Tagarchief: tellen

VRIJESCHOOL – Rekenen (9)

.

methodiek bij de opbouw van het rekenonderwijs

Getallen gaan voor ons boven de directe uiterlijke waarneming uit, doen een beroep op onze innerlijke activiteit. Getallen nemen we nergens meteen waar, zoals rood of groen of een toon of een klank. Alleen door waarnemingen worden ze ons bewust.
Niet alle waarnemingen roepen in ons de behoefte aan getallen en rekenen op.
Wanneer ik een tak van een boom met de bladeren voor me heb, voel ik me niet geroepen, daarom de blaadjes te gaan tellen; en al zou ik het aantal weten, dan is dat toch nog geen kennis die ik per se moet hebben. Als ik een bloem zie, zal ik eerder het aantal bloemblaadjes zien; dat is voor die bloem wel karakteristiek en dat blijft me wel bij. De regelmatig gevormde bouw en het herhaaldelijk de bloeiwijze bekijken, stimuleert het tellen. Iets wat als een geheel alles omvat, is vaak de niet waarneembare impuls die verbonden is met tellen. Zo’n soort band die bij het tellen meedoet, is ook steeds weer bij her rekenen als een wezenlijk element aanwezig.
Aan iedere vergelijking van twee getallen ligt weer een ontstaan van een denkverbinding ten grondslag en bij het zoeken naar de verhoudingsgetallen vindt de exacte bewerking van deze vergelijking plaats.

Het leggen van een verbinding als een noodzakelijk element bij het rekenen, wordt ook duidelijk als je ziet dat je pas dan twee appels en drie peren kan optellen, wanneer je van te voren de verbinding onder het gemeenschappelijke gezichtspunt ‘vruchten’ hebt gelegd. Met het wekken van dit mentale bij elkaar brengen, hangt ook het eerste rekenen samen en dit kan nu of ruimtelijk overzichtelijk worden of in de tijd, door het als volgorde te nemen.

Bij het ruimtelijk vormgeven hoort een groep van inleidende oefeningen die eruit bestaan om een aanvankelijk onoverzichtelijke hoeveelheid dingen door een zinvolle ordening overzichtelijk te maken en daardoor ook makkelijker te tellen.

Als ik bijv. 9 appels heb die zomaar wat bij elkaar liggen en ik leg ze dan zo op deze 9 punten:

                                                          .         .         .
                                                          .         .         .
                                                          .         .         .

dan doen ze zich voor als  3  +  3  +  3 , meteen te overzien. Dergelijke oefeningen die direct de zin voor getallen aanspreken, brengen ons midden in de getallenwereld.
Uit de orde vind je niet alleen het getal 9, bestaand uit    3  +  3  +  3   kennen, maar ook een andere opbouw: als je het vierkant op een punt zet en dan de verschillende plaatsing van de punten volgt

dan krijg je de rij: 9 = 1  + 2  + 3  +  2  +  1
Daarmee ben je al bij een samenhang van getallen aangekomen die verder gaat dan dat ene voorbeeld en op een soortgelijke manier geldt dit ook voor de getallen 16, 25, enz, die ontstaan door het betreffende getal met zichzelf te vermenigvuldigen

Het noteren in de driehoeksvorm ondersteunt het overzicht en de wetmatige opbouw springt meteen in het oog. De verticale rijen zijn natuurlijke getalvolgorden die verschillende beginnen. Volg je de horizontale rijen en kijk je naar de ene en de volgende komt, dan zie je dat iedere volgende rij 2 cijfers meer heeft. In iedere rij komt er een cijfer bij, de rij wordt een cijfer langer; het getal dat in het midden staat, staat in de volgende rij symmetrisch naast het cijfer dat erbij is gekomen.
Daaruit volgt weer dat de optelsom van de rijen opvolgend per rij:

groter wordt, dus de rijen groeien met de oneven getallen; die zijn dan ook weer 

het verschil tussen de kwadraatgetallen.

De andere manier om een verbinding te leggen en een indeling te maken is het accent te leggen op de volgorde in de tijd, zowel bij het tellen, als ook bij de overgang naar het rekenen. Alleen al het feit dat het kind bij het tellen een woordvolgorde spreekt die vastligt, maakt diepe indruk.
In het tellen kan dan een ritmische indeling worden gebracht, wanneer je iedere tweede of derde de nadruk geeft, waarbij de rijen van de tafels van vermenigvuldiging opduiken. Het eruit laten springen van de getallen kan ook door deze luider te spreken en de andere heel zacht, tot fluisteren toe of helemaal niet te zeggen, maar ze in gedachten te volgen of door bepaalde getallen heel langzaam en duidelijk te spreken, de andere weer vlugger.
Met deze tafelrijen heb je een rijke stof om het geheugen te oefenen.

