde ‘beeldend’ en ‘ritmisch’ wezenlijke factoren voor het onderwijswerk in de hele basisschool. Daaraan voldoet op een natuurlijke manier ook voor rekenen in het prille begin met het principe van het ordenen en het ritmische tellen.

Vanuit het tellen ontstaat dan langzaamaan het rekenen.
Vanuit een fundamentele kentheorie neemt Rudolf Steiner bij het optellen de optelsom als vertrekpunt om vanuit het geheel naar de delen te gaan. Het is een tegenwicht voor het atomiserende denken waarmee het rekenonderwijs vol zit.
Te denken valt aan hoe dikwijls bij de behandeling van bepaalde rekenopgaven een manier van denken ontwikkeld wordt, die iedere lengte als de optelsom van zoveel losse kilometers neemt, ieder gewicht als een samennemen van zoveel kilo, enz. Dit hangt samen met het toenemen van een manier van voorstellen dat deel voor deel aan elkaar knoopt; het gezonde rekenonderwijs moet daar tegenoverstellen een manier van denken die uitgaat van ‘hoe vaak het erin zit’.

Een voorbeeld:

De vraag is om 10º Réaumur om te zetten in graden Celsius.

Dat wordt meestal zo gedaan:

80º Réaumur is 100º Celsius
dan is 1º Réaumur  100/80 º  Celsius
en  18º Réaumur is dan  100  x  18/80 º

Dan heb je de weg van 1 graad Réaumur genomen en van daaruit ga je dan van de ene schaal naar de andere.
Vergelijk nu de andere weg: neem je de beide schalen bij hun kookpunt, dan heb je de getallen 80 en 100 tegenover elkaar; hun verhouding is dan 100/80   4/5         en deze verhouding geeft voor 18º Réaumur   18 x 5/4=  22½º Celsius.
Hoewel ook de tweede gedachtegang naar de analoge getaloperatie leidt, werkt deze toch met een heel andere manier van denken. Hier wordt niet 1º Réaumur genomen, maar direct de overgang door het verhoudingsgetal. Wanneer je bij een thermometer denkt aan de kleine deelstreepjes van één graad, dan is daar juist de overgang het minst overzichtelijk; hier hoef ik niet te kijken, maar wel naar duidelijk overzichtelijke getalsverhoudingen die bij de tweede manier op de voorgrond staan, en die ernaar streeft een zo intensief mogelijke bewustzijnsverbinding met de voorwerpen te krijgen.
De belangrijke zin voor getalverhoudingen die in de praktijk zo belangrijk is, kan je op ieder niveau verzorgen.
Een belangrijke veld is dat van de breuken. Intensief oefenen in het vergelijken van breuken, bijv. dat een half 1½ derde is of een kwart 1½ zesde, levert pas bij breuken het juiste begrip op en wekt er de zin voor waarom je bij het optellen van breuken in vergelijking met het optellen van getallen zo’n gecompliceerde werkwijze moet gebruiken als die van het zoeken naar de noemers. Het optellen van verschillende breuken kun je wel vergelijken met bijv. het optellen van verschillende maten, zoals bijv. de decimeter, meter, centimeter, kilometer enz. Door geschikte oefeningen zal je het begrip voor de rekenregels onderbouwen.

I.p.v. de breukenrij  1/6  +  1/12 + 1/3  + 1/4

uit te werken door alles in twaalfden te denken 2 + 1 + 4 +3
                                                                                               12

10/12  5/6

kan je ook met zesden rekenen: een twaalfde is ½ keer zo groot als een zesde; een derde is tweemaal zo groot als een zesde;
een derde is ½ keer zo groot als een zesde, waarmee in zesden gerekend de som is:   1  +  ½  +  2  +3½  = 5.

Op dezelfde manier kan je ook met derden en vierden enz. rekenen. Als je dat hebt gedaan en je komt dan weer bij de twaalfden terug, dan zien de leerlingen zonder veel uitleg de voordelen van het gebruik van de hoofdnoemers. De regel wordt dan niet alleen maar mechanisch van buiten geleerd, maar er is meer begrip voor ontstaan.

