Tagarchief: kalk

VRIJESCHOOL – 7e klas – scheikunde (3-3)

.
kalk en zout
.

Een eerste kennismaking met de scheikunde*

Op het eerste gezicht kan de opvatting over het scheikundeonderwijs op de vrijeschool niet gebruikelijk lijken. Anders is, met name in de onderbouw, dat we afzien van chemische formules, maar dat is maar uiterlijk.
Zoals het jaren duurt voor het kind alle voeding verdraagt die voor de volwassenen normaal is, zo duurt het een paar zevenjaarsfasen voordat het opgroeiende kind het innerlijk vermogen ontwikkeld heeft om de kost van ons intellectuele tijdperk te kunnen verteren. Voor een gezonde ontwikkeling heeft de ziel van het basisschoolkind bij alle vakken de beleving nodig dat iets mooi is. En binnen de natuurkunde horen daar nog meer omvattende begrippen bij die toegang vinden tot het hart, dan de abstracte scheikunde van de 20e eeuw leert.
De stoffen moeten als een uiting van werkingen en processen zichtbaar worden die in alle natuurrijken voorkomen en die een hoogtepunt vinden in de werking in het menselijk lichaam.
Bij scheikunde is het erg belangrijk dat je tegenstellingen of polariteiten beleeft en leert begrijpen. Gepaard gaand met warmte en licht, met vuur en rook voltrokken in de eerste scheikunde-uren de verbrandingsprocessen zich.
De adem van de cholericus ging sneller, spontane uitroepen begeleidden de hevige processen.

De tegenpool van het verbranden is de zoutvorming, en zijn de grote levensritmen van de kalk. Het ademen van een klas verloopt anders wanneer er hele leeftijden van de aarde voorbijkomen en wanneer er geschetst wordt hoe in de wieg van de zee het kalkgesteente ontstaat.
De flegmatici vinden het heerlijk als ze beleven hoe de tijd voorbijstroomt en hoe in taaie volharding laag na laag op de zeebodem wordt afgezet; een druipsteen druppel voor druppel groter wordt.
Dan wordt het stil in de klas, de sfeer is bezinnend.
De rust van een grote scheppingsadem die nog steeds doorwerkt, daalt neer.
God zweeft nog steeds over de wateren en verandert het leven en het vergaan in weer nieuw leven.
Kalk vindt zijn oorsprong in het leven. (Omnis calx e vermibus, al het kalk lomt van de lagere dieren)
In het begin kun je de kinderen vele van de meest voorkomende kalksoorten laten zien. Bij mosselschalen, slakken, koraal, kalksponzen, ammonieten en botten is de herkomst uit het dierenrijk nog heel duidelijk.
Brokken steen met fossielen bewaren nog de herinnering eraan. Ten slotte laat je dan kalksoorten zien die ontstaan wanneer dierlijke kalk oplost en onder bijzondere omstandigheden weer afgescheiden wordt: druipsteen, kalkkristallen (spaat), korrelkalk en marmer.
Ook nu neemt het water kalk in zich op, transporteert het en zet het af. Ook nu zinken fijne kalkdeeltjes naar de zeebodem en vormen laagjes. Onze bergen zijn ontstaan door kalk van de dieren. In de wateren zakt door de zwaarte kalk naar beneden. Het vloeibare leven scheidt in het organisme schaal en bot af.

Eigenlijk is het geen kringloop die het kalk aflegt: van het dier via de afzetting, gesteentevorming, oplossing in het water en dan weer naar het dier, want het dier van toen is er niet meer. Het is meer een spiraal. En wat in het organisme van de aarde uit de huidige afzettingen wordt, blijft een vraag. Zo’n vraag roept bij de kinderen een gevoel op voor de grote ontwikkelingsschreden en raadselachtige levensfasen van de aarde.

De vier elementen van Aristoteles die de kinderen in de eerste schooljaren steeds weer tegenkomen, blijken nu in de verdergaande natuurkundebeschouwing een scheppende kracht te zijn in alles wat er in de natuur gebeurt.

De elementenkracht van het vuur scheidt en de werking van het vloeibare verbindt de stoffen weer. De kracht van het vaste verdicht, trek samen en draagt, terwijl de kracht van het lucht-gasvormige uitdijt en vervluchtigt.
Deze krachtwerkingen gebruikt de mens, wanneer hij in de natuurlijke kringloop van de kalk een kunstmatige kringloop inschakelt die hij bij het bouwen van gevels en muren in gang zet. Hij gebruikt het vuur dat splitst, hij benut het streven om weer één te worden en de vormkracht dat het water schenkt. Voor de natuurlijke drang om wat gescheiden is weer tot een vast gesteente samen te voegen, vormt de mens uit het materiaal dat nog plastisch is, zijn werk.

Allereerst wordt de kalksteen gebrand. De hitte dwingt de steen het koolzuurgas af te geven (uit te ademen), dat de dieren eens bij zich hielden (niet uitademden) om hun kalkskeletten op te bouwen.
De gebrande verbrokkelde kalk heeft meteen daarna ‘dorst’ om weer vast te kunnen worden, water en koolzuurgas op te nemen. Ondertussen bouwen de mensen de steunende en omhullende muren van hun huizen.
Op een vergelijkende manier herinner je aan de dierlijke herkomst van de kalk. De dorst van het dier, zijn adem maakt de bouw, de schaal en de botten voor zijn lichaamsbehuizing mogelijk.
Op een nieuw niveau grijpt het onderwijs nu terug op wat in de derde klas in de huizenbouwperiode meer vertellend en praktisch doend aan de kinderen gegeven werd.
Als het mogelijk is, ga dan naar een kalksteengroeve en een kalkbranderij.
Bij de behandeling van het blussen van kalk sluiten zich sociale vragen aan.
Vroeger werd het gevaarlijke blussen op de bouwplaats van de kalkgroeve gedaan, nu in het tijdperk van specialisatie en arbeidsverdeling wordt kant-en-klare specie geleverd. Wat tegenwoordig op de bouwplaatsen het meest opvalt zijn de betonmengmachines.
De betekenis van de dakpan is verregaand verdrongen door de kunstpan,
Je moet uitvoerig ingaan op het produceren van cement en beton, hier volgt alleen een opsomming:

kalkspecie: gebluste kalk en zand. Verhardt door koolzuurgas uit de lucht
cement: gesinterde, kleihoudende kalk. Wordt alleen al door water hard.
Van belang voor bouwen onder water.
Beton: cement met grind
Gewapend beton: beton met een ijzeren mat erin

We vatten het proces van het kalkbranden samen in een schema. Blussen en het nieuwe ontstaan van de koolzure kalk.

Het vuur scheidt de kalk en ‘as’ = gebrande kalk.
Het water blust het gas en vormt daarmee zuur.
Het water verbindt zich met de as, het vaste en vormt een loog.
Het water maakt het samengaan van zuur en loog tot kalksteen (zoutvorming) mogelijk.