Rudolf Steiner noemde ‘beeldend’ en ‘ritmisch’ wezenlijke factoren voor het onderwijswerk in de hele basisschool. Daaraan voldoet op een natuurlijke manier ook voor rekenen in het prille begin met het principe van het ordenen en het ritmische tellen.

Vanuit het tellen ontstaat dan langzaamaan het rekenen.
Vanuit een fundamentele kentheorie neemt Rudolf Steiner bij het optellen de optelsom als vertrekpunt om vanuit het geheel naar de delen te gaan. Het is een tegenwicht voor het atomiserende denken waarmee het rekenonderwijs vol zit.
Te denken valt aan hoe dikwijls bij de behandeling van bepaalde rekenopgaven een manier van denken ontwikkeld wordt, die iedere lengte als de optelsom van zoveel losse kilometers neemt, ieder gewicht als een samennemen van zoveel kilo, enz. Dit hangt samen met het toenemen van een manier van voorstellen dat deel voor deel aan elkaar knoopt; het gezonde rekenonderwijs moet daar tegenoverstellen een manier van denken die uitgaat van ‘hoe vaak het erin zit’.

Een voorbeeld:

De vraag is om 10º Réaumur om te zetten in graden Celsius.

Dat wordt meestal zo gedaan:

80º Réaumur is 100º Celsius
dan is 1º Réaumur  100/80 º  Celsius
en  18º Réaumur is dan  100  x  18/80 º

Dan heb je de weg van 1 graad Réaumur genomen en van daaruit ga je dan van de ene schaal naar de andere.
Vergelijk nu de andere weg: neem je de beide schalen bij hun kookpunt, dan heb je de getallen 80 en 100 tegenover elkaar; hun verhouding is dan 100/80   4/5         en deze verhouding geeft voor 18º Réaumur   18 x 5/4=  22½º Celsius.
Hoewel ook de tweede gedachtegang naar de analoge getaloperatie leidt, werkt deze toch met een heel andere manier van denken. Hier wordt niet 1º Réaumur genomen, maar direct de overgang door het verhoudingsgetal. Wanneer je bij een thermometer denkt aan de kleine deelstreepjes van één graad, dan is daar juist de overgang het minst overzichtelijk; hier hoef ik niet te kijken, maar wel naar duidelijk overzichtelijke getalsverhoudingen die bij de tweede manier op de voorgrond staan, en die ernaar streeft een zo intensief mogelijke bewustzijnsverbinding met de voorwerpen te krijgen.
De belangrijke zin voor getalverhoudingen die in de praktijk zo belangrijk is, kan je op ieder niveau verzorgen.
Een belangrijke veld is dat van de breuken. Intensief oefenen in het vergelijken van breuken, bijv. dat een half 1½ derde is of een kwart 1½ zesde, levert pas bij breuken het juiste begrip op en wekt er de zin voor waarom je bij het optellen van breuken in vergelijking met het optellen van getallen zo’n gecompliceerde werkwijze moet gebruiken als die van het zoeken naar de noemers. Het optellen van verschillende breuken kun je wel vergelijken met bijv. het optellen van verschillende maten, zoals bijv. de decimeter, meter, centimeter, kilometer enz. Door geschikte oefeningen zal je het begrip voor de rekenregels onderbouwen.

I.p.v. de breukenrij  1/6  +  1/12 + 1/3  + 1/4

uit te werken door alles in twaalfden te denken 2 + 1 + 4 +3
                                                                                               12

10/12  5/6

kan je ook met zesden rekenen: een twaalfde is ½ keer zo groot als een zesde; een derde is tweemaal zo groot als een zesde;
een derde is ½ keer zo groot als een zesde, waarmee in zesden gerekend de som is:   1  +  ½  +  2  +3½  = 5.

Op dezelfde manier kan je ook met derden en vierden enz. rekenen. Als je dat hebt gedaan en je komt dan weer bij de twaalfden terug, dan zien de leerlingen zonder veel uitleg de voordelen van het gebruik van de hoofdnoemers. De regel wordt dan niet alleen maar mechanisch van buiten geleerd, maar er is meer begrip voor ontstaan.