Het grootst is de verleiding puur mechanisch te gaan rekenen bij de tiendelige breuken. Dat je een opgave met de getallen goed uitvoert, maar dan twijfelt waar de komma moet staan, dus of de waarde 10, 100 of zelfs 1000 keer zo groot is, is daarvan een duidelijk symptoom. Dat geeft wel aanleiding om van te voren te schatten wat het resultaat moet zijn en dat geeft een gezond tegenwicht waardoor het oordeel gevormd wordt of de uitkomst wel kan of niet. Een dergelijk proberen t.o.v. van alleen maar automatisch uitrekenen moet ook bij de toepassing van formules meegenomen worden. Hoe makkelijk gaan leerlingen ertoe over de formules automatisch te gebruiken en oefenen eigenlijk alleen maar het inzetten van formules.

Een formule is een gecomprimeerde manier van schrijven, waarin de hele gang van het berekenen zit. Als een laatste samenvatting hoort ze meer aan het eind thuis dan aan het begin. Als je regelmatig op de gang van het rekenproces terugkomt, dan zal dit ook nog paraat zijn wanneer de leerling de formule gebruikt.

Herhaaldelijk komt het er in het rekenonderwijs op aan, op de details te letten die al gauw een bijzaak lijken, maar die voor het vermogen om te kunnen denken de grootste betekenis hebben.

Wanneer je bijv. bepaalde wiskundige kennis toepast en dan over uitzonderingen spreekt, wordt er iets wat je voor het denken van de leerling eerder hebt opgebouwd, doorbroken. Wat als uitzondering beschouwd wordt, is vaak een verdiepte bevestiging van de wet.

Heb je bijv. het feit doorgenomen dat je bij het oplossen van lineaire vergelijkingen twee onbekenden alleen maar uit twee vergelijkingen vindt, drie onbekenden uit drie vergelijkingen, vier onbekenden uit vier kan uitrekenen en je zegt dan dat een uitzondering daarop  een systeem van vergelijkingen maakt die niet van elkaar afhankelijk zijn, dan wordt zoiets anders opgenomen, dan wanneer je laat zien hoe je in geen geval om de genoemde mathematische voorwaarden heen kan, wat toch gebeurt wanneer er bijv. voor 4 onbekende drie vergelijkingen genoeg zouden zijn en de vierde zou kunnen afleiden door het samennemen van twee andere vergelijkingen. Wanneer je aan concrete voorbeelden laat zien hoe in zulke gevallen het proces van oplossen het af laat weten, dan vind je geen aanleiding om van een uitzondering, maar om van een bevestiging en aanvulling van de wet te spreken.

Bij het lesgeven op de vrijescholen is het belangrijk dat het in het periodeonderwijs gebeurt. Dat vraagt voor de methode een danige verandering. Niet een samenklontering van aparte korte lesuren die na elkaar komen is periodeonderwijs, maar in het schoolleven ook met een herkenbare andere opbouw. Het vereist een veel sterker samengaan en samennemen van gezichtspunten m.b.t. de vele lesuren. Een uitbreiding van hetzelfde principe is dan ook nog mogelijk doordat het werken aan een vak verschillende jaren lang in handen ligt van een en dezelfde leerkracht. Daardoor is het mogelijk dat wat later komt, van tevoren met het oog daarop voor te bereiden en hiervan zullen nog een paar voorbeelden worden gegeven.

Juist wat het rekenonderwijs betreft, is het zo dat bepaalde getalwetmatigheden die bij de stof van de hogere leerjaren horen, dikwijls in een andere samenhang, op een veel eenvoudigere manier in de onderbouw aangestipt kunnen worden.

De voor de gehele algebra en de combinatieleer zo belangrijke getalvolgorde van de zgn. driehoek van Pascal:

bevat bijv. dezelfde getallen die bij het herhalende vermenigvuldigen met 11 voorkomen.