Ons schema van het kalkbranden bevat twee nieuwe begrippen: zuur en loog die ook weer als polariteiten in de hele natuur werkzaam zijn. 
We hebben de natuurlijke weg gevolgd die bij kalk of zout als eenheid begint en dan leidt naar de verschillen in zuur en loog. (Zou je van de kunstmatige of theoretische begrippen zuur en loog uitgaan en vandaar naar de zoutvorming, hoort dat bij een gedachtesysteem dat niet bij het natuurlijke beleven van de kinderen past) 
Hoe de tegenstelling door het water weer teniet wordt gedaan, kun je zo aanpakken:
Je vertelt de kinderen dat het gas- of luchtachtige dat door het vuur uit de kalksteen verdreven wordt, opgevangen kan worden. Dat gasvormige is hetzelfde als wat in de flesjes mineraalwater bruist en waarvan we zeggen ‘met koolzuur’ (tegenstelling: ‘plat’ water, zonder koolzuur). het smaakt ook wat zurig. Als het koolzuurgas in het water oplost, krijgen we een zuur: koolzuur. Dit kleurt lakmoespapier rood. 
Als je bij de zwaarder geworden gebluste kalk dat zo gretig water opzuigt, nog meer water toevoegt, vormt zich een melkachtige vloeistof: kalkmelk dat lichter wordt tot kalkwater. Deze vloeistof op basis van de gebluste kalk doet de lakmoes blauw worden. Je laat de kinderen van beide vloeistoffen iets proeven – bij alles wat ze bij het schilderen hebben geleerd is het voor hen niet verwonderlijk dat het prikkend-zure dat naar boven bobbelt, dat actiever is en de kurk van het flesje wil duwen, rood oproept. De vlakke loogsmaak van het kalkwater dat zich beneden afzet hoort dan natuurlijk bij het blauw.
De door het vuur uit het kalkteen bevrijde tegenstellingen van zuurgas en kalkbase wordt dus door het water (als zuur en loog) volledig zichtbaar gemaakt.
Als we nu koolzuur in het kalkwater gieten, dan wordt de vloeistof troebel en op de bodem wordt een wit zout, als krijtmodder afgezet. Uit de verbinding van de polariteiten is weer kalk, preciezer ‘koolzure kalk’ ontstaan, die helemaal geen kleur geeft aan de lakmoes.
Als je door een rietje ademlucht in een kalkwaterglas blaast, ontstaat op de bodem hetzelfde. We kunnen erop wijzen dat ze al geleerd hebben hoe vuur en levensprocessen op gelijke manier koolzuurgas opwekken. 
En dan beginnen we de geschetste processen op de mens te betrekken.
In het bloed, bij de beweging van de ledematen is het vuur het sterkst actief – waar wordt de hardste en dichtste bottensubstantie afgezet?
Waar treden de zoutvormingsprocessen op de voorgrond die rust en tijd nodig hebben? 
De kinderen vinden al snel: in het hoofd!
Dat heeft ook de rust nodig om tot kristalheldere gedachten te komen. 
Maar ook binnenin de ledematen ontstaat het stevige beenderstelsel, zonder dat de gestalte wegvloeit. De bottenmens wordt dus door het levende bloed afgezet zoals een groot deel van het gebergtestelsel van de aarde zich vormt uit het water. 
Een wet van grote morele betekenis wordt zo ervaren: het dode komt voort uit het levende. 
Hoe afgesnoerd is de mens van de kosmos en van de geestelijke scheppingskrachten die in het universum werkzaam zijn, wanneer hij omgekeerd het leven uit de dood wil laten ontstaan.
Door dit ‘omgekeerde (ver-keerde) denken heeft de materialistische wetenschap de mens afgesnoerd van een geestelijke natuurbeschouwing en verbondenheid met de wereld. 
De eigen waarnemingen en het klassengesprek leiden tot volgende kernwoord-tegenstellingen:

Nu zoeken we het zuur en het loog weer op binnen de scheikundecontext. Het enige mineraal dat wij mensen direct uit de natuur in ons voedsel, dus in onze bloedsomloop opnemen is het (keuken)zout. Dat stamt uit de eindeloos grote wateren van de zee. Men heeft uitgerekend dat de zoutmassa die in het zeewater opgelost is, het mogelijk zou maken de gebergten van de aarde nog eens op te bouwen met zoutkristallen. Zout conserveert, houdt iets blijvend, keert zich tegen ontbinding, rotten (‘inleg’groente – vooral ‘vroeger’ ingelegd in het zout, pekelen). Zonder deze zouthoudende, vormende krachten die de toestand laten voortduren, zouden wij oplossen. Meer te veel zout is weer schadelijk voor de wording, doodt het leven dat oplossing en vormgeving, leven en sterven omvat.

Het landschap rond de Dode Zee geeft een schokkend beeld van de alleenheerschappij van het zout.
Door grote hitte of elektrische stroom kunnen we steenzout (ook de kalk) splitsen: in zoutzuur en natronloog.
Als we bij een proef natronloog en zoutzuur bij elkaar gieten, krijgen we pekel of brijn, waarin zoutkristallen ontstaan. 
Je moet in de klas een kan met dit geconcentreerde pekelwater neerzetten. De kinderen kunnen dan waarnemen dat dit proces langzaam verloopt en dat ze heel rustig moeten zijn: want trillingen verstoren het kristallisatieproces. Dat maakt wel indruk op de kinderen.
Andere vloeistoffen kunnen ermee vergeleken worden om te zien hoe daarin het kristalliseren verloopt. (aluin, kopervitriool)
Wanneer je de activiteit en het raadsel van het zout nagaat, kun je als vanzelf aan de chemische processen beschouwingen aanknopen die weer bij de mens eindigen. 
Om daar nu op in te gaan, zou voor dit artikel te ver gaan. 
Om de periode af te sluiten deden we een proef die weer heel nieuwe vragen opriep, waarvan de antwoorden pas in de laatste klas van de basisschool (toen de 8e klas) aan de orde komen.
We deden dat met het toestel van Kipp.
Wat we tot nog toe geleerd hadden, pasten we nu toe om een stof, het koolzuur, te produceren. Daarmee werpen we ook al een blik op de scheikunde in de 8e klas wanneer de betekenis van de scheikundige processen voor de industrie aan de orde komen. 
Met wat tot nog toe in de klas aan fysica-, aardrijkskunde- en biologische kennis opgedaan is, kan nu een eerste overzicht gegeven worden over handels- economische en verkeersbetrekkingen. Hoe intensiever de vragen die hierbij kunnen ontstaan, verwerkt kunnen worden, des te vruchtbaarder zal op een later tijdstip het vervolg op wat aangelegd werd, kunnen zijn. 

* zie deel 1  en deel 2

7e klas scheikundealle artikelen

Scheikunde: alle artikelen

7e klasalle artikelen

Vrijeschool in beeld7e klas

.
2539-2379

.

.

.

VRIJESCHOOL – 7e klas – scheikunde (2-2)

.

Toen zo’n 100 jaar geleden in Stuttgart de vrijeschool van start ging, was er geen kant-en-klaar leerplan. 
In verschillende voordrachten had Steiner wel van allerlei over de vakken opgemerkt, maar meestal in grote trekken.
De leerkrachten voor de klas moesten zelf van alles ontwikkelen.

Het is interessant om te zien tot welke oplossingen ze kwamen. In de pedagogische vergaderingen waarbij Steiner aanwezig was, ging de laatste op vragen in en gaf nog allerlei aanvullende antwoorden, maar na zijn dood moesten de leraren het wiel zelf uitvinden.

Veel van wat er destijds ontwikkeld werd, is – dat hoeft bij een zo levende pedagogie als die van de vrijeschool niet te verbazen – nog altijd bruikbaar, ook al is er in die 100 jaar op allerlei terreinen van het leven bijzonder veel veranderd.

Eugen Kolisko beschrijft in een drietal artikelen het scheikunde-onderwijs uit die beginjaren.

Ik heb over zijn artikelen een aantal opmerkingen vooraf gemaakt.

Eugen Kolisko, Erziehungskunst jrg.6, 1/2, april 1932 blz. 64
.

OVER HET EERSTE SCHEIKUNDE-ONDERWIJS (2)
.

Over de vorming van kalk en zout

In de scheikunde is het begrijpen van tegenstellingen van de grootste betekenis. [1] We zijn uitgegaan van verbranding. Het tegenovergestelde van verbranden is zoutvorming. Het best worden deze verschijnselen duidelijk aan het voorbeeld van de kalk.
We tonen allereerst waar de kalk in de meest verschillende vormen in de natuur voorkomt: in de schalen van mosselen, de huisjes van slakken, koraal, kalksponzen, ammonieten- of trochietenkalk, krijt en botten van de meest uiteenlopende soort. Alles komt uit het dierenrijk. Dan volgen gesteenten die de organische oorsprong heel duidelijk laten zien, als bv. zoetwaterkalk, ammonieten- of trichietenkalk. Tot slot worden kalkspaat, druipsteen, marmer en kalkkorrels getoond. Hoe uitgebreider je dit aanschouwelijkheidsonderwijs geeft, des te beter. Nu wordt de vraag gesteld, hoe dit alles ontstaan is.
Alles is vanuit het water afgezet. Het duurde bv. heel lang voordat er druipsteen uit water werd afgezet. Ook vertel je dat er in zee voortdurend een fijne regen van schalen van dode dieren van allerlei soort naar beneden zakt en zich op de bodem afzet als kalkmodder. Zo is het krijt ontstaan uit het leven van ontelbare allerkleinste levende wezens. Zo zijn er hele bergen ontstaan, bv. de krijtrotsen aan de Noord- en Oostzee. Net zo zit het met de afzettingen van mosselkalk. Alles heeft een lange tijd nodig. Heel geleidelijk worden uit het kalk de bergen gevormd. De kalk komt los van het water en vormt vaste aarde. Hier gaat het om een totaal ander proces dan bij de verbranding. Bij het verbranden moest je de verschillende plantendelen aansteken en die veranderden in vuur en rook waarbij ze vluchtiger worden.
Nu brengen we een grote hoeveelheid schelpen en stenen mee naar de les. Die komen allemaal vanuit het water tot vaste stof of zijn door levende wezens afgezet. Alles verloopt in rust wanneer het aardse zich losmaakt uit het water. Het is net zo’n proces als waarbij het zout zich afzet uit de zee.