Het grootst is de verleiding puur mechanisch te gaan rekenen bij de tiendelige breuken. Dat je een opgave met de getallen goed uitvoert, maar dan twijfelt waar de komma moet staan, dus of de waarde 10, 100 of zelfs 1000 keer zo groot is, is daarvan een duidelijk symptoom. Dat geeft wel aanleiding om van te voren te schatten wat het resultaat moet zijn en dat geeft een gezond tegenwicht waardoor het oordeel gevormd wordt of de uitkomst wel kan of niet. Een dergelijk proberen t.o.v. van alleen maar automatisch uitrekenen moet ook bij de toepassing van formules meegenomen worden. Hoe makkelijk gaan leerlingen ertoe over de formules automatisch te gebruiken en oefenen eigenlijk alleen maar het inzetten van formules.

Een formule is een gecomprimeerde manier van schrijven, waarin de hele gang van het berekenen zit. Als een laatste samenvatting hoort ze meer aan het eind thuis dan aan het begin. Als je regelmatig op de gang van het rekenproces terugkomt, dan zal dit ook nog paraat zijn wanneer de leerling de formule gebruikt.

Herhaaldelijk komt het er in het rekenonderwijs op aan, op de details te letten die al gauw een bijzaak lijken, maar die voor het vermogen om te kunnen denken de grootste betekenis hebben.

Wanneer je bijv. bepaalde wiskundige kennis toepast en dan over uitzonderingen spreekt, wordt er iets wat je voor het denken van de leerling eerder hebt opgebouwd, doorbroken. Wat als uitzondering beschouwd wordt, is vaak een verdiepte bevestiging van de wet.

Heb je bijv. het feit doorgenomen dat je bij het oplossen van lineaire vergelijkingen twee onbekenden alleen maar uit twee vergelijkingen vindt, drie onbekenden uit drie vergelijkingen, vier onbekenden uit vier kan uitrekenen en je zegt dan dat een uitzondering daarop  een systeem van vergelijkingen maakt die niet van elkaar afhankelijk zijn, dan wordt zoiets anders opgenomen, dan wanneer je laat zien hoe je in geen geval om de genoemde mathematische voorwaarden heen kan, wat toch gebeurt wanneer er bijv. voor 4 onbekende drie vergelijkingen genoeg zouden zijn en de vierde zou kunnen afleiden door het samennemen van twee andere vergelijkingen. Wanneer je aan concrete voorbeelden laat zien hoe in zulke gevallen het proces van oplossen het af laat weten, dan vind je geen aanleiding om van een uitzondering, maar om van een bevestiging en aanvulling van de wet te spreken.

Bij het lesgeven op de vrijescholen is het belangrijk dat het in het periodeonderwijs gebeurt. Dat vraagt voor de methode een danige verandering. Niet een samenklontering van aparte korte lesuren die na elkaar komen is periodeonderwijs, maar in het schoolleven ook met een herkenbare andere opbouw. Het vereist een veel sterker samengaan en samennemen van gezichtspunten m.b.t. de vele lesuren. Een uitbreiding van hetzelfde principe is dan ook nog mogelijk doordat het werken aan een vak verschillende jaren lang in handen ligt van een en dezelfde leerkracht. Daardoor is het mogelijk dat wat later komt, van tevoren met het oog daarop voor te bereiden en hiervan zullen nog een paar voorbeelden worden gegeven.

Juist wat het rekenonderwijs betreft, is het zo dat bepaalde getalwetmatigheden die bij de stof van de hogere leerjaren horen, dikwijls in een andere samenhang, op een veel eenvoudigere manier in de onderbouw aangestipt kunnen worden.

De voor de gehele algebra en de combinatieleer zo belangrijke getalvolgorde van de zgn. driehoek van Pascal:

bevat bijv. dezelfde getallen die bij het herhalende vermenigvuldigen met 11 voorkomen.

Bij het oefenen van vermenigvuldigingen kan al, zonder de driehoek van Pascal te noemen, op deze symmetrische getalopbouw worden gewezen, ja wellicht ook getoond worden, hoe dit ook bij het verder gaan ermee bewaard blijft, zo gauw je tussen de verschillende plaatsen niet verder telt: 14641 x 11 = 1 eenheid, 5 tientallen,  10 honderdtallen, 10 duizendtallen, 5 tienduizendtallen en 1 honderdduizendtal, enz.

