Tagarchief: tetraëder

VRIJESCHOOL – 8e klas – meetkunde (1-1)

.

In de meetkundeperioden in klas 6 leren de kinderen de hoeken kennen. Meestal komt in de 8e klas iets van stereometrie aan bod en vaak zie je daar dat de Platonische lichamen worden behandeld.
Hieronder een paar voorbeelden en aanwijzingen:

REGELMATIGE VEELVLAKKEN

In het platte vlak kennen we regelmatige veelhoeken. Van zo’n veelhoek zijn alle zijden even lang en alle hoeken even groot. Voor elk getal n, groter dan 2, bestaat er een regelmatige n – hoek. De grootte van elk van de hoeken bedraagt

n – 2    . 180    
  n

Bijvoorbeeld:  een driehoek:  n = 3, -2 = 1, : n = 3  = 1/3 x 180° = 60°
voor een vierhoek: n = 4, – 2 = 2, : n= 2 = 1/2 x 180° = 90°,
voor een vijfhoek: n = 5, – 2 = 3, : n = 5 = 3/5 x 180 = 108°  enz.

In de ruimte verstaan we onder een regelmatig veelvlak een figuur waarvan alle zijvlakken congruent zijn, en bovendien alle een regelmatige veelhoek zijn.

Er blijken slechts vijf regelmatige veelvlakken te bestaan. Om dit in te zien, bekijken we eerst een vlak vol regelmatige zeshoeken.

In een hoekpunt vullen drie zeshoeken precies de 360° rond het punt op. We kunnen daarom in het hoekpunt geen ruimtelijke kromming met de drie zeshoeken tot stand brengen, want de hoeken zouden dan samen kleiner dan 360° worden. Met meer dan drie zeshoeken kan het in elk geval ook niet, want 4 x 120° is helemaal te veel. En met twee zeshoeken kan het evenmin: dit zou een platte figuur opleveren óf er zouden ‘gaten’ vallen.

Met vijfhoeken dan? Drie hoekpunten zouden kunnen want 3 x 108° is minder dan 360°.
Vier vijfhoeken kunnen weer niet in één punt samenkomen, want dan zitten we boven 360°.

De vierkanten. Drie zou kunnen want 3 x 90° is minder dan 360°. Vier is al te veel, want 4 x 90° = 360°

Tot slot de driehoeken. Omdat de hoeken slechts 60° zijn, kunnen in elk hoekpunt van het veelvlak drie (3 x 60=180) of vier (4 x 60 = 240) of vijf (5 x 60=300) zijvlakken samenk0men.

Samenvattend zijn dus maximaal mogelijk: één regelmatig veelvlak van vijfhoeken,
één regelmatig veelvlak van vierkanten,
drie regelmatige veelvlakken van driehoeken.

Deze veelvlakken bestaan alle vijf. 

– het twaalfvlak van vijfnoeken,
– het zesvlak van vierkanten (beter bekend als kubus), 
– het twintigvlak van driehoeken,
– het achtvlak van driehoeken,
– het viervlak van driehoeken.

De bouwtekening spreekt voor zich. Op de lijnen uitsnijden, op de stippellijntjes vouwen (lipjes eventueel iets langer laten). Vooraf een koordje door het gaatje van binnenuit, en dan lijmen en plakken.

Enkele theoretische bijzonderheden.
Om te beginnen kan men de formule van Euler voor de veelvlakken controleren:

AANTAL RIBBEN + 2 = AANTAL VLAKKEN + AANTAL PUNTEN

Bij de regelmatige veelvlakken valt bovendien op:

20-vlak: 12 hoekpunten,
12-vlak: 20 hoekpunten,
t8-vlak: 6 hoekpunten,
6 – vlak: 8 hoekpunten,
4-vlak: 4 hoekpunten.

Daar kan je iets mee te doen:

alle middelpunten van de vlakken in een 20 – vlak vormen precies de hoekpunten van een 12 – vlak en omgekeerd.
En net zo voor 8 – vlak en 6-vlak (gemakkelijk na te gaan in een tekening van een kubus).
En in een viervlak vormen de middelpunten van de vlakken de hoekpunten van een kleiner viervlak.

De overgang 20 ↔ 12-vlak en 8 ↔ 6-vlak is terug te vinden in de ‘mooiste opstelling’.
Voor een 20-vlak lijkt de natuurlijke stand die met een punt naar boven (en beneden); voor een 12 -vlak die met een vlak naar boven.
Voor een 8-vlak weer een punt naar boven, een kubus staat gewoonlijk weer op een vlak.
Probeer dat eens te verwisselen. Als het vouwen en plakken goed is gedaan, maakt het niet uit, welk vlak als grondvlak dienst doet.

viervlak = tetraëder

 

zesvlak = kubus: hexaëder

achtvlak: octaëder

 

twaalfvlak: dodecaëder

twintigvlak: icosaëder

.

8e klas: alle artikelen

.

2017

 

 

 

 

 

 

 

 

 

 

 

 

.