VRIJESCHOOL – 1e klas – rekenen (13)

.

HET GROOTSTE GETAL VAN DE WERELD

LEREN REKENEN VANUIT MENSKUNDIG PERSPECTIEF

‘Moeder, moeder! Vandaag hebben we het allergrootste getal van de wereld geleerd….!
Met dit vanzelfsprekend hoogst opwindend nieuwtje stormt het kind na zijn eerste rekenles naar binnen om zijn moeder als eerste deze belangrijke boodschap vol vreugde mee te delen. Het kind zit op de vrijeschool.
Hopelijk zijn vader en moeder naar de laatste ouderavond geweest, toen de leerkracht over de op handen zijnde eerste (en belangrijkste) rekenperiode in het leven van de kinderen sprak. Anders zou de grote vreugde van het kind snel kunnen verdwijnen voor een reusachtige teleurstelling. Want wee de moeder die nu vermoedt dat het om het getal 1000 gaat, omdat ze – onwetend en niets vermoedend – aanneemt dat 1000 voor een eersteklassers op z’n minst een zeer groot, zo niet voor nu het allergrootste getal is. Of zouden de kinderen al iets van een miljoen geleerd hebben….? O jee! Er helemaal naast! De moeder die zoiets vermoedt, heeft zelf beslist niet op de vrijeschool gezeten, anders was het haar volkomen duidelijk geweest, dat het ‘grootste getal van de wereld’ natuurlijk alleen maar de  een(heid) kan zijn, zoals ze nu te horen krijgt van een trots kind.
Wanneer de kinderen op de vrijeschool met de getallen vertrouwd raken, leren ze eerst, net zo als bij het leren kennen van de letters, de kwaliteit en niet de kwantiteit van de getallen kennen.
En dus vertelt de leerkracht in het eerste uur rekenen de kinderen een verhaal dat over de eenheid  gaat. In deze eenheid, leren de kinderen, zit al het andere besloten. Er is maar een wereld (als eenheid), ook ieder mens is een eenheid op zich. De kleine Tobias heeft onmiddellijk door dat er van hemzelf maar één is. Hij is een eenheid, hij is uniek, net zoals zijn vader, zijn moeder, zoals ieder mens. Door de kinderen worden snel andere eenheden gevonden: godvader, de zon, de maan, de boom, de hond, de school, het lokaal, de broer, enz. Alles is – kwalitatief beschouwd – uniek, is elke keer een eenheid. En het getal (het cijfer) voor de eenheid is de 1! Omdat de eenheid alles omvat, is het cijfer dat er symbool voor staat 1 het ‘grootste’ getal van de wereld. Dat begrijpen de kinderen volkomen, omdat het waar is en daarom zijn zer zo opgetogen over.
Getallen (en letters) eerst leren kennen vanuit de wezenskenmerken, is helemaal niet wereldvreemd of ‘klinkende onzin’.  Want wanneer je de kwaliteit van een ding, een wezen niet begrijpt, begrijp je van de kwaliteit nog minder. Iedere praktisch ingestelde koopman handelt zo, uit de aard der zaak iedere huisvrouw ook, ieder mens die iets kopen wil. Eerst kijkt hij naar de kwaliteit van de koopwaar. voordat hij over de kwantiteit, hoeveel ervan, beslist. Want niemand koopt graag een kat in de zak.
Moeten kinderen dan – zoals tegenwoordig algemeen gangbaar is – getallen, letters puur intellectualistisch abstract leren, wordt dan niet van het getal en de letters het levende, het wezenlijke, de kwaliteit onthouden; meestal hebben ze ook problemen met het begrijpen waarom het eigenlijk gaat. Ze dreunen weliswaar zuiver automatisch na, bijv. 1 + 1 = 2; 2 + 2 = 4 enz., maar dat zijn dan volledig oppervlakkige activiteiten, bloedeloze rekenoperaties die door eenvoudig uit het hoofd leren in het brein van de leerlingen vast komen te liggen. En hoeveel leerlingen kampen juist in de 1e klas al met grote begripsproblemen bij het eerste schrijven, lezen en rekenen.
We moeten steeds uitgaan van wat een kind begrijp! Wat zou er voor een kind groter kunnen zijn dan die ene  wereld waarin het leeft? Die omvat al het andere. Dat begrijpen de kinderen en vandaar dat ze wat ze geleerd hebben trots mee naar huis nemen.