Ook raakvlakken bij de opbouw van regels die later in het onderwijs een grote rol spelen, zitten al in eenvoudigere processen. Vergelijk eens de rol van de even en oneven getallen bij het optellen van twee getallen en van de positieve en negatieve getallen bij het vermenigvuldigen van twee getallen:

E(ven) G(etal)      +   E(ven) G(etal)   =  E(ven) G(etal)
E G   +  O(oneven) G(etal)  =  O(oneven) G(etal)
O G + E G = O G
O G + O G = E G

P(ositief) G(etal)  x P(ositief) G(etal)  = P(ositief) G(etal)
P G  x   N(egatief) G(etal  =  N(egatief) G(etal
N G x P G  = N G
N G x N G = P G

Tussen beide wetmatigheden bestaat niet zomaar een toevallige overeenkomst, maar een innerlijke relatie, wanneer je bedenkt dat de even macht van negatieve getallen positief, van oneven getallen oneven is, dat verder een vermenigvuldiging van machten van gelijke basis overeenkomt met een optelling van de exponenten.

Ook begrippen die later aan de orde komen, kun je adequaat voorbereiden door geschikte rekenopdrachten.

Wanneer je bijv. het vermenigvuldigen van decimalen oefent en je geeft de som 3,1623  x  3,1623, waarbij je tien helen en ook in de decimalen nog drie nullen krijgt, dan heb je het begrip kwadraatwortel voorbereid.
Net zo komt er uit de nogal lange vermenigvuldiging 2,15444 x 2,15444 x
2,15444 opnieuw 10 met nog vier nullen uit en daarmee heb je ook de eigenschap van de derdemachtswortel. Op dezelfde manier kun je een groot aantal opgaven met verschillende wortels maken: √2 = 1,41421;  √3 = 1,73206,  √5 = 2,23607, waarbij je er alleen maar op hoeft te letten dat de laatste decimaal de meest precieze waarde aangeeft boven de wortel. Liet je simpelweg de decimalen vanaf een bepaalde plaats weg, dan wordt de wortelwaarde te klein en je krijgt dan uit een vermenigvuldiging niet bijv. 2, maar 1,999999…….

Zelfs feiten die je meestal pas bij het differentiaalrekenen bespreekt, vertonen zich aan de hand van eenvoudige berekeningen als getalwetmatigheden.
Het feit dat het   n-de  differentiaalquotiënt van xn  is gelijk n! volgt uit het verloop van differentiaalrijen van de machten.
Neem je bijv. de rij van de derde macht van de getallen en je schrijft ze onder elkaar, daarna het verschil zoekt van twee van hen, hiervan weer het verschil enz. Als laatste differentiaalrij krijg je dan 6 (6 = 3! = 3  x  2  x  1)

Op dezelfde manier krijg je uit de 4e macht in de laatste differentiaalrij 24 (24 = 4! = 4 x  3  x  2  x  1), bij de 5e macht 120 enz.
Door dergelijke oefeningen die niet meer tijd kosten dan willekeurig welke andere opdrachten, kan een innerlijke verbinding tussen het werk in de verschillende leeftijdsfasen worden bereikt en in de zin van een samenhangend samenwerken van de verschillende mathematische gebieden werkzaam zijn. De bijzondere indeling in de leerstofgebieden voor de leeftijd en de klassen zal dan later uitvoerig worden behandeld. [niet op deze blog].
.

Herman von Baravalle,  Erziehungskunst, 8e jrg. nr.2/3 juli/aug. 1934

.

Rekenen: alle artikelen

.

1739-1629

.

.

VRIJESCHOOL – Rekenen (7-1)

.

(E.A. Karl Stockmeyer, Mitteilungen 6 1924)
.

IETS OVER GETALLEN EN GROOTTE

(Ge)tal komt van tellen en betekent het resultaat van het tellen. Deze zin verklaart eigenlijk veel over rekenvraagstukken.

Tellen is het bezig zijn met dingen, waarbij je je niet bezighoudt met de aard van die dingen. Wat ik tel, beschouw ik als gelijk aan elkaar; en omdat ik dat doe, kan ik tellen. Appels en peren die voor mij liggen, kan ik niet in één getal samennemen, zo lang ik ze als verschillend aanmerk. Wanneer ik daarvan afzie, kan ik ze wel als vruchten tellen. Dan kan ik ook de meest verschillende dingen tellen, omdat ik ze op de een of andere manier rangschik onder een begrip dat boven de afzonderlijke begrippen uitgaat. Wanneer ik niet meer kijk naar de afzonderlijke voorwerpen en gewoon tel wat er ligt, ben ik bezig te abstraheren – ik verlaat het specifieke. Dan kom je tot het aan-tal: het genoemde getal.