Bij het oefenen van vermenigvuldigingen kan al, zonder de driehoek van Pascal te noemen, op deze symmetrische getalopbouw worden gewezen, ja wellicht ook getoond worden, hoe dit ook bij het verder gaan ermee bewaard blijft, zo gauw je tussen de verschillende plaatsen niet verder telt: 14641 x 11 = 1 eenheid, 5 tientallen,  10 honderdtallen, 10 duizendtallen, 5 tienduizendtallen en 1 honderdduizendtal, enz.

Ook raakvlakken bij de opbouw van regels die later in het onderwijs een grote rol spelen, zitten al in eenvoudigere processen. Vergelijk eens de rol van de even en oneven getallen bij het optellen van twee getallen en van de positieve en negatieve getallen bij het vermenigvuldigen van twee getallen:

E(ven) G(etal)      +   E(ven) G(etal)   =  E(ven) G(etal)
E G   +  O(oneven) G(etal)  =  O(oneven) G(etal)
O G + E G = O G
O G + O G = E G

P(ositief) G(etal)  x P(ositief) G(etal)  = P(ositief) G(etal)
P G  x   N(egatief) G(etal  =  N(egatief) G(etal
N G x P G  = N G
N G x N G = P G

Tussen beide wetmatigheden bestaat niet zomaar een toevallige overeenkomst, maar een innerlijke relatie, wanneer je bedenkt dat de even macht van negatieve getallen positief, van oneven getallen oneven is, dat verder een vermenigvuldiging van machten van gelijke basis overeenkomt met een optelling van de exponenten.

Ook begrippen die later aan de orde komen, kun je adequaat voorbereiden door geschikte rekenopdrachten.

Wanneer je bijv. het vermenigvuldigen van decimalen oefent en je geeft de som 3,1623  x  3,1623, waarbij je tien helen en ook in de decimalen nog drie nullen krijgt, dan heb je het begrip kwadraatwortel voorbereid.
Net zo komt er uit de nogal lange vermenigvuldiging 2,15444 x 2,15444 x
2,15444 opnieuw 10 met nog vier nullen uit en daarmee heb je ook de eigenschap van de derdemachtswortel. Op dezelfde manier kun je een groot aantal opgaven met verschillende wortels maken: √2 = 1,41421;  √3 = 1,73206,  √5 = 2,23607, waarbij je er alleen maar op hoeft te letten dat de laatste decimaal de meest precieze waarde aangeeft boven de wortel. Liet je simpelweg de decimalen vanaf een bepaalde plaats weg, dan wordt de wortelwaarde te klein en je krijgt dan uit een vermenigvuldiging niet bijv. 2, maar 1,999999…….

Zelfs feiten die je meestal pas bij het differentiaalrekenen bespreekt, vertonen zich aan de hand van eenvoudige berekeningen als getalwetmatigheden.
Het feit dat het   n-de  differentiaalquotiënt van xn  is gelijk n! volgt uit het verloop van differentiaalrijen van de machten.
Neem je bijv. de rij van de derde macht van de getallen en je schrijft ze onder elkaar, daarna het verschil zoekt van twee van hen, hiervan weer het verschil enz. Als laatste differentiaalrij krijg je dan 6 (6 = 3! = 3  x  2  x  1)

Op dezelfde manier krijg je uit de 4e macht in de laatste differentiaalrij 24 (24 = 4! = 4 x  3  x  2  x  1), bij de 5e macht 120 enz.
Door dergelijke oefeningen die niet meer tijd kosten dan willekeurig welke andere opdrachten, kan een innerlijke verbinding tussen het werk in de verschillende leeftijdsfasen worden bereikt en in de zin van een samenhangend samenwerken van de verschillende mathematische gebieden werkzaam zijn. De bijzondere indeling in de leerstofgebieden voor de leeftijd en de klassen zal dan later uitvoerig worden behandeld. [niet op deze blog].
.

Herman von Baravalle,  Erziehungskunst, 8e jrg. nr.2/3 juli/aug. 1934

.

Rekenen: alle artikelen

.

1659

 

 

 

 

 

 

 

 

 

 

 

 

.

Advertenties

VRIJESCHOOL – Rekenen – 5e klas (1)

.

REKENEN EN WISKUNDE

.