Op deze manier worden ook de andere getallen langzaam aan de orde gesteld. De volwassene kan weten dat uit de eenheid van het paradijs, waarin slechts die  ene  mens Adam leeft, uiteindelijk het dualisme, het wezen van de tweeheid (de 2), het tegenover elkaar staan, ontstond. Adam en Eva, het aardse leven en het hiernamaals, man en vrouw, licht en donkerte, warmte en koud. hard en zacht, hoog en laag, goed en slecht enz. Tegengestelden die als paar steeds bij elkaar horen. ‘Waar licht is, is ook schaduw’. Het dualisme is de tweeheid die uit de eenheid ontstond. Er heeft een delingsactiviteit plaatsgevonden, twee verschillende kwaliteiten staan voor de eerste keer als tegengestelden tegenover elkaar, iets is gedifferentieerd, afgezonderd. Dat is het begin van een ontwikkeling waarin een eerste proce waarin het bewustzijn zich ontwikkelt. Het ervaren van het tegenovergestelde veroorzaakt een mogelijkheid iets te weten over hier en daar, ik en jij, waarbij echter wat nu een gescheiden eenheid is, één oorsprong heeft en in wezen bij elkaar hoort.
Ook in de (goddelijke) natuur komen wij overal kwaliteit tegen. Door de celdeling ontstaan uit één cel, de eenheid, twee cellen. Uit deze twee ontstaan door een nieuwe deling opnieuw twee cellen. Uit een bevruchte kiem wordt door onophoudelijke celdeling een nieuw wezen gevormd. Uit de eenheid (van de kiem) volgt de differentiatie in de veelvoud, zonder het karakter van de eenheid te verliezen. Uit een eikel komt een eikenboom.
Ook de oude, overgeleverde sprookjes en fabels schilderen altijd het kwalitatieve, het wezenlijke. De sprookjesmotieven hebben symbool(beeld)karakter. Zo bestaan er veel sprookjes met de koning. Voor het kind is deze in alle sprookjes een en hetzelfde koninklijke wezen, de heerser. Het intellect zou spitsvondig erop kunnen wijzen dat ieder sprookje zijn eigen, dus een andere koning heeft en verder nog opmerken, dat het maar om ‘sprookjes’verhalen gaat, die je niet seriwus hoeft te nemen. En wat vertellen de fabels? Er is bijv. de vos die de kwaliteit, de representant is van het listige, geslepene; de wolf symboliseert de hebzucht enz.
Voor kinderen die getallen – zoals het nu gewoonlijk gaat – kwantitatief leren kennen, dus 1 + 2 + 4 + 3 = 10 uitrekenen, kan er geen grootste getal zijn. Want de zakelijke logica zegt dat bij ieder getal, al is het nog zo groot, steeds nieuwe getallen bijgevoegd kunnen worden, zonder einde. Om toch een einde te hebben, is de uitweg ‘onvoorstelbaar’, ‘oneindig groot’ gevormd. Hoe groot een dergelijk getal kan zijn, gaat het voorstellingsvermogen te boven, je kunt het niet bevatten, is niet meer denkbaar.
Is dat niet ook zo met veel andere denkmodellen, ‘theorieën’ genoemd? Theorie is volgens Duden: …een bedachte, werkelijkheisvreemde voorstelling’. En toch wordt onze wetenschap en daarmee ons leven, door vele theorieën beheerst en gesteund. Je hoeft maar aan de atoomtheorie te denken – en de concrete gevolgen voor de mensheid – aan de relativiteitstheorie, de quantentheorie en andere denkmodellen. Zo werden ook de economie, het sociale leven, de politiek als ook het onderwijs door denkmodellen, door theorieën beheerst. Veel is gebaseerd, ondanks hoogst wetenschappelijke formuleringen, op hypothesen, op aannames, op onzekerheden. Is het daarom verwonderlijk wanneer steeds meer mensen tegenwoordig in hun levensgevoel zich onzeker, bedreigd en willoos voelen, zonder precies de oorzaken te kennen?
Nog een voorbeeld kan het onderwerp waarom het hier gaat, nog duidelijker maken. In het mainstreamonderwijs leren de kinderen, zoals al gezegd, volgens de methode: 6 + 6 = 12. Rekenkundig is de uitkomst helemaal goed. Wanneer je je bewust wordt van de rekenweg die je volgt, de manier waarop het bij het optellen gaat, moet je vaststellen dat de uitkomst, de 12, volkomen vastligt.
Wat speelt zich in de ziel van het kind af die op deze manier leert rekenen en optellen: 2 + 2 = 4;  2 + 3 = 5;  7 + 8 = 15;  20 + 20 = 40 enz.?
Rudolf Steiner wijst de leerkrachten erop  dat degene die zo rekent, van te voren al denken (de uitkomst) op de plaats van de werkelijkheid zet. Dat leidt tot eenzijdigheid.