Abstraheren gaat bij het tellen nog verder. We kunnen afzien van het laatste restje concreetheid dat wij bij het vaststellen van het aantal binnen een bepaalde groep van dingen nog voor ogen hadden en dat loslaten. Bv. wanneer we de 7 kleuren van de regenboog tellen, maar ook de 7 dagen van de week en dan gewoon tot ‘7’ komen. Het getal is het tweede niveau van abstractie, het aantal het eerste.

De abstractie is dus het reine getal, het middel van ons rekenen en de rekenkunde.

Je kan ook een andere gedachteweg volgen om bij het getal te komen. Deze leidt – wanneer u mij toestaat deze manier van uitdrukken te gebruiken – juist in tegenovergestelde richting tot het gelijke doel, maar laat daarom ook een andere kant van het doel – het getal – zien.

Je kunt ook zo redeneren: tellen kun je alleen wanneer en omdat je al een begrip van het getal hebt. Wanneer ik van een groep mensen zeg : ‘Dat zijn er drie’, dan beschik ik over het begrip  ‘drie’ en voeg dit vanuit mijn denken vrij bij mijn beleving  ‘een groepje mensen’.

Ik zou met de woorden ‘drie mensen’ nooit enige zin kunnen verbinden, wanneer ik niet in mijn denkvermogen het begrip ‘drie’ zou hebben.

Dr.Rudolf Steiner heeft in de voordrachten die hij afgelopen zomer [1] in Engeland heeft gehouden bij het oprichten van een vrijeschool, op voorbeeldige manier laten zien, hoe je aan kinderen die je als leerkracht het rekenen bij wil brengen, een elementair begrijpen van het wezen van de eerste getallen kan overbrengen.

Bij kinderen kun je nog niet appelleren aan een ontwikkeld begripsvermogen, maar je kunt wel zeggen: ‘Kijk eens naar dit stuk hout, dat kun je doorzagen, dan heb je twee kleinere stukken hout, maar wanneer je naar de mens kijkt, dan kun je die niet doorzagen, want anders was het geen mens meer. Kijk, dat is een eenheid (ein Eins). Jij bent ook een mens, jij bent een eenheid. Wanneer je nu in de kamer binnengaat aan de ene kant en van de andere kant komt vader binnen en jullie komen elkaar midden in de kamer tegen, dan ben je met z’n tweeën – dat zijn er 2. Voor een ontmoeting zijn er altijd twee nodig. En wanneer nu juist op dat ogenblik waar jij van de ene kant in de kamer komt en van de andere kant vader, ook moeder erbij komt, dan is dat wel een bijzondere ontmoeting, want dan ben je met zijn drieën.’

Dit werd mij mondeling meegedeeld uit de genoemde voordracht van Steiner en ik weet niet wat daar letterlijk is gezegd. (Dat weten dus nu wel).
Het is wel een manier om kinderen de eerste drie getallen te laten ervaren, zodat het daarbij iets beleeft wat hem dan later wanneer het verstand ontwaakt en de vorming van begrippen begint, de mogelijkheid geeft de getallen als oorspronkelijk, als niet uit andere begrippen af te leiden, op te vatten.

Twee wegen dus die bewandeld kunnen worden, ze leiden beide tot het getal; de weg van de abstractie die in zekere zin van het levendige beleven van concrete dingen door verdergaande abstractie tot het telresultaat leidt en de andere weg die van een levendig beleven van concrete dingen als het ware teruggaat naar het intuïtieve begrip van het oorspronkelijke getal. De wegen zijn verschillend, lopen in zekere zin in tegengestelde richting, de ene door abstractie voorwaarts, de andere door een terugblik op het denkproces, maar ze leiden hier tot hetzelfde doel, het begrip van het getal, waarvan ze echter twee verschillende kanten tonen.

Door deze beschouwing kun je begrip krijgen voor wat een getal is. Allereerst kun je zien dat het geen zin heeft om iets anders dan de ‘hele, positieve getallen’ als getal op te vatten.