Bij het vuur is vooral vuur, licht en lucht actief. Er blijft maar weinig vaste stof over. Heel anders gaat het toe bij het kristalliseren, het afzettingsproces van kalk en andere zouten.
Weliswaar wordt kalk gevormd uit levende wezens, maar niet zoals bij het vuur dat al het leven verteert en naar de hemel terugstuurt, maar zo dat alles uit het waterelement van het leven uit naar de aarde gebracht wordt.
De zwaarte krijgt de overhand.
Wanneer de kinderen een langere tijd deze verschijnselen observeren, komen ze vaak vanzelf op deze grote tegenstellingen.
Het water laat de kalk niet alleen vallen, het lost die ook weer op. Later kan er weer een afzetting plaatsvinden. Zo ontstaat de druipsteen in de grot, net zo de kalktuf en ook de kalkkorst die zich betrekkelijk snel om die voorwerpen vormt die je in kalkhoudende bronnen legt, bv. in de Karlsbader bron
Beken en rivieren lossen veel kalk op en voeren dat met zich mee. Als er zoveel kalk in de rivieren zit, dan moet er nog veel meer kalk in de zee zitten, want alle rivieren stromen daarheen. Merkwaardigerwijs – dat vertel je de kinderen – vind je in het zeewater maar weinig kalk. Waar is dat heen gegaan? Dat zit in alle zeedieren, in de schalen van de slakken, koralen, mosselen, enz. Pas wanneer deze sterven, zinken de schalen en bouwen bergen op. Er ontstaat zo een kalkkringloop waarin de dieren zich bevinden. Eigenlijk komt alle kalk van de dieren. Want kalkspaat, druipsteen, marmer enz. zijn alleen maar door oplossing van de oorspronkelijke, organische bergkalk en door kristallisatie in het water gevormd. Wat daarvan dan weer opgelost wordt, gaat opnieuw in de vorming van kalkschalen van de zeedieren en in de vorming van beenderen zitten.
Kalk kan je niet in je beschouwing opnemen zonder het dierenrijk. Dat wist men in oude tijden ook en uit deze kennis is de Latijnse spreuk voortgekomen: ‘Omnis calx ex vermibus’, ‘alle kalk komt van de wormen’. Zo noemde men vroeger alle lagere dieren. Kalk zet zich of af uit het levend vloeibare als schaal en bot of uit het water. Het water draagt de kalk over de aarde, lost deze op en laat die weer vallen.
Zo wordt de aarde vanuit het water opgebouwd.
Voor deze en soortgelijke processen van het zich afzetten uit het water kiezen we de naam: zoutvorming.
Bij dergelijke uiteenzettingen over de zoutvorming gedragen de kinderen zich heel anders dan bij de vorige. Het vuur werkt aanstekelijk.
De cholerische kinderen voelen zich in het bijzonder aangesproken, ja de meeste kinderen worden bij het zien van vuur drukker en iets cholerisch. De activiteit slaat op de wil, op de stofwisselingsnatuur van de mens, op het bloed.

Heel anders gaat het bij het beschouwen van de kalk. Dat brengt meer een stemming van denken met zich mee, Je wordt aangespoord erover na te denken hoe de grote hoeveelheid gesteente door langere tijden heen gevormd is. Kristalliseren heeft tijd nodig. Alleen in rust voltrekt het proces zich. Wanneer er een laag sneeuw op aarde valt en oneindige hoeveelheden kristallen zich vormen, is ook dat een soort zoutvorming. Weliswaar wordt er geen zout in chemische zin gevormd, maar het proces is hetzelfde.
Nu kan je de vraag stellen: wanneer het vuur bij de mens in het bloed en in de bewegingen van de ledematen werkt, waar vinden we dan in de mens de zoutprocessen? Die bevinden zich voornamelijk in het hoofd, daar waar ook de meeste botsubstantie zit. Nooit zouden we kunnen denken en alles in rust begrijpen, wanneer er zich in het hoofd geen kalk zou afzetten. Dan zou er ook geen beenderstelsel zijn en alles zou in de mens wegvloeien.
Op deze manier leg je een verbinding van de kalkvorming naar de mens. Deze processen hangen dus met een andere gebied van het menselijk organisme samen.
De verbrandingsprocessen laten zien dat ze verbonden zijn met de benedenmens en de ledematen.
De zoutprocessen met de bovenmens, met het hoofd.
Aan de andere kant heb je een gevoel opgeroepen voor het feit dat het dode voortdurend uit het leven voortkomt, ja, dat het grootste deel van de aardbol zo gevormd werd.
Wie dit in zich heeft opgenomen, zal later niet proberen het leven vanuit het dode te willen verklaren.
Op deze manier verbind je het ontstaan van kalk enerzijds met de wereld en anderzijds met de mens.

In een volgend uur kun je de beschouwing over de kalk nog in een andere richting vervolgen.
Je verhit een stuk kalksteen, het beste met een brander. De gebrande kalk laten we afkoelen en gieten er water op. De gebrande kalk, vochtig door het water, sist en wordt warm. Deze proef herhalen we met een grotere hoeveelheid gebrande kalk. Het water wordt door de kalk begerig opgezogen. Tamelijk veel water verdwijnt spoorloos in de gebrande kalk. Na een poosje begint dit te roken en er ontstaat een grote hitte. De gebrande kalk mist dus het water, door de werking van het vuur is deze helemaal van het water gescheiden, waaraan het zijn oorsprong dankt. Daardoor zuigt hij het met zo’n begeerte weer in zich op. De door en door ‘dierlijke’ natuur van de kalk zie je zelfs nog, wanneer die allang door het dierlijke uitgescheiden is. Gieten we er meer water bij, dan ontstaat een melkachtige vloeistof (kalkmelk). Als je het laat staan, zet de opgeloste kalk zich af, iets blijft er nog van over en vormt een heldere vloeistof (kalkwater)
Nu dopen we lakmoespapier in dit kalkwater. Het wordt blauw. Voordien kleurde de ongebrande kalk het lakmoespapier niet blauw.
Een vloeistof die lakmoespapier blauw kleurt, heet een loog. De logen hebben een heel bijzondere smaak, net als de zuren.
Dus door het branden van kalk en het blussen met water is er een loog ontstaan. De kalk is iets anders geworden door de werking van het vuur en daarna door de werking van het water.
Is er misschien bij het verhitten van de kalk iets verdwenen?
Dat kan je duidelijk zien bij het verbranden van de kalk. In de kalkoven ontsnapt iets. Het is het koolzuurgas.
We vangen het op of we vertellen de kinderen minstens hoe dat kan gebeuren en dan laten we het koolzuurgas zien. Dit koolzuurgas is hetzelfde als wat er ontsnapt uit minerale bronnen, dat uit het mineraalwater met belletjes omhoog borrelt. De kalk heeft dus bij het verbranden iets uitgeademd. Hij is vaster geworden toen hij als gebrande kalk achterbleef. Dit vaste vertoont zich als loog, nadat het met water vermengd werd. Daarom wordt de gebrande kalk ook base genoemd of basisch, omdat hij zogezegd de vaste basis van het kalkzout vormt. De lucht die verdwenen is, kan je ook met water in contact brengen. Het koolzuurgas geeft het water een zure smaak. Lakmoespapier wordt daarin rood.
Zo ontstaat uit de kalk wat men koolzuur noemt.
Daarmee hebben we voor het eerst het kind de begrippen van zuur en loog bijgebracht.
Kalk is uit een zoutvormingsproces ontstaan.
Hij is zelf een zout. Door het vuur verandert hij. Het koolzuurgas ontsnapt en de gebrande kalk blijft achter. Uit het gas ontstaat koolzuur, wanneer er water bij komt; uit de vaste gebrande kalk het loog. Dus:

Doordat het water erbij komt, ontstaan daarop zuur en loog. Het vuur heeft een scheiding teweeggebracht. Door het water zie je de twee tegengestelden.
Deze verschillen kan je nog aanschouwelijker maken.

