Tagarchief: klas 6 natuurkunde kleur

VRIJESCHOOL – 6e klas – natuurkunde – (3-5)

.

Thor Keller, Erziehungskunst jrg. 53 nr.6 1989
.

LICHT EN DONKER

Vanuit zijn omvattende kennis over de opgroeiende mens heeft Rudolf Steiner al in 1919 het begin van het natuurkundeonderwijs voor de 6e klas voorgesteld.
Rond het twaalfde jaar, in het laatste derde deel van de tweede zevensjaarsfase, hebben de kinderen een verdere stap bij het begrijpen en leren kennen van de aarde gezet, waarin de kracht van het causale denken in hen begint te ontwaken.*

*Bij de zevenjaarsfasen en de onderverdeling daarvan gaat het niet om van een buiten aangedragen schema, maar om de waarneming van veranderingen op het gebied van het gevoelsleven, zoals iedereen die veelvuldig met kinderen heeft te maken, zelf kan waarnemen. Wanneer daarbij de waarnemingsresultaten van Steiner met die van oudere tijden overeenkomen, is dat niet in tegenspraak met de geldigheid van zijn kennis.
Literatuur over deze leeftijd: Müller-Wiedemann – Mitte der Kindheit
Kiefel: De verandering rond het twaalfde jaar, Erziehungskunst 12/80 blz. 723 (niet op deze blog vertaald)

Vooral de jongens willen hun aardse omgeving met al die belangrijke en interessante verschijnselen van het dagelijks leven, de techniek en het verkeer doorgronden.
Was Rudolf Steiners leerplanaanwijzing in 1919 nog revolutionair, vandaag de dag lijkt die, van buitenaf beschouwd, ouderwets. Want op de reguliere scholen worden de kinderen van de tweede, derde klas bij de heemkunde toch al met de grondslagen van onze technische omgeving geconfronteerd. Dat betekent echter een vervroeging, een aanslag op de nog dromende kinderziel die zich nog in een mythische sfeer bevindt en die de beelden van mythen, legenden en sagen voor zijn ontwikkeling nodig
heeft.**

**Piaget: Het morele oordeel bij het kind; oordeel en denkproces bij het kind
Picht: Legenden. Over de vertelkunst in de tweede klas, Erziehungskunst 4/79 blz. 192. Niet op deze blog vertaald.
Behrens: Beelden om na te volgen, Erziehungskunst 6/85 blz. 373, op deze blog vertaald

De voor het denken noodzakelijke geestkracht dient in deze leeftijdsfase nog de opbouw van het lichaam. Deze kracht maakt zich daar stap voor stap los van en wordt dan pas vrij om de wereld intellectueel te begrijpen.***

***Leber: Het menselijke etherlijf, Erziehungskunst 4/87. Gedeeltelijk op deze blog vertaald.

Het vrijeschoolleerplan van de eerste tot de vierde, vijfde klas houdt met deze ontwikkeling rekening. Laat je echter in de zesde klas achterwege deze vrij geworden krachten te oefenen en te scholen, dan liggen ze al spoedig braak en verkommeren of ze beginnen te woekeren, voor zover de kinderen ze buiten school niet benutten. Daarmee zouden we echter hun pedagogische ontwikkeling en vorming weggeven, ja in de weg staan en aan de andere kant in de leerling het onbestemde, dikwijls onbewuste gevoel oproepen dat je op de vrijeschool ‘niet echt iets leert’, d.w.z. niet leert, wat je nodig hebt.
Want als net zo belangrijke opdracht als het tot ontwikkeling brengen van alle vaardigheden, noemde Rudolf Steiner de positie van de jonge mens in de al genoemde sociale omgeving.

In de Erziehungskunst 7-8/86. op deze blog vertaald werd er gesproken over de akoestiek in het eerste natuurkundeonderwijs. Hier volgt nu een verslag over de optica. Heel bewust is de schrijver een andere weg gegaan dan Manfred von Mackensen die bewandelt.+ Dat wordt hierna gemotiveerd.