Rekenen tussen het negende en twaalfde jaar
In de gevoelsmatige periode van de gevoelsfase, die ongeveer samenvalt met de vierde en vijfde klas, zijn de fantasie en de persoonlijke inzet van de kinderen bij het rekenonderwijs van essentieel belang. Bij het thema breuken kunnen deze elementen bijzonder goed tot hun recht komen.

5e klas

Leerstof:
Voortzetting van het geleerde in klas IV. Meten, berekeningen met maten. Wegen, berekeningen met gewichten. Tiendelige breuken. Cijferen in de vier hoofdbewerkingen, ook met getallen achter de komma. Schatten.

Hoe gaat het toe

Menselijke maten
Een van de leukste perioden van deze klas is de periode ‘menselijke maten‘, als overgang tot het normale metrieke stelsel. De leerkracht vertelt de kinderen hoe er vroeger werd gemeten.

Hij introduceert de voet, de duim, de el, de vadem en vertelt waar ze (bij) gebruikt werden. Uiteraard is de inleiding kort, want het gaat erom dat de kinderen zélf gaan meten.

Ze waaieren uit naar de gangen van de school, om daar gedeelten met voeten af te passen. Terug in de klas wordt het resultaat snel genoteerd. Dan gaan ze opnieuw op pad. Als allen weer zitten, mogen de kinderen om de beurt voorlezen hoeveel voet volgens hen de gangen naast de klas lang en breed zijn. Met welk een interesse luisteren ze naar elkaar! Gejuich gaat op als iemand ontdekt dat een ander net zo veel voet heeft gemeten als hij!

Daarna vertelt de leerkracht dat men vroeger al die verschillende voetmaten lastig vond worden en daarom van één soort voet ging spreken: In Amsterdam van de Amsterdamse voet (28,5 cm); in Engeland van de Engelse voet (30,5 cm) en in het Rijnland van de Rijnlandse voet (31,5 cm).

Elk kind mag thuis de voeten van zijn ouders meten. Gelach de volgende dag als iemand een vader heeft met een voet nog groter dan de Rijnlandse! Maar sympathiek gelach en vol interesse. In een nieuw schrift wordt eerst de mens getekend met zijn maten. Daarna mag elk kind zich zelf tekenen met zijn eigen maten. Dan wordt in het schrift het resultaat neergelegd van het meten van de gangen en van al het andere dat intussen is gemeten. Wanneer er een dag of tien met de menselijke maat is gewerkt, gaan we over op de meter. Deze kan nu geen kwaad meer doen. Door het werken met de menselijke maat is de betrokkenheid van de kinderen op hun naaste omgeving en op elkaar zo toegenomen, dat het gevaar van kille ‘afgemetenheid’ geweken is. Op deze basis kunnen wij met een gerust geweten het metrieke stelsel introduceren.

Oppervlaktematen
De eerste dag van deze periode begint de leerkracht met een schoon en droog bord. Hij neemt een natte spons en laat een leerling keurige rijtjes afdrukken maken. Naast elkaar, netjes aaneengesloten.

Zo ziet men dat het hele bord door sponsafdrukjes bedekt kan worden. Deze afdrukjes worden geteld. Hetzelfde doet de leerkracht met de tafel.

De bedoeling is duidelijk. Het begrip oppervlakte wordt zichtbaar gemaakt. Vervolgens gaan de kinderen aan de slag. De bank bedekken met blaadjes van de blocnote. De stoel. De vensterbank. De bank bedekken met natte afdrukjes van de palm van de hand, zonder de vingers, dan krijgt men praktisch een vierkantje. Dit met verf op een vel papier. Hetzelfde met duimafdrukken, enz.

De leerkracht geeft opdracht om alle mogelijke oppervlaktes te meten met iets van hun lichaam, de voet mag dus ook. De mens is de maat van alle dingen. Er wordt een ‘opmeter’ aangewezen en iemand die het opschrijft. De volgende dag worden alle resultaten gerubriceerd, met vermelding van de persoonlijke maat.

De boekentafel is:

58 handpalmen van Boris en
62 handpalmen van Freek en
60 handpalmen van Marielle enz.