Het inzicht van dit feit leidt tot de meest belangrijke conclusies voor het rekenen met getallen en het rekenen met letters, zelfs voor een onweerlegbaar bewijs van de rekenkunde.
Dat zou ik aan de hand van een paar voorbeelden  willen laten zien. Daarbij zie ik af van allerlei verwijzingen van het onderwerp in de vakliteratuur.

Ik begin met de vermenigvuldiging. De vermenigvuldiger is altijd een rein getal. Je hebt steeds het ‘hoeveel keer’. Het vermenigvuldigtal is daarentegen heel willekeurig. Dit kan van alles zijn wat meerdere keren gedacht kan worden. Je vindt hier weer terug wat over het tellen van dingen is gezegd: de enige beperking waaraan het vermenigvuldigtal onderworpen is, is dat dit niet slechts als 1 x voorkomend of maar 1 x te denken is. Deze beperking geldt natuurlijk eveneens voor de voorwerpen die geteld worden.

Daarom onderscheidt het vermenigvuldigen zich pas van het gewone tellen wanneer je geen concrete dingen, maar resultaten van het tellen, aantallen en reine getallen ‘telt’. Juist daarbij ontstaat het product. Het product is dus een veelvoud van een gelijk aantal of een gelijk getal. En dat betekent dat in elk product een rein getal als vermenigvuldiger en een aantal (benoemd getal) of rein getal als vermenigvuldigtal voorkomt.

Dit moet je vasthouden wanneer je je in de rekenkunde buiten dit oorspronkelijk werkgebied begeeft. De ‘negatieve getallen’ of ‘negatieve grootten’ beter gezegd, kun je zo lang volgens bovengenoemd principe vermenigvuldigen als je dat doet met een positieve vermenigvuldiger.

Getal zoals hierboven gedefinieerd is slechts het ‘positieve’ en ‘hele’ getal. Het ‘negatieve’ getal of het ‘gebroken’ getal kunnen nooit het resultaat van het tellen zijn, ze zijn door het abstraherende denken niet te vinden waar je de reine getallen in de hier bedoelde zin vindt.

Maar je kunt ze ook niet vinden door het intuïtieve denken, als een soort basis van een gelijksoortige activiteit als de activiteit van het tellen. Je kunt ze alleen vinden met behulp van de unieke, de hele en positieve als tweede component. Dat wordt hieronder getoond.

Zolang je met een positieve vermenigvuldiger rekent, hoef je je om de andere factor helemaal niet druk meer te maken; hij wordt geteld en blijft daarbij gewoon wat hij is. Het product is steeds van gelijke kwaliteit als het vermenigvuldigtal. Wanneer dit een ‘negatief’ getal is, dan zal ook het product ‘negatief’ zijn.

Zo ontstaat concreet de formule:

. (-b) = – ab

Voordat het wezen van het negatieve niet verklaard is, kun je van hieruit niet verder komen.

Het negatieve wordt alleen dan goed begrepen, wanneer je dit in zijn oorspronkelijke optreden in het rekenende bewustzijn bekijkt. Het doet zich voor bij aftrekken, wanneer het niet mogelijk is om de gevraagde aftrekking uit te voeren, wanneer je dus 5 moet aftrekken, terwijl je maar 3 hebt. Hier voegt zich iets in het rekenen wat je bij tellen en vermenigvuldigen niet hebt: de eis iets af te trekken van iets, maar er meer vanaf te trekken dan er is; dan kan alleen waar mensen met elkaar in contact komen, waarbij er sprake is van ‘geven en nemen’.  Tellen en vermenigvuldigen kan iemand op zich alleen, maar aftrekken en dan juist ‘niet kunnen aftrekken wat je eigenlijk zou moeten’, daartoe moet er een ander aanwezig zijn.

Het negatieve dat tenslotte niet afgetrokken kan worden, wat dus zo bekeken niet reëel is, moet eerst gemaakt worden; het kan natuurlijk ook met getallen uitgedrukt worden, geteld worden. Je ziet echter dat het min-teken eigenlijk niet bij het getal – 3 hoort, maar de plaats inneemt van ‘wat benoemd wordt’. Het negatieve getal is eigenlijk een benoemd getal.

Min 3 betekent eigenlijk: er ontbreken drie dingen van wat dan ook. Ik heb er alleen vanaf afgezien wat dat voor dingen zijn en bekijk alleen maar dat drievoudige ontbreken.