+Von Mackensen: Klank, licht en warmte

Door zijn zintuigwaarnemingen ontwaakt in het kind bij het eerste leren kennen van de wereld in de gestalte van moeder, vader, broertjes en zusjes en het eerste speelgoed het eerste ‘bewustzijn.’ Stap voor stap verovert hij op deze manier de wereld. Daarbij zijn vooral oor en oog werkzaam. Is er niets te horen, niets te zien, dan gaat er geen zintuigprikkel uit en het bewustzijn dooft uit. Daarom leggen we de kinderen dan ook bij het (in)slapen in een donkere, stille ruimte. Vandaaruit bezien is het een ernstige en belangrijke vraag of je de natuurkundeperiode licht/donker met het beleven van de duisternis moet beginnen (nog helemaal afgezien van het feit dat jonge scholen dikwijls bijna geen mogelijkheid hebben om een ruimte volledig te verduisteren. In zo’n situatie bevond de schrijver zich, één wand van het klassenlokaal bestond volledig uit ramen en alle lichtproeven moesten tot de achtste klas bij daglicht uitgevoerd worden; (het ging uitstekend).

Wat gebeurt er wanneer het donker wordt? De mensen, vooral de kinderen, worden bang. Tegenwoordig is het niet meer zo, wat de schrijver als kind steeds weer meemaakte: alleen maar een zwak peertje in de keldergang, de eigenlijke kelder lag achter een donkere hoek, nauwelijks verlicht door het kleine, diepliggende en geblindeerde raam onder straatniveau. Het was onaangenaam aardappelen of kolen te halen. Wat deed je dan? Luid hoorbaar lopen of zingen. En zo moet een zesde klas ook wel reageren als het licht uitgaat en zij in het donker zitten. De optredende bangheid en ja, angst dwingt tot lachen, roepen, schreeuwen; bovendien verleidt de donkerte ertoe allerlei uit te halen. Zo is een oplettende stemming nauwelijks te bereiken. Zelfs bij een nacht- of een vroege ochtendwandeling kan een klas nauwelijks een langere tijd stil blijven en luisteren. En toch moet iedere klas, wanneer het maar mogelijk is, samen een zonsopkomst beleven.

We begonnen met de kleurenleer, nadat we bij de eerste akoestiek naast de in het bovengenoemde artikel beschreven proeven nog die van de klankgeleiding en -snelheid alsook de resonantie gedaan werden. Besproken werden ook nog de bij de zonsopkomst klinkende Kolossen van Memnon; het ‘oor van Dionysos‘ op Sicilië, dat een zacht fluisteren aan het eind van de grot tot een groot geluid bij de ingang versterkt; de echomuur in de tempel van de hemel bij Peking waar je ieder in de tuin gefluisterd woord hoort; de akoestische verschijnselen van het antieke theater en de akoestische klankschalen in de Romaanse kerken (Zie ‘Goetheanum’ 7/1977)

We lieten een diaprojector door een met water gevulde glasbak schijnen en goten er langzaam zeeploog bij dat de vorige dag klaargemaakt was. 
Het schijnsel veranderde van kleur: van geelachtig naar geel, naar oranje en rood. Wanneer we achter de glasbak een zwarte plaat zetten en we lieten het licht van opzij schijnen, ontstond er bij weinig oplossing een teer blauw.
Ook met perkamentpapier, doorschijnend plastic of het ‘Goetheglas‘ kun je deze verschijnselen, o.a. het ontstaan van de lichte kleuren, goed laten zien.

Aan de hand van deze verschijnselen bespraken we de wonderen van de natuurverschijnselen, die wij voor een deel vanaf de eerste klas bewonderd hebben: de oranje kleur van de zon ’s morgens, de gele kleur daarvan gedurende de dag en de roodachtige ’s avonds en voordat er regen komt; de blauwe, op grote hoogten zwarte hemel, de blauwachtige kleur van dunne rook voor een donker bos en de oranje kleur ervan voor de heldere hemel; zon- en maanhalo, kleurige verschijnselen bij schemering bij beslagen ramen; de bergen die er in de verte blauwachtig uitzien en de gele ijsbergen, de blauwe grot op Capri; het roodachtige licht op een grote diepte in zee. Al deze verschijnselen zijn natuurkundig met hulp van de proeven die we deden, te doorzien.