Veel meer vrijlatend, bonter en levendiger is de door Rudolf Steiner aanbevolen manier van het eerste, aanvankelijke rekenen. Je geeft het kind bijv. 12 kastanjes. Die vormen de eenheid die in het echt voor het kind ligt, de werkelijkheid. Deze kastanjes kan het kind nu op alle mogelijke manieren verdelen en daarbij levendig en vrijlatend rekenen. 12 is bijv. 11 + 1  of  10 + 2  of  9  +  3  of  8  +  4  of  7  +  5  of  14 – 2  of  22 –  10 enz. Je legt de kinderen als je zo met getallen en uitkomsten bezigbent niet vast. Ook hebben ze er zoveel meer plezier in en roept in hen een heel andere levendigheid en geestelijke beweeglijkheid op. Maar dat is maar een deel. Een ander, veel belangrijker gezichtspunt is de aandacht waard. Leert een kind rekenen met de gewone methode 6  +  6  =  12, dan betekent dit concreet, dat het rekenende kind al meteen iets heeft, namelijk 6 en wanneer het er nu nog 6 bijkrijgt, heeft het er 12 in zijn bezit. Rudolf Steiner wijst erop dat de mensen zich niet moeten verbazen , wanneer deze manier van optellen – ik bezit en er komt meer bij – in het gevoel begeerte, egoïsme enz, oproept. De manier waarop in de vrijeschool wordt gerekend, ias daarom anders, zoals al aangegeven.
De leerling gaat uit van de realiteit, zijn hoopje eikels of kastanjes, die daadwerkelijk in zijn hand liggen. Die verdeelt het, geeft ze weg, het kind  geeft, maar het haalt niet naar zich toe. 12 is bijv. 3  +  3  +  6 enz. En zo heeft de manier van rekenen de mogelijkheid in zich dat de leerling (onbewust) de zielenhouding van het (onzelfzuchtige) geven oefent en wellicht tot gewoonte maakt.
Zo zijn de beide manieren van leren rekenen niet alleen uiterlijk twee volledig verschillende wegen, ze zijn het ook kwalitatief zeer. Leren de kinderen in hun eerste levensjaren, daar horen ook de eerste jaren op school bij, de wereld die hun omringt weznelijk, d.w.z. in haar kwalitatieve vorm te kennen en te begrijpen, dan zijn dat voor hen absolute zekerheden en waarheden; ze bevinden zich op een absluut zekere basis (van vertrouwen). Daar kunnen ze op bouwen. En deze levenshouding geeft hun levenszekerheid!
Het rekenen, zoals het in de eerste klas van de vrijeschool begonnen wordt, was maar een voorbeeld van een fundamentele, levenspraktische methode die niet alleen naar het kind kijkt, maar naar de hele mens.
Wat voor een buitengewoon diepingrijpende uitwerkingen onderwijsmethoden kunnen hebben die voor de mens wezenlijk zijn, zoals bijv. de theoretisch uitgedachte rekenpraktijk voor volwassenen en hoe die op de opgroeiende zielen van invloed zijn, sprak Rudolf Steiner in alle duidelijkheid in een voordracht die hij in Oxford hield op 21-08-1922 [1]:
‘Al vroeg bezit het kind aanleg voor de eerste beginselen van de rekenkunst. Maar juist bij de rekenkunst kan men zien, hoe het kind maar al te gemakkelijk te vroeg geconfronteerd wordt met een intellectualistisch element.(….) Maar toch is het juist heel belangrijk dat het kind het rekenonderwijs op de juiste wijze krijgt aangeboden. In de grond van de zaak kan dat alleen beoordeeld worden door wie vanuit een zekere geestelijke grondslag het volledige menselijke leven kan overzien.
(….) Maar voor wie niet slechts de logica laat gelden doch vanuit de volheid van het leven de dingen beziet, ligt de zaak anders. Een kind dat op de juiste wijze met het rekenen in aanraking is gebracht zal op latere leeftijd een heel ander moreel verantwoordelijkheidsgevoel bezitten, dan een kind dat niet op de juiste wijze met het rekenen heeft kennisgemaakt.
Het volgende zal u wellicht uiterst paradoxaal in de oren klinken, maar daar ik over de werkelijkheid spreek, en niet over hetgeen ons tijdperk zich verbeeldt, wil ik, daar de waarheid in onze tijd vaak paradoxaal lijkt, voor dergelijke paradoxen ook niet terugschrikken. Wanneer wij namelijk als mens de kunst verstaan hadden de menselijke ziel in de afgelopen decennia op de juiste manier in het rekenonderwijs zich te laten verdiepen dan was er nu geen Bolsjewisme geweest in Oost-Europa.”
GA 305/110
vertaald

Hans Harres, Erziehungskunst 50-7/8-1986

.

Rudolf Steiner over: van geheel naar de delen i.v.m. rekenen: GA 301 voordracht 10

Rekenen 1e klas: alle artikelen

Rekenen: alle artikelen

1261

 

 

 

 

 

 

 

 

 

.

Advertenties

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit / Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit / Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit / Bijwerken )

Google+ photo

Je reageert onder je Google+ account. Log uit / Bijwerken )

Verbinden met %s