Je laat twee flessen zien, de ene met koolzuurhoudend water zoals dat in de mineraalbronnen voorkomt, de andere met kalkwater. Uit de eerste borrelen belletjes omhoog. Dat is hetzelfde als wat uit de kalk is verdwenen: koolzuurgas. De vloeistof smaakt zuur, ook prikkend en scherp. Het lakmoespapier wordt er rood door.
Het kalkwater in de andere fles is smakeloos en nietszeggend, het lakmoespapier wordt blauw.
Het doet de kinderen plezier wanneer ze deze grote verschillen kunnen beleven. Ook is het voor hen heel vanzelfsprekend dat het scherpe en zure rood wordt, daarentegen het nietszeggende en smakeloze, blauw. Voor hen is het vanuit hun kleurbeleving en door wat ze bij het schilderonderwijs geleerd hebben, heel begrijpelijk.
Uit het koolzuurwater borrelt het koolzuur naar boven. De stop vliegt eraf wanneer je deze niet door een afsluiter vastzet. In de fles met kalkwater ontstaat een laagje witte afzetting op de bodem. De stop zit vast of ‘vriest bijna vast’, omdat vaste stof wordt afgezet.
In de koolzuurfles is de richting omhoog. Er wil lucht ontsnappen. In de fles met kalkwater gaat de richting naar beneden. Het vaste wil zich afzetten. Als je met een lakmoesoplossing kleurt, vertoont zich dezelfde tegenstelling. Deze tegenstellingen zaten oorspronkelijk in de kalk. Ze zijn door het vuur bevrijd en het water heeft ze ieder tot verschijning gebracht.
Nu doe je deze proef:

Je neemt wat van het koolzuur en daar giet je kalkwater bij. Dit wordt nu troebel en op de bodem zet zich een wit zout af. Dit zout is weer kalk. Het ziet er net zo uit als krijt. Nu zijn de tegenstellingen weer overbrugd.
Nu neem je een glas kalkwater en je blaast erin met een rietje. Er ontstaat een identieke witte laag op de bodem. Dus zit er in de lucht die we uitademen hetzelfde als wat bij het branden van de kalk ontsnapt. Het is koolzuurgas. Zo heeft het vuur de kalk veranderd. Koolzuurgas is omhoog verdwenen, de vaste gebrande kalk is beneden achtergebleven; tussen vast en lucht, dus tussen gebrande kalk en koolzuurgas bevindt zich het water. Neem je het apart, dan verschijnen zuur en loog. Voeg je beide samen, dan ontstaat er weer kalk of wat je nu preciezer kan zeggen: koolzure kalk. Het vuur heeft de kalk in twee richtingen gevormd. Het heeft de tegenstellingen blootgelegd. Het water brengt die apart duidelijk tot verschijning, verbindt die twee echter ook weer.
Wat het vuur gescheiden heeft, wordt door het water weer herenigd.
Het is hierbij van groot belang dat je niet uitgaat van zuur en loog en daar het zout vanaf leidt, zoals meestal gebeurt, maar veel meer dat je de omgekeerde keer bewandelt. Dat is de natuurlijke weg.
Want kalk komt in de natuur voor. Die wordt als eerste overal gevormd. Zuur en loog worden pas daarna kunstmatig gevormd. Het zijn tegenovergestelden, die pas door ingrijpen, uit het zout als verschillen naar voren komen.

Wanneer je het kleine kind de rekenoperaties moet aanleren, gaan we ook niet bij het optellen van de optellers uit om daarmee het totaal af te leiden, maar we doen de kinderen begrijpen dat een oorspronkelijke eenheid verdeeld is en dat dan de delen weer tot eenheid terug moeten worden gebracht. We gaan van het geheel uit en niet van de optellers.
Zo moeten we ook hier van het geheel uitgaan en daaruit de delen laten ontstaan.
Dit is een belangrijk gezichtspunt dat de leraar al op dit niveau van het scheikunde-onderwijs moet meebeleven, dat je het begrip ‘chemische verbinding’ niet alleen zo kan bekijken dat deze verbindingen alleen maar als som van de delen of als chemische som van de elementen te zien is.
Het is iets nieuws, vaak iets oorspronkelijks.
We gaan hier van de kalk uit als het natuurlijke, van de stoffen die in de organische processen van beender- en schaalvorming verweven zijn. Dan pas leiden we daarvan af, wat door differentiatie daaruit ontstaat. Uit het organische proces ontstaat de kalk en die vertoont zich onder invloed van het vuur als koolzure kalk, wanneer zuur en loog door deze handeling tevoorschijn komen.
In andere uren kan je kijken naar de toepassing ervan op het gebied van de techniek en in de praktijk van het leven.
Kalk komt voor in de aarde. Die wordt gewonnen in steengroeven. En naar kalkbranderijen gebracht. Nu leg je de kinderen uit hoe zo’n oven in elkaar zit. De kalk moet worden verhit. Het koolzuur ontsnapt en de gebrande kalk blijft achter. Je tekent hoe de oven eruit ziet. Zo mogelijk benut je de mogelijkheid om zoiets te bezichtigen.
Verder leg je uit hoe de gebrande kalk in zakken wordt gedaan en dan overal heen vervoerd wordt waar die nodig is. Bij deze gelegenheid kan je ook de economische omstandigheden schetsen die er door zo’n kalkfabriek ontstaan. Dat is ook in overeenstemming met het leerplan voor deze leeftijd.
Nu komt de kalk bij de metselaars. Dan laat je nog een keer zien met wat voor heftigheid zich het blussen van die grotere hoeveelheden kalk voltrekt. Nu vraag je: Waar komt toch die warmte vandaan die daarbij optreedt? Die komt van de hoeveelheid warmte die bij het branden van de kalk op de kalk inwerkte. Die warmte zit nu in de gebrande kalk en ook in het koolzuurgas dat verdwenen is. De uitgedroogde kalk die een soort slapend vuur met zich meedraagt, heeft heel veel dorst. Als nu het water binnenkomt, de dorst wordt gelest, komt de warmte tevoorschijn. Je kan dan ook laten zien welke gevaren er met het blussen van kalk zijn verbonden, wanneer je op de bijtende werking van het kalkloog wijst.
Daarbij kan je op veel wijzen wat in de maatschappij met deze bedrijfstak heeft te maken. De metselaars mengen de gebluste kalk met zand. Daardoor ontstaat er een specie. Ook hier zit weer een tegenstelling in, waarvan het goed is dat die in de les duidelijk wordt ervaren. Dat is de tegenstelling tussen kalk en kiezel. Zand is kiezelaarde of kiezelzuur, de kalkaarde is daarentegen een base. Zonder dat het al nodig is in te gaan door de natuur van het kiezelzuur te verklaren wat je pas hoeft te doen bij het behandelen van het maken van glas, wordt toch de tegenstelling tussen de begerige kalk die overgaat in de gladde, vetachtige kalkloog en het rustig gevormde, harde en droge zand, duidelijk.
Je laat nog zien hoe je twee bakstenen met specie kan verbinden en hoe dit dan snel uithardt. Door het samengaan van twee tegenstellingen ontstaat iets nieuws.
Verder vertel je nog dat de pas gebouwde huizen het beste drogen door er vuur in te stoken. Dan gaat het water van de gebluste kalk weg. Dat is niet alleen de reden dat het huis droog wordt. Uit het vuur ontsnapt weer koolzuurgas. Daar komt dan aan de ene kant het vaste zand bij (kiezelzuur), aan de andere kant de lucht en met deze het koolzuur. Het water verdwijnt.

Een pas gebouwd huis wordt ook droog wanneer er mensen in wonen. Die ademen koolzuur uit.
Men noemt de bewoners wel ‘Trockenbewoner‘, droogwoners [nu wordt er minder kalk gebruikt bij het bouwen]
Het is niet zo goed voor je gezondheid.
Hier zie je ook in de praktijk van het leven hoe zich bij het ademproces op een levende manier iets soortgelijks zich voltrekt als bij het vuurproces in de natuur. Op deze manier heb je iets wat je eerder met een laboratoriumproef getoond hebt, in de praktische toepassing daarvan, laten zien.