Ook kunnen de kinderen aan de hand van deze proeven het ontstaan van de kleuren uit het samenspel van licht en donker beleven en ze begrijpen het woord van Goethe: ‘De kleuren zijn de daden en het lijden van het licht’. Goethe heeft bij zijn onderzoek naar de kleurenleer de zesdelige kleurencirkel ontwikkeld. Als je geel en blauw als de twee oerkleuren neemt, dan kan je rood-geel-blauw de drie primaire kleuren noemen. In de kleurencirkel vormen steeds twee primaire kleuren een mengkleur die daartussen ligt: de tegenkleur of de complimentaire kleur die er tegenover ligt:

                                                                   rood

                                                    oranje                   violet

                                                       geel                   blauw

                                                                   groen

De kinderen zijn door de schilderles allang vertrouwd met de mengkleuren.

Als volgende proeven volgden de drie kleurenschaduwen. Een lichtbron kan het daglicht of een felle lamp zijn; het kleurige licht lieten we ontstaan met gekleurd glas in een diaprojector. De tegenkleur is prachtig te zien in de schaduwbeelden. Ditzelfde verschijnsel vertoont zich, wanneer je een zwart figuur op een stuk karton van één kleur legt en daaroverheen doorschijnend doorslagpapier of perkamentpapier.

Dan volgden de proeven met de kleurige nabeelden. De kinderen keken licht wegdromend een tot twee minuten naar een kleurvlak, daarna naar een wit vlak. Het nabeeld verschijnt in de tegenkleur.

Daarna proeven met het prisma. Het is het beste wanneer je ieder kind een glasprisma geeft, anders laat je ze door een groot waterprisma naar de verschillende zwart-wit platen kijken:

De kinderen ontdekken dat de blikrichting afgebogen wordt en dat aan de zwart-witte randen uit de heldere, warme kleuren, resp. donkere, koude kleuren ontstaan. Als regel vind je: gaat in de richting van de afbuiging wit als eerst, dan ontstaan de warme kleuren, gaat zwart voorop dan de koude kleuren. Hetzelfde fenomeen doet zich voor bij iedere blik door het prisma in de klas, dus ook daar waar lichte en donkere kleuren aan elkaar grenzen.

Bij de volgende proeven legden we een munt op de bodem van een kan en goten er water in. De munt en de bodem leken wel omhoog te komwn. Toen zetten we een ijzeren stang schuin in het water, die leek aan het wateroppervlak een knik te hebben. Ten slotte lieten we een lichtbundel schuin in een met water gevulde bak vallen; aan de oppervlakte werd deze duidelijk naar onderen afgebogen. 
Toen hebben we de wetmatigheden besproken en ernaar gezocht waar je deze verschijnselen in het dagelijks leven kan vinden, namelijk overal waar wij in het water kijken. 
Beide verschijnselen zijn een uitdrukking van dezelfde wet: De blikrichting, resp. de luchtbundel wordt bij een verandering van een dunnere naar een vastere stof (lucht-water) naar de dichtere toe, gebroken. De dichtere stof biedt in zekere zin meer weerstand en buigt zo de richting van het licht af. De afbuiging door het prisma berust op dezelfde wetmatigheid.

 Tot slot van het licht-donker laat je zien hoe door een lensopening (een klein gat in een groot vel karton) op een perkamentscherm een kaars afgebeeld wordt of een raam van de klas, misschien zelfs het landschap. Van karton kunnen de kinderen dan zelf aan de verdere ontwikkeling van de camera obscura bouwen.
Het verschijnsel berust op de mogelijkheid van ieder ‘lichtpunt’ de totale omgeving af te beelden. Zo kan men tegenwoordig bv. de hele bijbel met bijna 2000 bladzijden zo verkleinen dat deze op een dia of een postzegel past, die je dan ook weer kan vergroten.