Zolang je aan het oorspronkelijke getal vasthoudt, kan het minteken, wanneer het geen bewerkingsteken is, dus slechts de opdracht tot aftrekken geeft, niets anders zijn dan een bijzondere vorm van benoemen: ‘ -3  ‘  betekent ‘er ontbreken er 3’.

Op grond van deze conclusie kun je wat hier boven beschreven is, ook zo schrijven:

Wanneer  b   a-keer ontbreekt, dan ontbreekt a .  b.

Dat is de echte zin van de formule: a . (-b) = – ab.

Echter, ook nu vind je geen gangbare weg om twee ‘negatieve getallen’ met elkaar te vermenigvuldigen. Die vind je pas, wanneer je van het getal naar de ‘grootte’ overstapt en een ‘grootte’ is heel wat anders.

De grootte is ook een abstractie en je vindt deze wanneer je van dingen die je als gelijkwaardige opvat, een maat wil hebben. Dus eerst heb je een ding dat ik als een hoeveelheid van een homogene stof beschouw. Daar zit al een abstractie in. Maar ik zie af van wat er aan zo’n ding nog allemaal voor interessants is op te merken en beschouw het als volkomen hetzelfde en vraag naar ‘de hoeveelheid’ (die Menge). Bij tellen bekijk je iets ‘dis-continuerends’, bij meten om iets ‘continuerends’: de grootte.

Om een hoeveelheid te meten heb je een willekeurige meeteenheid nodig en kom je tot een ‘meetgetal’, wanneer je tellend bepaalt hoeveel keer die willekeurige meeteenheid die steeds van dezelfde aard moet zijn als wat je wilt meten, daar in zit.

Op eenzelfde hoeveelheid kun je op verschillende manieren het (af)tellen toepassen. Een pak meel kan opgevat worden als 1 (kilo) of als 10 (ons).

Hier kun je wel tegenwerpen dat er toch dingen zijn die je kan opvatten als de door mij bedoelde substantie, maar die in een heel bepaalde relatie staan tot hun meeteenheden, namelijk bij hoeken. Hun grootte wordt bepaald door de verhouding van hun boog tot de straal van die boog. Dat is juist, maar bij een hoek is het begrip hoeveelheid niet echt op zijn plaats.

Iedere hoeveelheid kan ik willekeurig in verschillende grootten denken; een hoek alleen tot hij de hele cirkel omvat; dan kom ik tot de natuurlijke eenheid van een cirkel en die kan niet vérder gedacht worden. Dat is de reden dat je de hoek niet zo kan behandelen als een echte hoeveelheid.

Getal en hoeveelheid staan aanvankelijk vreemd tegenover elkaar en vinden elkaar pas in de maat die ons de grootte van de hoeveelheid aangeeft: bv. 7 ons.

Maar dan kan ook de breuk gevormd worden, bv. ½ meter. Die ontstaat simpelweg door de deling van een als eenheid genomen hoeveelheid. Je hebt dus als basis een willekeurig genomen hoeveelheid en die noem je 1. Dat is de eenheid, als onderscheid tot het getal 1.

De eenheid kun je meerdere keren hebben, maar kan ook onderverdeeld worden en iedere breuk moet als een deel van die eenheid, niet als deel van 1 opgevat worden.

En de veelvouden van de eenheid en de delen zijn ook grootten, geen getallen.

De grootte ontstaat dus als een resultaat van het meten en wordt ook zo benoemd. Abstraheer je van die benoeming, dan krijg je de grootte zondermeer, de reine grootte en deze kan heel of gebroken zijn.

Hier moet je de oorsprong van de breuk zoeken. En daaruit valt te concluderen dat breuken nooit als getallen zoals bovenbedoeld opgevat kunnen worden, maar altijd als grootten beschouwd moeten worden. Eén als getal, dat betekent als resultaat van het tellen, is niet deelbaar, wel echter is de eenheid als grootte deelbaar en ½ betekent simpelweg de helft van de als maat toegepaste hoeveelheid, wanneer je afgezien hebt van hoe groot en waarvan de eenheidsmaat is, 2/3 betekent 2 hoeveelheden waarvan er 1 uit de eenheidshoeveelheid door driedeling ontstaat, enz.

