VRIJESCHOOL – Rekenen – eenhedenstelsels (8-1/8)

.

natuurkunde bovenbouw

Eenhedenstelsels

Arbeid en arbeidsvermogen

Wat arbeid in het dagelijks leven voorstelt, is genoegzaam bekend. Op scheepswerven weerklinkt het lied van de arbeid voor wie er oren naar heeft. De man, die aan het bureau zijn werk verricht, doet het met minder lawaai. Werken is inspannend. Sommige mensen zijn liever lui dat moe en zijn niet verzot op arbeid. De meeste mensen zijn niet lui en als zij bij hun werkzaamheden te weinig lichaamsbeweging hebben, zoeken zij compensatie in de sport.

De natuurkundige definitie van arbeid kunnen wij u duidelijk maken met behulp van de trekschuit. Stug doortrekkend zeult een paard de schuit achter zich aan. Tijdens het trekken oefent het dier een kracht op de boot uit en wel op de plaats, waar het touw aan de boot is vastgemaakt. De boot gaat vooruit en legt daarbij een weg af. De verrichte arbeid is gelijk aan het product van de uitgeoefende kracht en de afgelegde weg, mits kracht en weg dezelfde richting hebben.

Het paard verricht geen arbeid, als de boot stil ligt in een haven of als de boot in ondiep water is vastgelopen en onwrikbaar vast ligt, waardoor het paard er alleen een kracht op uitoefent.

De zwaartekracht verricht arbeid op een vallend lichaam. Op een satelliet, die in een cirkelvormige baan om de aarde beweegt, verricht de zwaartekracht geen arbeid, omdat deze satelliet geen weg aflegt in de richting van de werkzame kracht. De zwaartekracht en de richting van de snelheid op ieder moment sluiten hier een rechte hoek in.

De arbeid, die de zwaartekracht verricht op een lichaam, dat loodrecht omhoog wordt gegooid, is negatief, daar in dit geval kracht en weg tegengesteld gericht zijn.

De eenheid van arbeid wordt verricht, als de eenheid van kracht een voorwerp over de eenheid van lengte in zijn richting verplaatst. In het SI is de eenheid van arbeid de newtonmeter of N.m. Deze eenheid wordt verkort tot joule J (uitspraak volgens het normalisatie-blad dzjoel).

Een pak suiker van 1 kilogram ondervindt in Nederland een kracht van 9,8 newton; wanneer dit pak suiker over een afstand van 1 meter valt, verricht de zwaartekracht een arbeid van 9,8 joule.

De natuurkundige definitie van arbeid kan in het dagelijks leven een probleem doen ontstaan, als men iemand betaalt naar zijn verrichte arbeid. Als men die persoon opdraagt een tijd een zware koffer opgetild vast te houden, kan men daarna menen, dat hiervoor geen vergoeding is vereist. Er is namelijk wel een kracht op de koffer uitgeoefend, maar geen arbeid verricht. Bij een nauwkeurige waarneming blijkt echter, dat men een koffer niet stil kan houden, maar dat deze kleine bewegingen op en neer maakt. De drager beweegt dus wel degelijk bij herhaling de koffer omhoog. Dit kost energie, de man wordt hongerig en moet een extra portie eten kopen.

Energie is een meer algemeen begrip dan arbeid. Ook warmte is een vorm van energie, evenals een elektrische stroom. Er zijn vele vormen van energie. Bovendien is van de energie de waarde niet vast te leggen, wel van energieverschillen. De door het paard voor de trekschuit verrichte arbeid gaat ten koste van de energie van het paard en is gelijk aan het energieverschil. In het paardelichaam wordt de verbruikte energie aangevuld door de bij de spijsvertering vrijkomende energie; een paard loopt dus op haver. De waarde van de verrichte arbeid en van het energieverschil kan men in een getal uitdrukken, niet de waarde van de energie van het paard.

Op een vallend lichaam verricht de zwaartekracht arbeid. Als de luchtweerstand ontbreekt, is deze arbeid gelijk aan de toename van de energie van het vallend lichaam, wat tot uiting komt in zijn vergrote snelheid. Van een omhoog geschoten kogel neemt de snelheid af ten gevolge van de arbeid, die de zwaartekracht erop verricht, totdat de kogel in zijn hoogste punt is aangekomen. Bij de valbeweging neemt de snelheid weer toe, totdat bij aankomst op de grond de beginsnelheid weer is bereikt.

De verschillende vormen van energie kunnen in elkaar worden omgezet, geheel of voor een deel. De bij wrijving verrichte mechanische arbeid wordt geheel in warmte omgezet. De arbeid van het paard verricht op de trekschuit wordt door de wrijving, die de schuit in het water ondervindt, geheel in warmte omgezet; langs een omweg verwarmt het paard het water. De kogel, die op de grond valt, ondervindt daar een grote weerstand en bij het maken van een kuiltje wordt zijn mechanische energie in warmte omgezet.