De kinderen hebben in hun periodeschrift de proeven en de door de leraar gegeven tekst met de wetmatigheden erin opgeschreven en een paar proeven getekend. Op deze manier hebben ze zelf hun ‘leerboek’ geschreven, zoals Rudolf Steiner aanraadde. Ze leren door het begrijpen van de beschreven verschijnselen de noodzakelijke kennis van de natuurkundige wetmatigheden.
Het onderwijs zelf werd steeds gegeven volgens de door Rudolf Steiner++ gestimuleerde drie stappen bij de proeven: proef – herhalende beschrijving – de volgende dag bespreking van de wetmatigheden.

++Steiner: Menschenerkenntnis und Unterrichtsgestaltung, GA 302, vdr. 6, vertaald
GA 320, vdr. 2 en 3
alle gangbare natuurkundeboeken

De schrijver heeft in de zesde klas niet alleen de geplande vier weken, maar twee keer drie weken natuurkunde gegeven. Dat gebeurde om genoeg tijd te hebben voor het verwerken van de proefbeschrijvingen. Dagelijks werd iedere proefbeschrijving twee, drie, misschien wel vier keer voorgelezen en wat niet goed was werd verbeterd, wat ontbrak aangevuld en het overbodige eruit gehaald. Daarbij hechtten we waarde aan kort en bondig. Want we zijn van mening dat het uitvoerige beschrijven van procesen of voorwerpen niet in de natuurkundeles thuishoort, maar bij Nederlands geoefend moet worden. Bij natuurkunde komt het erop aan het proefverloop kort en bondig weer te geven en niet op de apparaten of de opbouw daarvan komt het aan. Het begrijpen van natuurkundige processen zou in een ander geval moeilijker worden. Twee voorbeelden mogen dat verduidelijken:

‘Wij lieten een diaprojector door een waterbak schijnen die met water gevuld was en daar goten we langzaam zeeploog bij. Het water werd steeds troebeler en het licht werd eerst geelachtig, toen oranje, rood en ten slotte dieprood.

‘We hielden een ijzeren staaf schuin in het water. Het leek erop dat hij bij het wateroppervlak geknikt was.

Wanneer op deze manier van proefbeschrijvingen goed wordt geeoefend,  kunnen de kinderen dat in de volgende klassen en je hebt meer tijd voor de proeven en de noodzakelijke betekenissen. Houd je in de loop van de periode een goed tijdverdeling aan, dan is het mogelijk ook bij de andere natuurkundige aspecten, de warmteleer, magnetisme en de statische elektriciteit ongeveer elk twaalf tot veertien proeven met wezenlijke wetmatigheden uit te werken. De kinderen oefenen daardoor hun denken en beginnen de verschijnselen in de wereld te doorzien.  Dat geeft hun de noodzakelijke zekerheid vooral wanneer het lukt – en dat is bij natuurkunde helemaal niet makkelijk – steeds weer bij de mens of bij wat er in de menselijk samenleving gebeurt, aan te knopen.

.

Natuurkundealle artikelen

klas 6: alle artikelen

VRIJESCHOOL in beeld: 6e klas

 

1839

 

 

 

 

 

 

 

 

 

 

 

 

.

VRIJESCHOOL – Natuurkunde – kleur (4-1)

.

Het principe van Yang en Yin in de natuurwetenschap

Kleurenleer tussen licht en duister

Tao, dat gezegd kan worden, is niet het eeuwig Tao.
De naam, die genoemd kan worden, is niet de eeuwige Naam.
Onnoembaar is de oorsprong van hemel en aarde.

Zo begint het ongeveer 2500 jaar geleden door Lao Tse geschreven boekje, dat de naam draagt Tao Teh King. Dat is: het klassieke boek (king) over de eerste oorzaak, die alles schept (tao) en de deugd (teh). De namen voor hemel en aarde, deze noembaarheden kenden de Chinezen toen al lang onder de namen Yang en Yin.