Nu gaan we in de les weer terug naar het begin.
Het beste is om dat de volgende dag te doen.
Dan kan je de volgende beschouwing houden: nu hebben we op het laatst weer de koolzure kalk gekregen, die de stenen van de huizen bij elkaar houdt. Die is verbonden met de kiezel. Eerder hadden we koolzure kalk, toen de kalk nog in de steengroeve zat. Waarom hebben we de hele zaak zo gedaan als we op het eind toch weer hetzelfde krijgen?
Eerst hadden we koolzure kalk. en op het eind, in de huizen is het opnieuw koolzure kalk. Maar door de koolzure kalk te splitsen en dan weer bij elkaar te voegen, zijn wel de huizen stevig geworden. De mens heeft zo ingegrepen dat hij uit de koolzure kalk van de natuur door het vuur er de verborgen tegenovergestelden uitgehaald heeft. Op het eind heeft hij dan kalk en koolzuur weer bij elkaar laten komen. Maar wanneer dit gebeurt wordt er weer opnieuw kalk gevormd, maar door de kracht van het weer bij elkaar zijn, blijven nu ook de huizen staan. Op deze manier heeft de mens een verdeling aangebracht in wat in de steengroeven een natuurlijke samenhang vertoont.
Over de hele aarde blijven de bouwwerken die hij zo heeft gemaakt, bewaard. Het is alsof de steengroeve die over de hele wereld verdeeld is, weer één wordt en daardoor samenhang brengt in de huizen van de mensen.
Het kan een zekere indruk maken, wanneer de leerling ervaart hoe de mens in het technische proces natuurkrachten gebruikt die naar verbinding streven, en de snelheid waarmee ze weer één willen worden benut om allerlei technische prestaties te laten uitvoeren.
Een stuwmeer levert waterkracht, wanneer je de stuwing opheft.
Zo is het ook hier, op het terrein van de chemie.

Anderzijds is wat er over de kalk gezegd kon worden, ook uitgebreid naar wat dit in het leven doet.
De leerlingen hebben geleerd dat zij aan de kalk hun beenderstelsel te danken hebben, hoe de kalk met dierlijke processen samenhangt en thuis is in het dierenrijk.
Kalk verschijnt als een proces in het geheel van de natuur, verbonden met de mens.
Nu kun je het begrip van de zoutvorming verder ontwikkelen. Men spreekt over zeezout. Het zout behoort onlosmakelijk bij de zee. Je vertelt hoe het ontstaat of door verdamping of door [Kolisko heeft hier het woord Gefrieren d.i. bevriezen, mij is geen proces van zoutwinning op die manier bekend]
Je laat beleven hoe deze afzetting vanuit het vloeibare langzaam gaat en je schetst ook de techniek van de zoutwinning. Dan heb je het over het voorkomen van zout in de bergen en vertel je over de zoutwinning in de bergen en in de zoutpannen. [En in Nederland vanuit de grond – zoutmijnen].
Dit zout, ons minerale zout, hangt veel minder samen met een levensproces. Het is puur mineraal: ook het enig minerale voedsel dat de mens nodig heeft. De andere minerale substanties zitten in het voedsel, alleen zout moet als zodanig in de voeding aanwezig zijn.
Als de mens geen zout krijgt, sterft hij. Want zout houdt vast, conserveert, houdt ontbinding tegen. Daarop berust het pekelen en inzouten. Ook de zeelucht werkt zo. Die maakt de mensen wakkerder. Aan de andere kant doodt een groot zoutgehalte alles wat leeft (vergelijk de Dode Zee).
Kan je dit zout net zo behandelen als de kalk?
In de hitte van de brander smelt het, verdampt zelfs. En uiteindelijk – dat kan je de kinderen vertellen – laat zich bij de hoogste temperatuur ook het gas verdrijven. Dat is het zoutzuurgas. Dat gaat makkelijker, wanneer je in plaats van een hoge temperatuur geconcentreerd zwavelzuur gebruikt en daarmee het steenzout of kookzout begiet.
Dan krijgen we een witte, buitengewoon sterk bijtend ruikende damp, het zoutzuurgas, waaruit we door het in water te brengen het zoutzuur krijgen. Bij de hoogste temperatuur blijft de vaste natronbase over. In dit geval is het veel moeilijker door alleen maar verhitten, uit het minerale zout loog en zuur te maken. Het is veel moeilijker dan het branden van kalk. Het gaat makkelijker met gebruikmaking van elektriciteit.
Dat krijgen de kinderen pas later te horen.
Nu laat je natronloog en zoutzuur zien. Aan deze kun je nog veel beter de polariteit van zuur en base beleven.
Opnieuw doe je:

zuur                                                                            base

scherp                                                                       weinig uitgesproken
roodkleuring                                                           blauwkleuring
opwekkend                                                              afstompend gevoel op de tong  luchtvormig                                                            vast

Nu pas je dit allemaal weer op de mens toe.
Je zegt: iedere keer wanneer je je arm beweegt, ontstaat in je spieren zuur, bij het wandelen en hardlopen nog meer. Dus door iedere activiteit ontstaat er in het menselijk lichaam zuur. Daarom zegt men terecht: ‘zuur werk’.[bij sportprestaties: verzuurde benen]
Je kan echter ook heel rustig in de kamer zitten en sterk over iets nadenken. Nu ontstaan er geen zuren, in de hersenen ontstaan meer basisch-loogachtige stoffen. Dus: wanneer je je beweegt, worden de spieren zuur en wanneer je gedachten in het hoofd actief zijn, wordt iets basisch gevormd. Zo hangt het zuur en het loog ook met jezelf samen. (Dit voorbeeld dank ik aan Rudolf Steiner die dit zelf bij een bezoek aan een klas van de vrijeschool in de les zeer aanschouwelijk uiteenzette.
Nu laat je dezelfde tegenstelling in het plantenrijk zien. In de wortels van de planten vind je overwegend de base, het loogachtige, in het uitlopen van het blad, tot in de vruchten aan toe, het plantenzuur. Zo smaakt bv. de klaver zuur, maar de wortels meer loogachtig of zoutachtig, waarbij de base overheerst. Dat is niet zo makkelijk te begrijpen, want het zuur behoort eigenlijk bij de lucht, de base daarentegen bij de vaste aarde. Over de uitzonderingen van deze wetten moet je in deze fase nog niet spreken. Maar in een later stadium is een bespreking daarvan heel belangrijk.

Dit hoofdstuk kan je dan op de volgende manier in een dictaat samenvatten:
‘Ook bij het zout kan je tegenstellingen vaststellen. Er wordt zoutzuurgas en natronbase gevormd. Het zoutzuurgas ruikt prikkelend, smaakt scherp en zuur. Het maakt wakker. Lakmoespapier kleurt rood. Het is een actieve stof. Het natronloog daarentegen smaakt naar niets, stompt de tong af. Daar komt bij de lakmoesproef de blauwe kleur.
Logen zijn net zoals de natronbase meest vast. Ze dragen zwaarte met zich mee. In de wortels van de plant zit meer loogachtigs. In de bladeren daarentegen bevindt zich het zuur, die smaken vaak zuur, bv. bij de klaver. Het zuur is verwant met de lucht. De base gaat in de richting van de aarde. Bij ons is het weer omgedraaid.
Wanneer onze benen behoorlijk actief zijn, ontstaat er zuur, maar in het hoofd ontstaat iets loogachtigs, basisch, wanneer er rustig wordt gedacht. Daar bevindt zich ook veel kalk. Zo zijn zuur en loog grote tegenstellingen die door de hele natuur heen werkzaam zijn.’

In een ander uur kan je deze tegenstelling gebruiken om die als voorstelling te schilderen. De tegenstelling van de kleuren is allang bekend. Nu moeten de kinderen de strijd tussen zuur en base schilderen. Voor dit doel heb je in de vorige uren ook nog deze proef gedaan:
geconcentreerde natronloog en zoutzuur worden bij elkaar gegoten. Dat geeft een buitengewoon hevige reactie. De vloeistof kookt, sist en spettert, veel meer dan bij het blussen van kalk.
Dat hebben de leerlingen dus al gezien en moeten deze strijd tussen zuur en loog in kleur weergeven. Er ontstaan meestal opmerkelijke voorstellingen, wanneer ze de rode kleur met de blauwe laten samengaan. Bij deze gelegenheid geven alle temperamenten zich bloot.