Zo komen we gezamenlijk tot het kiezen van een
standaard-eenheidsmaat. Bijvoorbeeld schriften.
‘Bedek de tafel met schriften.’ Ze ontdekken dat je stukjes overhoudt, er is behoefte aan halve schriftjes, aan een kleinere eenheid.

De volgende dag enkele aantekeningen en conclusies van ‘gisteren’ en dan naar de grote oppervlakken.

De gang.
De speelplaats.
De eenheden zijn hier de tegels.
Groepjes krijgen de opdracht om oppervlaktes te meten. Een leerling begint tegeltjes in de gang te tellen.

‘Nee, joh, dat moet je zo doen,’ zegt een ander en telt de tegels in de lengte en breedte. Zo groeit de klas vanzelf naar het begrip, dat nog in het verschiet ligt, namelijk lengte maal breedte.

Terug in de klas wordt alles getekend.
Het moet er weer netjes uitzien, er ontstaan mooie tegelveldjes.

bb 85

 

6 tegels
1e rij van 6 tegels
2e rij van 6 tegels
3e rij van 6 tegels
4e rij van 6 tegels
5e rij van 6 tegels

er zitten 6 tegels op een rij
er zijn 5 rijen van 6 tegels
dat is dus 5 x 6 = 30 tegels

Nu voert de leerkracht de algemeen bekende standaardmaten in. De wens naar een standaardmaat, die ze allen gehad hebben, wordt zo vervuld.

‘Deze maat geldt voor iedereen, voor alle mensen in Europa’

Veel voorbeelden, veel tekeningen, die later wel losgelaten kunnen worden, maar in het begin moeten ze er zeker bij.

Tenslotte moeten ze dezelfde soort sommen maken, maar nu met vierkanten van

1     cm
10   cm
100 cm
1     dm
10   dm
1     m

Eerst tekenen, tenslotte komt daaruit:
1 dm2 = 100 cm2 en…

En?
1 m2 = 10.000 cm2!

Dat laatste wekt enige verbazing. Zoveel? Laten we het dan maar natekenen als je het niet gelooft. Vrij snel zijn ze er dan achter dat het echt klopt.

Het is zaak de voorbeelden en sommetjes leuk en tamelijk eenvoudig te houden.

Naast het perioderekenen is er vanaf de vierde klas een rekenoefenuurtje. Hier kan men dan, als een en ander de tijd heeft gekregen om te bezinken, te zijner tijd de zaak uitbreiden, tot alle oppervlaktematen gekend zijn. Dan kan ermee gerekend worden.

Breuken
Bij het rekenen met breuken in de vier hoofdbewerkingen komen ons de temperamenten te hulp.

Ter illustratie vier eenvoudige voorbeelden waarbij we onze vrienden, de breuken, terugvinden in de gewone orde der getallenrij

Optellen
3 ¼ + 21/5

+, dat zijn de sommen van het ordenen, netjes alles naast elkaar. Liefst nog alles van hetzelfde soort naast elkaar. Zoals Poeh zijn potjes honing neerzette. Als hij de kans kreeg zette hij lindehoning naast lindehoning en heidehoning naast heidehoning.

Helen kunnen rustig bij elkaar geteld worden. Dat weten we al. Maar ¼ plus 1/5, dat bestaat niet! We moeten er echt dezelfde stukjes van maken. Door het reciteren van

1/42/3=  5/20… en van

1/52/10 = 4/20

is gelijknamig maken geen probleem.

Alleen dat je gelijknamig moet maken is de moeilijke ‘leerstap’. Deze kan echter in de flegmatische sfeer worden genomen. Het is eigenlijk zo: Bij een bepaald gezicht dat de leerkracht zet bij een bepaalde, een bijna verdacht rustige presentatie moet er gelijknamig worden gemaakt, maar mogen de helen blijven staan.
De som is niet moeilijk, maar moet nog rustig worden afgewerkt.