Yang is vader hemel en Yin is moeder aarde. Tevens hadden de uit het eeuwig Tao zich uitsplitsende polariteiten Yang en Yin vele andere betekenissen in de menigvuldige ideeën en begrippen, waarin een initiërend beginsel zijn tegenstelling vond in een volgbeginsel.
Yin werd beschouwd als het medescheppend spiegelbeeld van Yang.

Zo stonden als Yang en Yin bijvoorbeeld tegenover elkaar: creativiteit en ontvankelijkheid; mannelijk en vrouwelijk; energie en inertie; kwantiteit en kwaliteit; onderwijzen en leren; vorst en onderdanen; zomer en winter; warmte en koude; dag en nacht; vader en moeder; licht en duisternis. Wat Yin voortbrengt is aangelegd door Yang en komt dus voort uit het samenspel van Yin met Yang.

Wie waarlijk wil weten hoe de Chinezen over de duizenderlei mogelijkheden van dit samenspel dachten, zal enige jaren moeten uittrekken, die hij minimaal nodig heeft om het Boek der Veranderingen, het 3000 jaar oude I Tjing, te bestuderen.

Zoals men wellicht weet, kwam de I Tjing in de vijftiger jaren naar Europa op initiatief van Carl Jung, nadat zijn leerling en medewerker Richard Wilhelm tussen 1913 en 1923 de enorme prestatie had geleverd de Chinese tekst in het Duits te vertalen. Zo bereikte in onze eeuw deze Oosterse, Chinese kosmologie het westen. In deze kosmologie ontstaan uit de Yang-Yin polariteit acht oer-drieledigheden, maar niet de ons vertrouwde en door Rudolf Steiner op de voorgrond geplaatste drieledigheid van Willen, Voelen en Denken.

Die is wel al te vinden in een westerse kosmologie van nog oudere datum, de Israëlitische esoterische wijsheid van de Kabbala.

Tao heet daar Kether, (de kroon). Uit deze kroon emaneren twee
scheppingsbeginselen: Chokmah, dat overeenkomt met Yang, en Binah, dat met Yin overeenstemt. Deze macrokosmische drie-eenheid spiegelt zich in een microkosmische, in drie scheppingskringen (in het Hebreeuws Sephiroth genaamd), die van het Willen, het Voelen en het Denken. Deze spiegelen zich nogmaals, om in de zevende kring de scheppingsvolheid te bereiken. Aan deze wijsheid hebben wij onze week van zeven dagen te danken en aan de tien Sephiroth, de drie macrokosmische en zeven microkosmische, ons tientallig stelsel.

De westerse natuurwetenschap, die met het tientallig stelsel alles wat zij berekenen kan uitrekent, is haar esoterisch uitgangspunt totaal vergeten. De westerse filosofie en de westerse natuurwetenschap stevenden voorbij aan de kabbalistische wijsheid, die door esoterische Joodse kringen werd behouden en behoed. Mensen, die heden ten dage iets van de Kabbala afweten, iets van de tien Sephiroth, iets van Chokmah en Binah, zijn nog schaars. Mensen, voor wie Yang en Yin reële betekenis gekregen hebben, zijn er meer.

Met deze laatste begrippen voor ogen is het niet moeilijk in te zien, dat er wat hapert aan de westerse natuurwetenschap. Zij is eenzijdig en daardoor onevenwichtig. Om het op zijn Chinees te zeggen: Zij is Yang-kennis zonder Yin! Want wat doet de natuurwetenschap?

Zij spitst zich erop toe om uit het natuurgeheel grootheden los te schillen die weegbare, meetbare, telbare, berekenbare energieën zijn, die voor de westerse civilisatie bruikbare materie opleveren. Een afzonderingstactiek dus, die haar doel tracht te bereiken met ingenieuze instrumenten en machines, die met behulp van een op kwantitatieve waarden ingestelde rekenkunde konden worden geconstrueerd.