Zo is het mogelijk ook vanuit een kunstzinnige kant zo’n scheikundig basisprincipe te beleven. In het kind is een wetenschappelijk-kunstzinnig element aangelegd. (Pedagogisch zou het door de hier gebruikte gezichtspunten een onzinnig iets zijn, de begrippen van zuur, loog en base zo te gebruiken dat je over waterstof en hydroxiel spreekt, zoals tegenwoordig helaas zelf in de schoolboeken gebeurt.)
Zo is het proces zichtbaar geworden dat in de wereld en in de mens samenhangt met zuur en loog. Daarmee hebben we het kind in een heel ander gebied van de scheikunde gebracht.
Eerst was het de verbranding. Nu kent het ook de zoutvorming. Deze beide tegenstellingen zet je nog een keer duidelijk voor de klas neer, voor je weer verdergaat.
.
[1] Kolisko neemt hier de woorden van Steiner ter harte. Zie bv. ‘Wegwijzers‘ 20 en verdere uitspraken.
.
In de 6e klas werden de mineralen behandeld, m.n. kalk en graniet. Daar kun je dus op teruggrijpen en omgekeerd kan je in de mineralogieperiode rekening houden met wat er in de scheikundeperiode over aan de orde komt.

Bij ‘mineralogie‘ vind je er artikelen over, tevens extra informatie over bv. kalk, druipsteen, zout.

Deel 0 – opmerkingen
Deel 1  deel 3

7e klas scheikundealle artikelen

Scheikunde: alle artikelen

7e klasalle artikelen

Vrijeschool in beeld7e klas

.

2116-1985

.

.

.

.

VRIJESCHOOL – 8e klas – scheikunde

.

Dit artikel is uit 1926, uit een van de eerste brochures van de Vrije School Den Haag.

Over deze brochure                    Hier te downloaden

Ondanks het bijna 100-jarig bestaan van het artikel, heeft het aan bepaalde gezichtspunten niets aan actualiteit ingeboet.

Ik heb het in de oorspronkelijke spelling laten staan.

OVER HET CHEMIE-ONDERWIJS IN DE ACHTSTE KLASSE.

door J. SMIT.

Met het chemie-onderwijs wordt op de „Vrije School” begonnen, wanneer de kinderen 13—14 jaar zijn, dus in de 7e en 8e klasse.

Bij kinderen van dezen leeftijd kan men opmerken, dat ze een dusdanig interesse voor de hen omgevende wereld beginnen te ontwikkelen, dat men er met de eerste beginselen der chemie aan kan tegemoet komen. Zij hebben echter nog weinig belangstelling voor de abstracte wetten, die de mensch in den loop der eeuwen uit de verschijnselen heeft afgescheiden; deze ontwaakt eerst met het 17e, 18e jaar. Tot dien tijd vragen zij nagenoeg uitsluitend om een mee-beleven met de chemische processen. Zij willen als het ware koud en warm worden met de stoffen op de reageertafel, zich verheugen in een oplaaiende vlam en treuren met de doode asch. Dergelijke gewaarwordingen moeten zij zooveel mogelijk hebben, zij vragen er om, de stoffen te betasten, ze te proeven en te ruiken, met alle zintuigen zich in te leven in hun karakter. Op deze wijze krijgen zij de juiste ondergrond voor een latere, meer theoretische behandeling, waarbij hun de natuurkundige wetten worden geleerd.

Het beste kan men uitgaan van voor de hand liggende verschijnselen die het kind reeds kent uit het dagelijksch leven. Deze methamorphoseert men, laat ze aansluiten aan andere, zóó dat in hem een beeld ontstaat van de totaliteit, waarin alles te voegen is. Overal in de wereld zoekt men de aansluiting met wat men vertelt of laat zien; dikwijls zal een chemie-les meer een menschkunde- of een aardrijkskunde-les gelijken. Een breedheid van opvatting moet door het geheele onderwijs gaan; de indeeling chemie, natuurkunde, mechanica, enz., stamt uit ons abstracte denken en is voor het kind onwezenlijk. Voortdurend zal men moeten wijzen, aan den eenen kant, op de groote gebeurtenissen in de natuur, aan den anderen kant op wat zich afspeelt in het eigen lichaam. Dit laatste is van het grootste gewicht, want steeds zal het kind bevestigd vinden, dat hij een afspiegeling is, van alles wat om hem heen in de wereld gebeurt en dit zal hem zijn plaats op aarde bewust en juist doen gevoelen.

De belangstelling der kinderen wordt ook pas werkelijk, wanneer men hen bij alles wat ze leeren, de samenhang laat voelen met de aarde waarop zij gaan en staan en waarin zij met hun eigen lichaam ingeschakeld zijn. Men kan b.v. niet tot hen spreken over een zout en hun een oplossing er van in een reageerbuis of enkele kristallen in een stopfleschje vertoonen; ook is het niet voldoende, wanneer men de reacties met lakmoes en andere stoffen demonstreert. Dit blijven dingen, die zich op de tafel vóór hen afspelen en boeien slechts voor het oogenblik. Veel belangrijker is, dat men daarbij op een dergelijke wijze over het zout spreekt, dat de kinderen bij het naar huis gaan met een ander gevoel de aarde betreden dan vóór de chemie-les, dat ze zich iets bewust zijn geworden van de verstarrende zoutkrachten, die de aardkorst door de eeuwen heen gevormd hebben tot drager van hun lichaam, en dat ze voelen, hoe het wezenlijke van het zout hierin te voorschijn komt in beenderstelsel en tanden.

Bijna iedere stof biedt de mogelijkheid van een beschouwingswijze, die zulke gewaarwordingen geeft; het beste is dit misschien aan het aangeduide voorbeeld van het zout verder duidelijk te maken.

Als typisch voorbeeld van de zouten, kan men de kalk kiezen. Men vertelt, hoe diep onder in de zee tallooze kleine dieren leven, omgeven door ragfijne, kunstvol gebouwde huisjes van kalk. Deze diertjes zijn de vlinders en insekten van de zee. Ze zweven met hun lichte omhulsels door het water en sterven na een kortstondig bestaan. Dan zinken hun huisjes naar de diepte en vormen langzamerhand een kalklaag op den bodem van den oceaan. Deze wordt steeds dikker, een gestadige regen van skeletten daalt neer. Zoo gaat het tegenwoordig nog steeds en zoo is het millioenen jaren van te voren gegaan. Maar vroeger was de aardkorst zacht en bewegelijk, voortdurend hadden opheffingen en dalingen, plooiïngen en verschuivingen plaats. Zoo is het gebeurd, dat oceaanbodems werden opgeheven en als starre kalkgebergten hoog boven het water verder bestonden. Dit treft de kinderen. Onmiddellijk voelen zij de kalkrots aan als een armzalige rest, iets, waaruit het leven verdwenen is. In een streek, waar kalkrotsen of heuvels voorkomen, zou men nu met hen naar buiten gaan, hen de rotsen laten betasten en afkloppen; hier moet men zich ertoe beperken, hun een zoo levendig beeld van een kalkrots te geven en hun een stuk kalksteen uit een verzameling toonen. Ze zullen dan de compacte massa van dierenskeletten zien, maar het schrijfkrijt vertelt men, is uit zulke kleine skeletjes opgebouwd, dat, al waren ze niet door het persen verbrijzeld, ze met het bloote oog niet waar te nemen zouden zijn.

Men gaat nu verder de kalk op zijn weg vervolgen, de eene keer de weg, die zij in de natuur gaat, de andere keer beschouwt men de gevolgen van het ingrijpen van den mensch. In de natuur staat de kalkrots bloot aan weer en wind, langzamerhand wordt zij afgesleten, opgelost en door regenwater en rivieren weer naar zee teruggespoeld. Maar wanneer de steenhouwer komt met zijn houweel en de rotsen tot gruis slaat, dan zullen er andere dingen gebeuren. De mensch brengt de kalksteen naar branderijen en door het vuur wordt het doodsproces voortgezet. De kalk blaast den laatsten adem, het koolzuurgas, uit en daarmee is het kunstvolle dierenskelet een volkomen dor en dood poeder geworden: de gebrande (ongebluschte) kalk. Deze stof heeft een groote begeerte naar water, dit benut de mensch en hij voert haar naar de plaatsen, waar hij huizen wil bouwen en bluscht de kalk. Dit kan men de kinderen zelf laten doen; zij beleven intensief het meer of minder sissen en warm worden naar gelang van de hoeveelheid water. De cholericus verheugt zich in het telkens nieuwe effect van een enkele droppel, de melancholicus ziet met aandacht het week worden en uiteenvallen van zijn stuk kalk in een groote plas water.

Nu kan men de gebluschte kalk nog juist zooveel water toevoegen, dat een plastische stof ontstaat, waaruit de kinderen vormen kunnen kneden. Zij bemerken dan den volgenden morgen, dat deze hard geworden zijn.