Bij het rekenen met grootten komt er natuurlijk veel aan op welke grootte je gebruikt. Want de rekenwetten zijn anders al naar gelang de aard van de grootte waarmee je rekent: onze rekenkunde heeft haar karakter gekregen door het kiezen van een typische grootte: de lengte en wel de naar de ene kant gaande en dienovereenkomstig naar de tegenovergestelde kant. Dat zou weleens in de menselijke natuur kunnen liggen;  de rekenkunde zou er beslist anders uitzien als niet stilzwijgend deze vergelijking werd aangenomen:

Rekenkundige grootte = geometrische lengte.

Met deze vaststelling krijg je de mogelijkheid voor het ‘negatieve getal’ een symbool te vinden zo dat het zeer abstracte  ‘ontbreken van wat je af moet trekken’ wordt vervangen door iets concreets. Het ‘negatieve’ getal is nu eenvoudigweg de lijn in de negatieve richting. Je vormt een ‘getallenlijn’ en je zet vanaf een ‘nulpunt’ uit naar beide kanten een lijn waarvan de eindpunten de positieve de negatieve getallen vormen.

getallen en grootte 1

Deze manier van verbeelden van het getal op een rechte lijn werkt ongelooflijk overtuigend en vormt nu het uitgangspunt voor een grootse ontwikkeling, want het is nu nog maar een kleine stap van de ‘getallenlijn naar de theorie van Gaus.

Maar je moet wel goed weten dat je bij dit alles niet meer met getallen, maar met grootten en juist grootten van een speciale soort te maken hebt.

Getallen zijn van elkaar losstaande dingen die niet doorlopend in elkaar overgebrachrt kunnen worden; op de getallenlijn worden dingen neergezet die weliswaar door getallen gesymboliseerd worden maar die zich wel van getallen onderscheiden doordat zij wel voortdurend in elkaar overgaan: het zijn grootten.

Op deze grootten van de getallenlijn kun je de regels van het vermenigvuldigen goed toepassen, wanneer je aan de regel ten grondslag legt:

Het product ontstaat uit de ene factor, zoals de andere uit de eenheid. Daarbij treedt het onderscheid van de beide factoren in de vermenigvuldiger en het vermenigvuldigtal helemaal niet meer op,  je kunt ze verwisselen.

Hoe deze regel bedoeld wordt, zal met een paar voorbeelden verklaard worden: 2 . 3 = 6

Hier ontstaat 6 uit 3 net zoals 2 uit de eenheid. 2 ontstaat namelijk uit de eenheid door verdubbeling in dezelfde richting. Net zo moet je nu de 3 in dezelfde richting die de 3 al heeft, verdubbelen en dan komt 6.

zoals 2 uit 1

getallen en grootte 2

zo 6 uit 3

Een 2e voorbeeld laat het vermenigvuldigen van negatieve grootten zien.     2 . (-3) = – 6

zoals 2 uit 1

getallen en grootte 3

zo – 6 uit – 2

Ook hier ontstaat – 6  uit – 3 door verdubbeling in dezelfde richting, net zoals 2 uit 1 door verdubbeling in dezelfde richting.

Het volgende voorbeeld laat zien dat deze regel ook geschikt is om het vermenigvuldigen van 2 negatieve factoren te laten zien.

(-2) . (-3) = + 6

zoals – 2 uit 1

getallen en grootte 4

 

zo + 6 uit – 3

Hier ontstaat -2 uit + 1 door verdubbeling in de omgekeerde richting en net zo ontstaat + 6 uit – 3 door verdubbeling in de omgekeerde richting.

Hier werden slechts een paar voorbeelden gegeven van een werkelijkheidsgetrouwe en begripsmatig streng omschreven behandeling van rekenen.
Het kan hier niet uitgewerkt worden tot een rekenleer. Het allerbelangrijkste bij het opnieuw formuleren van mathematische wetenschap hebben wij te danken aan Herman von Baravalles boek: ‘Zur Pädagogik der Physik und Mathematik, dat niet genoeg aanbevolen kan worden. Door levendige begripsvorming in de wiskundige wetenschappen zou het niet vermoede kwaliteiten kunnen hebben om een werkelijke, d.w.z. vanuit de geest geformuleerde wereldbeschouwing te ontwikkelen.

*de zomer van 1924. Steiner was toen in Engeland, in Torquay.
GA 311/78
Op deze blog vertaald

Rekenen met negatieve getallen

Rekenen: alle artikelen

Algemene menskundealle artikelen

Rudolf Steineralle artikelen op deze blog

Menskunde en pedagogiealle artikelen

Vrijeschool in beeldalle beelden

 

777-712