Aftrekkenn
3 1/4 – 2 1/5

_ De som is methodisch hetzelfde, alleen mét de kans op narigheid. Dit is didactisch een geluk want nu past de som in de melancholische sfeer!
Wanneer er meer stukken moeten worden afgetroken dan er zijn, dan moet er een hele worden aangesneden! Zonde van die mooie hele, maar ja, wat doe je eraan?
De afwerking van de som is niet moeilijk, als het principe maar begrepen is.
Wederom begrijpen de kinderen dit uit de mimiek en het gebaar van de leerkracht.

Vermenigvuldigen
9/14  x  2/3

Hoera! Nu geen ellende.
X Het maalteken is een blij teken. Geen gezeur. De cijfers onder en boven de breukstreep kijken elkaar vrolijk aan. Hebben ze misschien gemeenschappelijke familie?

Ja? Wie dan? Horen ze beide tot de familie van 3? Even uitzoeken…. ja? Dat is toevallig! Nu dan kan men daar kort over zijn, als men beide die drie kent — Laten we die drie eruit strepen. Etc.

Natuurlijk, dit zijn moeilijke leerstappen, maar in een bepaalde sfeer is het toch snel aangewend. Echt begrepen wordt het later. (Uiteraard legt men het principe wél van te voren goed uit — het plechtige begin — dit wordt echter maar door weinigen individueel werkelijk begrepen.) Het enige wat een x-som kan bederven is als er helen staan. Die moeten dus snel worden weggewerkt.

Delen
3/17 : 9/34

:  Dat delen vermenigvuldigen is met het omgekeerde wordt een paar maal uitgelegd.* De volgende dagen klassikaal gereciteerd. Verder wordt het delen veel gedaan. Wordt er domweg veel gedeeld. Het radicaal op zijn kop zetten heeft iets cholerisch. Aan de houding van de leerkracht is te zien wat er met de som moet gebeuren.

Waarom dit alles? Waarom deze ‘trucs’?

De kinderen moeten in hun gevoelsverhouding tot de getallen niet geremd worden. Zij moeten integendeel zorgeloos met de getallen durven jongleren. Vooral uit ervaring weten ze dat het goed is wat ze doen.

Dit kunnen is de basis voor het verdere rekenen en ook voor de serieuze begripsvorming later.

Cijferen
Er zijn leerkrachten die het ‘onder elkaar’ al in de 4e introduceren. Dat kan, als het maar niet ten koste van het hoofdrekenen gaat.

Cijferen, dat is wel het summum van routinerekenen:

3,00861 x 97,725

Vooruit, onder elkaar

97,725
3,00861 x je begint met 1 x 5.

Wacht eens even, er staat

één honderd duizendste maal vijf duizendsten. Nou ja, dat zien we straks wel, dan tellen we de komma’s af, 3 + 5 = 8 plaatsen. Dat wordt dus 1 x 5, 1 x 2, 1 x 7, 1 x 7, we springen gewoon over die komma heen… Bij de tweede regel één inspringen

6 x 5 = 30, de 0 op de goede plaats.
Het is allemaal wel uit te leggen, dat als je het zó doet, alles op zijn pootjes terecht komt, maar het is levensvreemd, abstract.

Een normaal mens zegt

3,00861 x 97,725,
dat is ongeveer 3 x 100 – 3 x 2 dus geschat 294.

Normaal is, dat men bij de grote brokken begint en dan de kleine stukjes zoveel mogelijk bij elkaar veegt. Vermenigvuldigen in cijfervorm begint bij de pietepeutertjes. Dat is zo iets als: ‘Wat eten wij vandaag?’ ‘Nou, peper en zout – – enne – –

Bij het hoofdrekenen blijf je half rekenend, half schattend sterk verbonden met het betreffende vraagstuk, je bent verbonden met de orde van grootte waarin zich iets afspeelt. Cijferen trekt zich nergens iets van aan. In de 4e hoeft men nog niet te beginnen** met het cijferen, de machinale rekenvorm, maar in de 5e moet het wel. En wel zo, dat wij naast deze automatismen het hoofdrekenen blijven beoefenen, met name het schatten.