Een elektrische stroom kan een elektromotor, bijvoorbeeld van een stofzuiger, doen lopen; daarbij wordt elektrische energie in mechanische energie omgezet. Ook kan de elektrische stroom in een straalkachel warmte produceren, waarbij elektrische energie in warmte wordt omgezet. In elektrische centrales wordt verbrandingswarmte of atoomenergie in elektrische energie omgezet, in waterkrachtcentrales geschiedt dit uit de energie van stromend water.

Het ligt voor de hand, dat men voor alle vormen van energie dezelfde eenheid van arbeid gebruikt. In het SI is dit de joule J. De joule is een reeds lang bestaande eenheid van arbeid in de elektriciteitsleer. Doordat de joule nu algemeen wordt gebruikt, vervallen allerlei omrekeningsfactoren, hetgeen het rekenen vereenvoudigt.

Hierdoor is de eenheid van warmte, de calorie, komen te vervallen. De calorie is de hoeveelheid warmte nodig voor het verwarmen van 1 gram water van 14,5 tot 1 5,5 °C. Experimenteel is vastgesteld: 1 calorie = 4,19 joule of met een kleine verwaarlozing: 1 cal = 4,2 J. De waarden in calorieën uitgedrukt moeten met de factor 4,19 of 4,2 worden vermenigvuldigd om ze uit te drukken met behulp van de joule.
Voor grote bedragen arbeid gebruikt men de kilojoule kJ, de megajoule MJ en zo nodig de gigajoule GJ.

De moderne, dynamisch ingestelde mens is niet alleen in arbeid geïnteresseerd, maar ook in de tijd, waarin deze arbeid ter beschikking komt. Een schip kan alleen in een korte tijd worden gelost, als de benodigde arbeid snel wordt geleverd. De arbeidssnelheid of het arbeidsvermogen is de arbeid verricht in de tijdseenheid in het SI de joule per seconde J/s. Deze eenheid wordt afgekort tot watt W: 1 J/s = 1 W. Hieruit volgt: 1 J = 1 W.s (1 joule is 1 wattseconde). In dagbladen, in periodieken en in prospecti, zelfs van een grote fabriek in het zuiden des lands, vindt men niet zelden de foute aanduiding W/s (watt per seconde). Bij vele samengestelde eenheden komt ,,per” voor, echter hier niet.

Wij betalen thuis de verbruikte elektrische energie in ( kilowattuur kWh, de arbeid, die bij een vermogen van 1 kW gedurende een uur wordt verricht. Daar een uur 3600 seconden bevat is 1 kWh = 3600 kJ. De kWh behoort niet tot het SI. De industrie betaalt de elektrische energie per MJ en per GJ. Als voor ons de tarieven in de toekomst worden berekend per MJ in plaats van per kWh, moeten zij gedeeld worden door 3,6 indien men tariefsverhoging wil vermijden.

Grote eenheden van arbeidsvermogen zijn de megawatt MW en de gigawatt GW. Evenals de joule is de watt een van oudsher bekende eenheid in de elektriciteitsleer.

Een eenheid van arbeidssnelheid, die moet verdwijnen, is de paardekracht. De naam is fout, want de pk is geen kracht, zelfs geen arbeid. De pk is een gemeten vermogen van een zeker paard, dat men 8 uur lang water uit een put heeft doen ophalen. Gemiddeld beurde het paard per seconde 75 kg 1 meter omhoog.

In Nederland wordt daarbij verricht een arbeid van 75 . 9,8 = 735 joule. Dus 1 pk = 735 watt of 0,735 kilowatt. Bij benadering: 1 pk = 0,75 kW. Het vermogen van een auto van 100 pk wordt nu 75 kW.

Jammer voor de bezitter van de wagen, dat het gebruikte getal kleiner wordt. Hij zal er mee moeten leren leven.

Tot slot laten wij u aan de hand van een voorbeeld zien, hoe plezierig het is, dat in het SI allerlei omrekeningsfactoren zijn verdwenen. Stel er is ergens in het hooggebergte een groot meer met een inhoud van 1,02 km3. Het water valt door buizen over een afstand van 1 km, voordat het in een elektriciteitscentrale terecht komt. Boven in de bergen heeft dit water een arbeidsvermogen van plaats gelijk aan het product van de massa, de versnelling van de zwaartekracht en de hoogte, dus 1,02 .109 . 9,8 . 10³ =1013 =1010 kJ =10MJ = 10GJ. Wanneer deze arbeid geheel in elektrische energie wordt omgezet, verkrijgt men hiervan 104 GJ; hieruit kan men maximaal 104 GJ mechanische energie in elektromotoren verkrijgen.

Wanneer al deze energie in warmte wordt omgezet, krijgt men daarvan 104 GJ.

Stel, dat al deze energie in 10.000 seconden wordt geleverd, dan is het vermogen van de waterkrachtcentrale 1 gigawatt of 1 GW. Een dergelijk vermogen is enorm.

Drs. E. J. Harmsen, Vacature, nadere gegevens onbekend.

.

rekenenalle artikelen   uit deze serie onder nr.8

natuurkunde: alle artikelen

.

1456

 

 

 

 

 

 

 

 

 

.

Advertenties

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit /  Bijwerken )

Google+ photo

Je reageert onder je Google+ account. Log uit /  Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit /  Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit /  Bijwerken )

Verbinden met %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.