De fysica is energiek op zoek naar fysische energie. Daarop is uiteindelijk alle informatie, die zij inwint gericht. Of zij nu per astronomie spiraalnevels achter de telescoop heeft, of de door haar zo betitelde moleculen, atomen, elektronen, protonen, neutronen, mesonen, enz. onder de microscoop, of zij een explosiemotor bouwt of een kernenergiebom vervaardigt, macrokosmische of microkosmische energie heeft de doelstelling, die tot en met de harttransplantaties van de medici, niet om de voorrang vraagt, maar deze opeist. Met andere woorden: Yang.

Yang en nog eens Yang. Yang-kwantiteiten.
Yin-kwaliteiten vallen buiten de natuurwetenschap. Maar niet buiten de natuur!

Goethe, die een ras-fenomenoloog was, schreef tussen 1791 en 1810 zijn 680 paragrafen tellende ‘Farbenlehre’, waarin hij op wetenschappelijk overtuigende wijze kon aantonen dat kleuren uit licht en donker — Chinees gezegd: uit Yang en Yin — ontstaan.

Dat de officiële natuurwetenschap met haar Yang-gerichtheid Goethes inzichten niet kon delen, en tot op de huidige dag niet deelt, is voluit begrijpelijk.

De westerse natuurwetenschap baseert zich, wat de kleurenleer betreft, nog steeds op een ontdekking van Isaac Newton, een proef uit 1672, die deze toen dertigjarige hoogleraar in de wis- en natuurkunde te Cambridge in zijn studeervertrek verrichtte. Dat de grote fysicus uit de proef die hij deed een wetenschappelijk onverantwoorde conclusie trok, moge zo meteen blijken.

Newtons prisma-proef

Newton liet in zijn geheel verduisterde kamer door een in de buitenmuur bevestigde convexe lens, zonlicht in een evenwijdige bundel door een prisma schijnen. Op een zorgvuldig bepaalde afstand van het prisma bevond zich een wit projectiescherm. Daarop verscheen toen een kleurenband: violet, donkerblauw, lichtblauw, groen, geel, oranje, rood. De conclusie luidde, dat de waargenomen kleuren dus door de lichtbreking van het prisma uitgesplitste componenten waren van het witte licht. Het witte licht bevat datgene, wat het prisma ons vertoont: de spectraalkleuren. Waar zit de door de natuurwetenschap niet ontdekte fout in de redenering? Dat zij Yin geen oog waardig keurt.

Dat Newton geen oog had voor het duister in het vertrek. Het dus is een voorbarigheid. De proef betreft waarneembaarheden: kleuren. De proef vindt plaats in het duister. Ook het duister is een waarneembaarheid. Dit mag dus bij een verklaring van de kleurenvorming niet op voorhand buiten beschouwing gelaten worden. Naar wetenschappelijke maat gemeten is dat willekeur uit een vooroordeel, dat het donker geen rol kan spelen, omdat het geen energie is!

Er bestaat een populair oordeel, dat je in het donker niets ziet, omdat het niets is. Het tegendeel is waar: in een verduisterd vertrek zie je geen omgrenzingen en geen voorwerpen, die daar misschien staan, doordat alles door de duisternis in een pikzwarte wade wordt gehuld. Dat zwart neem je heel goed waar. Het overstroomt je, het dringt in je, het zuigt je op. Je beleeft het door en door.

Onlangs zei een goede bekende van mij tegen een man, die op latere leeftijd blind was geworden: ‘Wat moet het ellendig zijn alleen maar zwart te zien!’ De man antwoordde: ‘Je vergist je. Vroeger zag ik zwart en wit en alle kleuren. Nu zie ik niets meer. Geen kleuren, geen wit en geen zwart. Ook geen zwart. Geen donker en geen licht: niets! Gek hè? Maar ik begrijp best, dat jij je dat niet voor kunt stellen.’