Begrijp me goed, dat in elkaar passen van al die deelproducten, dat ordelijk afwerken, zodat er niets vergeten wordt, dat is slim bedacht. Natuurlijk moeten de kinderen onze bewondering voor zo veel scherpzinnigheid delen. Men kan echter ook te slim zijn en dan loop je behoorlijk tegen de lamp. Eén klein kommaatje fout — en je zit er totaal naast. Men zou de leerlingen ertoe kunnen brengen al hun werk eerst zelf na te kijken, alvorens het in te leveren. Maar meestal valt een kind zijn zelfgemaakte fout niet op. Beter werkt de remedie om de uitkomst van te voren te schatten. Gewoon opschrijven: geschat 294, en dat aan het eind vergelijken met het resultaat van het cijferen.

Voor een deling als

610628 : 89 schatten: 7 x, nee toch maar 6 x, is een zekere mobiliteit nodig. Daar spelen door elkaar de (geschatte) 7 x 8 en de 7 x 9. Als de leerlingen eerst de 7 x gaan proberen en ze merken, dat dat te veel is, dat het 6 x moet zijn, dan leidt dat meestentijds tot veel geknoei — en natuurlijk ook tot tijdverlies.

Als afsluiting.
Wellicht vindt u de 3,00861 x 97,725

een wat extreem voorbeeld voor een vijfde klas. Het ging mij hier echter niet om de getallen maar om de wijze van omgaan met het cijferen. Daarom werd hier als tegenwicht het schatten ingevoerd. In tegenstelling tot het cijferen is schatten een zeer persoonlijke activiteit waarbij ook het gevoel ingeschakeld is. In het schatten ligt op subtiele wijze een zeker spelelement besloten. Heeft men iets goed geschat, dan geeft dat een veel prettiger gevoel dan wanneer met iets goed heeft uitgerekend. Cijferen is een zuiver intellectuele bezigheid waar men in de 5e wat voorzichtig mee moet omgaan.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985).

*Dit soort sommen zijn voor kinderen te abstract. Wat gebeurt er eigenlijk. Om een antwoord te vinden, kun je natuurlijk het ‘omgekeerd vemenigvuldigen’ toepassen, maar het begrip voor wat er gebeurt, ontstaat daardoor niet.

Wanneer je vraagt: hoe vaak zit de 2 in de 10, weten de kinderen: 5.
Wanneer dit overbekende wordt opgeschreven, is dit de vorm:10 : 2 = 5.
Hoe vaak zit er een halve in 2. Ook dat lukt wel: 4. Hoe schrijf je dat op: hoe vaak zit enz. Wel, bij 10: 2 = …Zo!|
Dus nu: 2 : 1/= 4 En later: hoe vaak zit er 1/in 1/:
1/1/= 2
Wanneer de kinderen goed begrijpen dat “hoe vaak zit erin”  synoniem is voor “hoeveel KEER’ en dat weer synoniem voor “gedeeld door”, is het begrip voor ‘delen met of door een breuk’ veel reëler.
Wanneer er een redelijke zekerheid is ontstaan voor dit proces, kun je eens vragen of ze in bv. 2 : 1/2 het antwoord 4, zien – ligt dat ergens ‘verborgen’ voor het oprapen. Een aantal kinderen ziet wel dat 2 x 2    4 is. Hoe zou je die som dan moeten opschrijven om tot het antwoord 4 te komen. Ja, omkeren: 2 x 2/14/= 4. Daaruit volgt dat 2 : 1/2 ook kan worden geschreven als 2 x 2!

**Ik ben van mening dat je in klas 3 al kan/moet beginnen, met bv. veel eenheden bij elkaar optellen die in een lange rij eerst naast elkaar, maar dan ook onder elkaar staan: 3 + 5 + 9 + 7 + 1 enz. Dit is ook hoofdrekenen. Tevens ontstaat zo de mogelijkheid om het ‘handig’ rekenen te ontwikkelen: 7 + 3 = 10; 9 +1 = 10 enz.

.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985).

.

5e klas rekenenalle artikelen

5e klasalle artikelen

VRIJESCHOOL in beeld: 5e klas

.

527-486

 

 

 

 

 

 

 

 

 

 

 

 

.