Wat is er gebeurd? — De kalk is door het water zoover uit zijn doodslaap gewekt, dat hij weer is gaan ademen: het koolzuur uit de lucht zuigt hij weer in zich op en wordt weer dezelfde stof, waaruit het kalkgebergte is opgebouwd (koolzure kalk).

Maar hier ligt het moment, waar de mensch zijn doel bereikt; hij verbindt de steenen van zijn huis met de weeke substantie en kan vertrouwen, dat het na eenigen tijd even vast en hard als een berg op de aarde staat.
Deze variatie maakt hij dus in den kringloop, maar wanneer de huizen even oud werden als de bergen zouden ook zij afgerond en afgesleten en ten slotte teruggevoerd worden naar de zee. —

Dit groote omtreksbeeld kan op vele wijzen vollediger gemaakt worden. De samenhang van de kalk met het dierlijke is uit zijn oorsprong gebleken. De kinderen vinden, dat dat, wat bij de lagere dieren een omhulling is, de schalen en pantsers, zich bij den mensch en de hoogere dieren heeft teruggetrokken in den vorm van het skelet. Men kan dan het kalkproces overal in het menschelijk lichaam vervolgen; wijzen op het rachitische kindje, dat vaak door een natuurlijke neiging tot kalk-eten zich zelf tracht te genezen, — en op den grijzen geleerde met stramme, knokige leden, die zucht onder het overwegen der kalkprocessen.

Wanneer het op deze wijze misschien gelukt is, den kinderen iets van het wezenlijke van het kalkachtige, het zoute, te doen begrijpen, dan kan men vanuit dit gebied steeds verder gaan. Men bespreekt andere zouten: die, waaruit de aardkorst voor het overige is opgebouwd en die, welke door hun oplosbaarheid den menschen nuttig zijn. Overal, waar een aangrijpingspunt is, grijpt men aan, bij het bleekpoeder en de soda, die de kinderen uit de keuken kennen, bij het gewone keukenzout, de bittere zouten uit de zee, enz.

Het komt er bij deze 14—15 jarige kinderen vooral op aan, dat het verband met de werkelijkheid versterkt wordt, dat zij zich door hun zintuigen een duidelijk beeld verschaffen van wat in hun omgeving aanwezig is en gebeurt. Daartoe zal het noodig zijn, dat in de lessen alle toevalligheden in verband met het onderwerp worden behandeld. Is de muur brokkelig of heeft een kind slechte tanden, dan gaat men daarop door bij de bespreking van het zout; behandelt men de basen en de zuren en bloeien buiten de vergeet-mij-nietjes, dan haalt men ze binnen en toont de overgang van de roze knopjes naar de blauwe bloem, of, wanneer het September is, de roode en blauwe pruimen.

Tallooze voorbeelden zouden te noemen zijn van een levensvolle behandeling der schijnbaar meest droge stof. Maar daartoe dient gebroken te worden met de sohoolsche onderwijsmethode, die de wonderen van het natuurgebeuren in verkalkte formules perst en deze in de hoofden der kinderen.

De paedagogie der „Vrije School” beoogt zich aan te passen aan het innerlijk wezen van het kind; dit vraagt op 14—15-jarigen leeftijd voedsel voor zijn bewondering voor al het geschapene en hulp bij het zoeken naar zijn plaats in de wereld. Het vrije chemie-onderwijs, dat voor kinderen en leeraar een vreugde is, kan bijdragen tot het bereiken van dit doel.

.

Scheikunde: alle artikelen

7e klas: alle artikelen

8e klas: alle artikelen

VRIJESCHOOL in beeldalle klassen

.

Antroposophische paedagogie

Het kunstonderwijs op de ‘Vrije School’

Het taalonderwijs in de laagste klasse

Beeld en ritme in het rekenonderwijs

Schoolfeesten

.

.
1848-1733

.

VRIJESCHOOL – 7e klas – scheikunde (1)

.

M. v.d. Made, nadere gegevens onbekend

.

In de loop van de 5e, 6e en 7e klas wordt aan de hand van de diverse vakken een ontwikkeling in gang gezet, die uit moet monden in het verwerven van een wereldbeeld. We kunnen dat bijvoorbeeld aan de hand van geschiedenis mooi volgen: 5e klas: Griekse Tijd, 6e klas: Romeinse Tijd, 7e klas: Vroege Middeleeuwen, Mohammedaanse impuls, late Middeleeuwen, Ontdekkingsreizen tot + 1500.

Of aan de hand van de Aardrijkskunde: 5e en 6e klas: Europa, economische aardrijkskunde, 7e klas: Volkenkunde in brede zin. Zien we naar de meer exacte vakken, dan beginnen die zo rond het 12e jaar.

Dat heeft te maken met de manier waarop de 6e-klasser waar­neemt, en in welke mate zijn zelfbewustzijn al gewekt is. In het vak natuurkunde zijn er de bekende fenomenen, die al lang bekend zijn – als verschijnsel -, maar nu worden ze losgemaakt uit hun alledaagse verschijningsvorm en als los­staand waargenomen: licht, geluid, magnetisme! Wat een hoe­veelheid boeiende proeven is er te tonen, schijnbaar zo eenvoudig. Nu wordt begrijpelijk, dat zo rond en na het 12e levensjaar de beschrijving van het licht in het oog kan plaatsvinden: de wijze, waarop de buitenwereld in de mens zelf werkt, hoe de activiteit van de buitenwereld zich voort­zet in de organen, kan door jonge kinderen nauwelijks beseft worden.

In de 7e klas een uitbreiding met meer ingenieuze ver­schijnselen: elektriciteit, de hevel, de schroef en gecombi­neerde bewegingen (tandwielen), uitlopend in mechanica (blokken en katrollen).

En dan is er het vak scheikunde in de 7e klas: 13 jaar zijn de leerlingen ongeveer en in staat om zich nu in de wereld van de stoffen te begeven. Geen eenvoudige wereld, en het besef dat de stoffen om ons heen, – waarop we lopen, waar­aan en waarmee we werken, waarmee we gekleed zijn en zelfs waaruit we bestaan, alle wellicht aan dezelfde scheikundige wetten onderworpen zijn (net als bv. keukenzout), kan schokkend zijn. Nadenken over scheikunde slaat een beetje de grond onder je voeten weg.
Waar te beginnen? Bij weer een uiterst bekend verschijn­sel, nl. vuur.

Maar nu bezien we het vuur met geheel andere ogen dan bij de St.- Jansviering. We stoken een houtvuur, stro, gras, takken, bladeren: alles heeft zijn eigen manier van ver­branden. Soms veel rook en weinig vlam (stro), anderzijds veel vlam en kleur. Een tweede vuur werd gevoed door de gefabriceerde stoffen: textiel, plastic, etc. We hielden ons beschouwend bezig met wat er in de lucht verdwijnt (gassen, rook, warmte) en wat er blijft liggen. Zo zagen we dat een reactie was verkregen, waarbij een stof uiteenviel in elementen, d.w.z. de oude elementen van de Grieken (Empedocles) aarde, water, lucht en vuur! Vervolgens maakten we kennis met drie andersoortige vurige stoffen: zwavel, koolstof en fosfor. Ook deze stoffen lieten we branden. Gele zwavel brandt dan met een prachtige, blauwe vlam, koolstof brandt zonder vlam, en fosfor ontbrandt spontaan. Voor de fosforverbranding gingen we naar het goed geoutilleerde scheikundelokaal van de bovenbouw in de Surinamestraat, waar we tegelijk enkele dagen te gast waren ter kennismaking. Fosfor-, zwavel- en ook koolstof-verbranding levert giftige gassen op, zodat deze proeven in een afzuigkast plaatsvonden.

We namen het ontstaan en de winning van deze stoffen door en het gebruik. De lucifer werd behandeld, evenals het meisje met de zwavelstokjes. De leerlingen moeten hun klassieken kennen, nietwaar?

Een verdere verdieping volgde: kalk werd beschouwd. Het ontstaan, waarbij we teruggrepen op de mineralogieperiode van de 6e klas. We losten kalk op, we verbrandden marmer (in een oven), verkregen zo ongebluste kalk. Blusten het met water, wat een sissende reactie gaf, probeerden het ontsnappende koolzuurgas te vangen en lieten lucifers daar­in uitdoven.