Goethes prisma-proef

In 1790 had Goethe aan zijn vriend Hofrat Büttner in Jena een paar prisma’s te leen gevraagd en gekregen. Hij vertrouwde Newton’s proefopstelling niet. Hij achtte die te gekunsteld en wilde er het zijne van weten. Maar Goethe, die ander werk onder handen had, kwam niet tot het experimenteren met een prisma, tot op het moment dat Büttner zijn apparaten terugvroeg. Dan gaat Goethe door een prisma naar de witte wand van zijn zonverlichte kamer kijken en ziet tot zijn verbazing, dat deze wit blijft Maar op het moment dat hij het prisma wendt naar een van de ramen van zijn werkkamer, verschijnen de allerhelderste kleuren, daar waar het doorlichte vensterglas aan de het raam onderbrekende donkere vensterspijlen grenst.

Hofrat Büttner zal nog lang op zijn apparatuur moeten wachten, want nu beginnen de eerste experimenten.

Hij ontdekt, dat het prisma beelden verschuift. Waar wit over zwart schuift verschijnt blauw. Waar zwart over wit schuift, anders gezegd, waar het prisma zwart op wit projecteert, ontstaat rood. Nauwkeuriger gezegd: er ontstaat rood, oranje en geel, al naar de reikwijdte van de overlapping van zwart over wit. Zo ontstaat, waar wit ver over zwart valt, ook violet.

Langs deze weg van een gelukkig toeval ontstonden al die experimenten, waarbij Goethe geen gevaar kon lopen, het duister, het zwart, te negeren.

Zo kon hij ook ontdekken, dat groen geen rechtstreekse spectraalkleur is, maar een mengkleur van geel en blauw. Hij ontdekte ook een andere in het Newtoniaanse spectrum niet voorkomende kleur, het incarnaat roze, dat het prisma kan laten ontstaan, als violet en rood samenvallen.

Wie de moeite neemt om op een wit vel papier met Oost-Indische inkt zwarte banen te schilderen, zodat hij witte en zwarte banen krijgt van bijvoorbeeld een halve tot anderhalve centimeter doorsnee, en deze dan gaat bekijken door een prisma (goede plastic prisma’s zijn niet duur), in helder daglicht, die kan een feestelijk gebeuren tegemoet ziet; hij ziet het hier aangeduide kleurengamma ontstaan. Hij kan ook intenser genieten van de opkomende en ondergaande zon, als hij er zich van bewust wordt dat deze, doordat zijn witte licht zich door duistere nevels een weg moet banen, geel oranje en rood wordt. En wordt ons de blauwe zomerdaghemel niet bevattelijker als wij beseffen, dat deze prachtige kleur zijn ontstaan te danken heeft aan het zonnelichtwaas in de dampkring, waar het duister firmament doorheenschemert?

In het rood voert Yang de boventoon en in het blauw Yin, zouden de oude Chinezen zeggen.

Rudolf Steiner en diverse van zijn leerlingen hebben in het voetspoor van Goethe veel geëxperimenteerd en gepubliceerd over de wording van kleuren en gesproken over hun innerlijke betekenis.

Wie daar meer over aan de weet wil komen, en niet opziet tegen een niet te moeilijk Duits, zou ik naar twee publicaties willen verwijzen:

Rudolf Steiner, Het wezen van de kleuren
H.O.Proskauer: Zwei Taschenbücher zum Studium von Goethes Farbenlehre,

Ik richt de aandacht op deze geschriften, omdat, nu in deze dagen het westers natuurwetenschappelijk Yang-geloof in Newtons kleurenleer eindelijk begint te wankelen, en de tijd daar is om een inzicht te verwerven langs fenomenologische weg van de kleurkwaliteiten. Dat wil uiteindelijk zeggen: van hun morele waarden! Die kent de huidige fysica niet. En die kan de westerse natuurwetenschap ook nooit leren kennen, omdat de moeder der kleuren in haar energieke aanpak van de natuur verduisterd wordt!

J.M.Bierens de Haan, Jonas 3, 10-10-1975

.

Natuurkunde klas 6: alle artikelen

.

Goethe Kleurenleer

Kleurenleer: meer

.

1640

 

 

 

 

 

 

 

 

 

 

 

 

.