Door de verschillende fenomenen zorgvuldig op te schrijven, kwamen we eigenlijk vanzelf tot die wonderbaarlijke schei­kundige wet:

kalk – ongebluste kalk + koolzuurgas
zout – base + zuur

Hetzelfde principe werd bekeken, maar nu aan de hand van keukenzout. Ook hier vele proeven: oplossen, kristalliseren, en bereiden van zout uit een neutrale oplossing van natron­loog en zoutzuur. Nog beter liet zich nu bewijzen:

base + zuur  –  zout + water
natronloog + zoutzuur – zout + water
(ontstopper)                      (kristallen)

Men kookt het natronloog en zoutzuurmengsel nl. dan net zo lang tot al het water verdampt is. We kregen prachtige grote zoutkristallen van zeker 3 mm! Zoutwinning, zoutpannen, zoutmijnen, enz., alles kwam aan bod.
Nu konden we de beroemde lakmoesproeven gaan doen. De kinderen toverden in het practicumlokaal op de bovenbouw de prachtigste kleuren in hun reageer­buisjes. Roden, paarsen, blauwen, groenen en alle tussenschakeringen! Ze gebruikten rodekoolsap: een wel zeer veilige indicator.

Een voortdurend aanwezige stof werd nu onderzocht: nl. water. Dit is zeker geen stap terug naar het begin van een periode, integendeel! Als men water in alle verschijningsvormen bestudeert, als levenbrengende stof, raakt men zelfs onder de indruk van al dat wonderlijks. Als vaste stof, als kristal, in zijn oervorm (de druppel), als hagel (de bevroren druppel), sneeuw, als rijp, als dauw enz.

Kan water onder 00  C  in vloeibare toestand bestaan? Ja­zeker, als er druk op ijs wordt uitgeoefend gaat het weer over in water.

Zo kunnen we schaatsen en skiën, zo ‘glijdt’ een gletsjer naar beneden.

Zet deze stof uit bij verwarming? Zet de stof uit in vaste toestand? Dus bij afkoeling? Hoe werkt een centrale ver­warming?

Daarnaast vonden we steeds water in alle oplossingen die we gebruikten. Een dankbaar onderwerp, dat water.

Tot slot behandelden de de 7 hoofdmetalen: goud, zilver, tin, lood, kwik, ijzer, koper. Vindplaatsen, karakter, mogelijkheden, enz.

Dit overzicht geeft aan, hoe men voor het eerst de stoffen op andere wijze kan bezien. Het uitgangspunt is wel feno­menologisch, d.w.z., hoe doet de stof zich aan ons voor, hoe kennen we die stof?

Het is dan duidelijk,  dat vanuit dit gezichtspunt de molecuul- en atoomtheorie nog helemaal niet in zicht is. We spreken dus gewoon over natronloog, zoutzuur, water enz. i.p.v. NaOH, HCL, H0 enz.

.

7e klas scheikunde: alle artikelen

Scheikunde: alle artikelen

7e klas: alle artikelen

Vrijeschool in beeld: 7e klas

.

686-627

.

.

VRIJESCHOOL – 6e klas – mineralogie (1)

.

DE BERGEN EN GESTEENTEN

Vooral geen gesteenten laten zien, voordat de kinderen een beeld van het gebergte gekregen hebben! De leerkracht vraagt, of er wel eens een kind in het hooggebergte is geweest. Ja zeker! Wat is je opgevallen daar? Eeuwige sneeuw, en ijs, puntige toppen, mooie kleuren, mals gras, bossen, naald- en loofhout. En verder? Hoe staat het er met het water? Ja, veel kabbelende en bruisende beekjes. Mooi wit schuim. Koele, gezonde lucht. Hoe is het gesteente? Korrelig.

Nu volgt een korte beschouwing over het oergesteente; korrelig van structuur. Granum = korrel. Vandaar de benaming graniet. De aardkorst is daaruit voor een groot deel gevormd.

Het is een zeer hard gesteente, het stoot water af. Het verweert tot zand en klei, grint en leem. Er zit kiezelzuur in (silicium). Aan de binnenkant zie je een heleboel. Doorschijnende brokjes, zwarte puntjes, roodachtig geheel, glanzende vlakjes.

Er zijn allerlei kleine vormen in. We noemen ze kristallen (kristallos = ijs in het Grieks).

We gaan nu een ander gebergte beschrijven. Het is er heet, er is weinig water te zien, de plantengroei is schaars, de toppen zijn rond of heel grillig. De bouw van het gesteente is gelaagd. We gaan vertellen, dat het graniet uit gloeiende, vurige massa’s is ontstaan en het kalkgebergte in lagen is afgezet op de bodem uit het water.

Het enthousiasme is groot. Er worden allerlei gesteenten door de kinderen meegebracht de volgende dagen. Ook veel boeken en plaatwerk.

Over het graniet wordt een gedicht geleerd. Over de kalk eveneens. Het reciteren ervan elke morgen geeft de goede stemming om met de behandeling van bergen en gesteenten door te gaan.

Het Graniet

Graniet, dragende aardegrond
Rotsvaste zekerheid,
Van eeuwigheid tot eeuwigheid!
Stralend in uw KWARTS,
Door licht gevormd;
In uw zwarte HOORNBLENDE
Het duister dragend;
Uw glanzende GLIMMER
Ritmisch gelaagd;
Uw kleurige VELDSPAAT.
Die, eenmaal verweerd,
Geeft leem en klei.
Voert mensen tot daad!
Vierledig is uw wezen.
Tot eenheid gesmeed
Door het vuur van de Schepper
Zo zijt gij de dragende aardegrond.
Rotsvaste zekerheid
Van eeuwigheid tot eeuwigheid

Graniet!*

De Kalk

Beweeglijk, onstandvastig is kalk.
Heet en dorstig,
Droog en onvruchtbaar;
Ontstaan uit het water,
Begerig naar water,
Zich overgevend aan het water.
Bouwt het aan de schalen der dieren.
Zo is de kalk.
Beweeglijk, onstandvastig.
Grillig, maar schoon van vorm!

Een geheel ander gebied wordt betreden bij de kennismaking met de onderaardse, de Plutonische of Vulkanische krachten. De aardkorst heeft barsten en op die breuklijnen — een ring van vuur om de Stille Oceaan — ontstaan de vulkanen of vuurspuwende bergen.

Ook daarover leren de kinderen een gedicht, reciteren het, klappen of stampen erbij.

De Vulkaan

Met woedend geweld woelt het vuur in de diepte.
Grimmig grommend dringt het omhoog.
Dol en dreigend dreunt het
angstig wacht de wereld…….
Een reusachtige rookzuil schiet te voorschijn.
Felle, vonkende vlammen flitsen.
En gloeiend lekkende lava slingert sluipend omlaag.
Onheil dreigt de wereld,
Als het vuur zich baan breekt.
Maar het zinkt weer terug
In de zwarte afgrond.
In de diepte wacht het woelend.
Dat is de vulkaan.
De dreigende poort van de hel!

Uitgaande van de twee belangrijke onderdelen van het graniet, kwarts en veldspaat, wordt een aantal kwartsen — bergkristal, rookkwarts, citrien, amethist, tijgeroog, chalcedoon, agaat, onyx, jaspis — en een aantal veldpaten — maansteen, zonnesteen, amazonesteen, labradoriet, behandeld.

Het enthousiasme bij de kinderen stijgt. Sommigen herinneren zich de sprookjes, waarin edelstenen voorkomen: Sneeuwwit en Roserood, Simeliberg e.a.) andere denken aan Israël, waar de hogepriester een heilige borstlap met twaalf edelstenen had.

Nog korte tijd rust. We gaan over op aluminium, beryl- en koolstofstenen, de hardste die men kent: korund, robijn en saffier, aquamarijn, smaragd, beryl; diamant**, met vele verhalen over slijperij** en criminaliteit.

.

(Uit ‘Het binnenste buiten”: eindrapportage ‘Project Traditionele Vernieuwingsscholen’ : tevens Schoolwerkplan [van de] Rudolf Steiner Kleuterschool, Voorschoten [en de] Rudolf Steiner school, Leiden. 1985)
*Ik meen vrij zeker te weten dat dit gedicht (of alle drie) is gemaakt door Ton ten Böhmer, 1976/77
.

**hier vind je afbeeldingen met beschrijvingen

mineralogie: alle artikelen

6e klas: alle artikelen

.

494-457

 

 

 

 

 

 

 

 

 

 

 

 

.